Cardio-Respiratory Fitness and Fatigue in Post-COVID-19 Syndrome—A Three-Year Update
Abstract
:1. Introduction
2. Material and Methods
- (1)
- patients with SARS-CoV-2 infection episode that has occurred at least 12 months ago;
- (2)
- subjects who are willing to undergo CPET.
- (1)
- left ventricular ejection fraction (LVEF) < 50%;
- (2)
- presence of echocardiographic criteria of pulmonary hypertension (systolic pulmonary arterial pressure > 36 mmHg, maximum velocity of the tricuspid regurgitation jet > 2.8 m/s);
- (3)
- valvular heart disease;
- (4)
- documented cardiomyopathy;
- (5)
- severe uncontrolled hypertension (systolic blood pressure > 180 mmHg and diastolic blood pressure > 90 mmHg);
- (6)
- atrial fibrillation or malignant ventricular arrhythmia;
- (7)
- recent chest or abdominal surgery;
- (8)
- recent exacerbation (during the last three months) of asthma or chronic obstructive pulmonary disease;
- (9)
- fatigue must not be the result of an psychiatric/neurological disease (depression, anxiety, fibromyalgia, sleep disorders, neurodegenerative disorders); infectious diseases (herpes simplex virus, enterovirus, Lyme disease, Q fever), endocrine disease (hypothyroidism, diabetes mellitus, severe obesity); immunologic disorders (lupus, multiple sclerosis, temporo-mandibular joint disorders).
2.1. Procedures
2.1.1. Pulmonary Function Testing
2.1.2. Stress Test Protocol—Cardio-Pulmonary Exercise Testing (CPET)
2.2. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Cardio-Pulmonary Parameters
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walitt, B.; Bartrum, E. A clinical primer for the expected and potential post-COVID-19 syndromes. Pain Rep. 2021, 6, 887. [Google Scholar] [CrossRef]
- Zlatković-Švenda, M.; Rašić, M.; Ovuka, M.; Pavlov-Dolijanović, S.; Popović, M.A.; Ogrič, M.; Žigon, P.; Sodin-Šemrl, S.; Zdravković, M.; Radunović, G. The New Occurrence of Antiphospholipid Syndrome in Severe COVID-19 Cases with Pneumonia and Vascular Thrombosis Could Explain the Post-COVID Syndrome. Biomedicines 2025, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Bijelović, M.; Gardić, N.; Lovrenski, A.; Petrović, D.; Kozoderović, G.; Lalošević, V.; Vračar, V.; Lalošević, D. Cladosporium species novum Invasive Pulmonary Infection in a Patient with Post-COVID-19 Syndrome and AIDS. Diagnostics 2025, 15, 781. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; E Hillman, T.; Jacob, J.; Jarvis, H.C.; et al. Long-COVID: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef]
- Moldofsky, H.; Patcai, J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011, 11, 3. [Google Scholar] [CrossRef]
- Løkke, F.B.; Hansen, K.S.; Dalgaard, L.S.; Öbrink-Hansen, K.; Schiøttz-Christensen, B.; Leth, S. Long-term complications after infection with SARS-CoV-1, influenza and MERS-CoV. Lessons to learn in long COVID? Infect. Dis. Now 2023, 53, 104779–104791. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Seeßle, J.; Waterboer, T.; Hippchen, T.; Simon, J.; Kirchner, M.; Lim, A.; Müller, B.; Merle, U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin. Infect. Dis. 2022, 74, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Malioukis, A.; Snead, R.; Marczika, J.; Ambalavanan, R. Pathophysiological, Neuropsychological, and Psychosocial Influences on Neurological and Neuropsychiatric Symptoms of Post-Acute COVID-19 Syndrome: Impacts on Recovery and Symptom Persistence. Biomedicines 2024, 12, 2831. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID-mechanisms, risk factors, and management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Risk Factors Associated with Long COVID Syndrome: A Retrospective Study. Iran. J. Med. Sci. 2021, 46, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Dowds, J.; O’Brien, K.; Sheill, G.; Dyer, A.H.; O’kelly, B.; Hynes, J.P.; Mooney, A.; Dunne, J.; Ni Cheallaigh, C.; et al. Persistent Poor Health after COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann. Am. Thorac. Soc. 2021, 18, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef] [PubMed]
- Questionnaires and Tools to Assess ME/CFS Symptoms or Severity. Available online: https://me-pedia.org/wiki/Questionnaires_and_tools_to_assess_ME/CFS_symptoms_or_severity (accessed on 2 April 2025).
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation 2016, 133, 694–711. [Google Scholar] [CrossRef]
- American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardio-pulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef]
- Moreno-Pérez, O.; Merino, E.; Leon-Ramirez, J.M.; Andres, M.; Ramos, J.M.; Arenas-Jiménez, J.; Asensio, S.; Sanchez, R.; Ruiz-Torregrosa, P.; Galan, I.; et al. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J. Infect. 2021, 82, 378–883. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F.; the Gemelli Against COVID-19 Post-Acute Care Study Group. COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Halpin, S.J.; McIvor, C.; Whyatt, G.; Adams, A.; Harvey, O.; McLean, L.; Walshaw, C.; Kemp, S.; Corrado, J.; Singh, R.; et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID19 infection: A cross-sectional evaluation. J. Med. Virol. 2021, 93, 1013–1022. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.; Haufe, S.; Dirks, M.; Scharbau, M.; Lampe, V.; Dopfer-Jablonka, A.; Tegtbur, U.; Pink, I.; Drick, N.; Kerling, A. Post-COVID-19 syndrome: Physical capacity, fatigue and quality of life. PLoS ONE 2023, 18, e0292928. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, M.W.; Kim, S.S.; Lindsell, C.J.; Rose, E.B.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Erickson, H.L.; Steingrub, J.S.; Smithline, H.A.; et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, March–June 2020. MMWR Morb. Mortal. Wkly Rep. 2020, 69, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Wilkerson, D.P.; Jones, A.M. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur. J. Appl. Physiol. 2008, 102, 403–410. [Google Scholar] [CrossRef]
- Hariri, N.; Takrooni, W.; Nasraldin, N.; Bawahab, N.; Alfalogy, E. Effect of the Long COVID-19 Quarantine and Associated Lack of Physical Activity on Overall Health. Cureus 2022, 14, e30955. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, Y.; Zhang, Y.; Bennell, K.L.; White, D.K.; Shen, L.; Ren, W.; Wei, J.; Zeng, C.; Lei, G. The COVID-19 Pandemic and Daily Steps in the General Population: Meta-analysis of Observational Studies. JMIR Public Health Surveill 2023, 9, e40650. [Google Scholar] [CrossRef] [PubMed]
- Clavario, P.; De Marzo, V.; Lotti, R.; Barbara, C.; Porcile, A.; Russo, C.; Beccaria, F.; Bonavia, M.; Bottaro, L.C.; Caltabellotta, M.; et al. Assessment of functional capacity with cardiopulmonary exercise testing in non-severe COVID-19 patients at three months follow-up. medRxiv 2020. [Google Scholar] [CrossRef]
- Barbagelata, L.; Masson, W.; Iglesias, D.; Lillo, E.; Migone, J.F.; Orazi, M.L.; Maritano Furcada, J. Cardiopulmonary Exercise Testing in Patients with Post-COVID-19 Syndrome. Med. Clin. (Engl. Ed.) 2022, 159, 6–11. [Google Scholar]
- Cortés-Telles, A.; López-Romero, S.; Figueroa-Hurtado, E.; Pou-Aguilar, Y.N.; Wong, A.W.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A. Pulmonary function and functional capacity in COVID19 survivors with persistent dyspnoea. Respir. Physiol. Neurobiol. 2021, 288, 103644. [Google Scholar] [CrossRef]
- Bouza, E.; Cantón Moreno, R.; De Lucas Ramos, P.; García-Botella, A.; García-Lledó, A.; Gómez-Pavón, J.; del Castillo, J.G.; Hernández-Sampelayo, T.; Martín-Delgado, M.C.; Sánchez, F.J.M.; et al. Post-COVID syndrome: A reflection and opinion paper. Rev. Esp. Quimioter. 2021, 34, 269–279. [Google Scholar] [CrossRef]
- Martin, K.; Meeusen, R.; Thompson, K.G.; Keegan, R.; Rattray, B. Mental Fatigue Impairs Endurance Performance: A Physiological Explanation. Sports Med. 2018, 48, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Słomko, J.; Estévez-López, F.; Kujawski, S.; Zawadka-Kunikowska, M.; Tafil-Klawe, M.; Klawe, J.J.; Morten, K.J.; Szrajda, J.; Murovska, M.; Newton, J.L.; et al. Autonomic Phenotypes in Chronic Fatigue Syndrome (CFS) Are Associated with Illness Severity: A Cluster Analysis. J. Clin. Med. 2020, 9, 2531. [Google Scholar] [CrossRef] [PubMed]
- Oscoz-Ochandorena, S.; Legarra-Gorgonon, G.; García-Alonso, Y.; García-Alonso, N.; Izquierdo, M.; Ramírez-Vélez, R. Reduced autonomic function in patients with long-COVID-19 syndrome is mediated by cardiorespiratory fitness. Curr. Probl. Cardiol. 2024, 49, 102732. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Rigo, S.; Pani, M.; Bisoglio, A.; Khalaf, K.; Minonzio, M.; Shiffer, D.; Romeo, M.A.; Verzeletti, P.; Ciccarelli, M.; et al. Long-COVID autonomic syndrome in working age and work ability impairment. Sci. Rep. 2024, 14, 11835. [Google Scholar] [CrossRef] [PubMed]
- Colosio, M.; Brocca, L.; Gatti, M.F.; Neri, M.; Crea, E.; Cadile, F.; Canepari, M.; Pellegrino, M.A.; Polla, B.; Porcelli, S.; et al. Structural and functional impairments of skeletal muscle in patients with postacute sequelae of SARS-CoV-2 infection. J. Appl. Physiol. 2023, 135, 902–917. [Google Scholar] [CrossRef] [PubMed]
- Durstenfeld, M.S.; Sun, K.; Tahir, P.; Peluso, M.J.; Deeks, S.G.; Aras, M.A.; Grandis, D.J.; Long, C.S.; Beatty, A.; Hsue, P.Y. Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in Adults: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2236057. [Google Scholar] [CrossRef] [PubMed]
Without Long-Term Post-COVID-19 (48) | With Long-Term Post-COVID-19 (47) | p-Value | |
---|---|---|---|
Anthropometric | |||
Age, years | 44.6 ± 7.9 | 44.7 ± 6.3 | 0.417 * |
Sex, M:F | 33:15 | 25:22 | 0.218 † |
Smoker–Non-smoker | 23:25 | 21:26 | 0.849 † |
BMI, kg/m2 | 25.8 ± 7.9 | 26.1 ± 8.4 | 0.108 † |
Comorbidities, n (%) | |||
Arterial hypertension | 15 (31) | 14 (29) | 0.817 † |
Ischaemic heart disease | 14 (29) | 12 (26) | 0.109 † |
Diabetes | 5 (10) | 6 (13) | 0.087 † |
Dyslipidemia | 5 (10) | 8 (17) | 0.518 † |
COPD/Asthma | 0/4 (0/8) | 0/2 (0/4) | 0.832 † |
Depression | 1 (2) | 2 (4) | 0.719 † |
Concomitant medication, n (%) | |||
ACE inhibitors | 14 (29) | 14 (30) | 0.087 † |
Beta-blockers | 10 (20) | 8 (17) | 0.323 † |
Statins | 5 (10) | 8 (17) | 0.513 † |
Anti-diabetic therapy | 4 (8) | 4 (8) | 0.065 † |
Bronchodilators | 4 (8) | 2 (4) | 0.701 † |
Anticoagulants | 4 (8) | 8 (17) | 0.435 † |
Aspirin | 8 (16) | 8 (17) | 0.432 † |
Severity of acute COVID, n (%) | |||
Mild/non-hospitalized | 38 (79) | 39 (83) | 0.061 † |
Hospitalized | 10 (21) | 8 (17) | 0.075 † |
Without Long-Term Post-COVID-19 (48) | With Long-Term Post-COVID-19 Mild (20) | With Long-Term Post-COVID-19 Moderate–Severe (27) | p-Value | |
---|---|---|---|---|
Respiratory parameters | ||||
FEV1, L | 3.16 ± 0.87 | 3.25 ± 0.68 | 3.59 ± 0.97 | 0.076 † |
FEV1, (%) | 79.54 ± 11.23 | 83.49 ± 8.80 | 89 ± 8.71 | 0.384 † |
FVC, L | 3.80 ± 1.09 | 4.11 ± 0.99 | 4.46 ± 1.22 | 0.812 † |
FVC, (%) | 78.36 ± 13.5 | 82.89 ± 8.33 | 90 ± 8.88 | 0.619 † |
FEV1/FVC, % | 79.54 ± 11.23 | 79.08 ± 13.21 | 80.49 ± 10.32 | 0.705 † |
Physical capacity | ||||
Peak VO2, mL/min/kg | 27.01 ± 6.3 | 26.73 ± 5.9 | 24.13 ± 6.1 | 0.098 † |
Predicted peak VO2, % | 91.2 ± 3.1 | 84.2 ± 6.4 | 81.4 ± 8.6 | 0.298 † |
Exercise time, minutes | 9.4 ± 2.8 | 9.0 ± 2.6 | 8.4 ± 3.2 | 0.112 † |
Slope VE/VCO2 | 32.9 ± 7.2 | 33.4 ± 5.9 | 32.1 ± 8.1 | 0.068 † |
Categorical parameters, n (%) | ||||
Preserved functional capacity | 34 (71) | 13 (65) | 17 (63) | 0.109 † |
Mildly diminished functional capacity | 14 (29) | 7 (35) | 10 (37) | 0.084 † |
Moderately diminished functional capacity | 0 | 0 | 0 | |
Achieved anaerobic threshold | 42 (87.5) | 15 (75) | 13 (48.2) | 0.571 † |
Depleted respiratory reserve | 0 | 0 | 0 | |
Heart rate reserve utilization | 78.12 (71.87–3.52) | 68.32 (59.28–72.45) | 53.28 (47.09–60.48) | 0.710 † |
Without Long-Term Post-COVID-19 (48) | With Long-Term Post-COVID-19 Mild (20) | With Long-Term Post-COVID-19 Moderate–Severe (27) | p-Value | |
---|---|---|---|---|
Diminished physical activity, n (%) | 14 (29) | 7 (35) | 10 (37) | 0.409 † |
Cardiovascular pattern | 30 (62.5) | 14 (70) | 22 (81.4) | 0.804 † |
Respiratory pattern | 0 | 0 | 0 | 0.612 † |
Peripheral pattern | 35 (72.9) | 16 (80) | 21 (77.8) | 0.347 † |
Exercise limiting symptoms, n (%) | ||||
Dyspnea | 41 (85.4) | 15 (75) | 21 (77.8) | 0.612 † |
Dizziness | 9 (18.7) | 4 (20) | 5 (18.5) | 0.218 † |
Chest pain | 0 | 0 | 0 | |
Leg fatigue | 0 | 5 (25) | 6 (22.2) | 0.703 † |
Univaraiate Regression Analysis | p-Value | OR | 95% CI |
---|---|---|---|
Peak Load, W | 0.345 | 1.781 | 1.512–1.967 |
Peak VE, L/min | 0.783 | 1.003 | 0.884–1.487 |
Peak V’O2, mL/kg/min | 0.904 | 10.137 | 8.125–16.014 |
V’O2 at AT, mL/kg/min | 0.120 | 4.827 | 2.321–6.321 |
Peak RER | 0.349 | 0.912 | 0.671–1.318 |
VE/VCO2 slope | 0.209 | 6.122 | 3.732–8.402 |
HR at rest, bpm | 0.717 | 13.56 | 11.032–16.087 |
Peak HR, bpm | 0.208 | 0.912 | 0.718–1.213 |
O2 pulse, mL/beat | 0.231 | 0.329 | 0.098–2.097 |
Univaraiate Regression Analysis | p-Value | OR | 95% CI |
---|---|---|---|
Age | 0.809 | 0.403 | 0.232–0.692 |
Sex | 0.209 | 5.098 | 2.097–7.613 |
Smoking status | 0.078 | 2.098 | 0.409–4.012 |
BMI | 0.092 | 1.890 | 0.872–3.098 |
Severity of the initial illness | 0.430 | 1.098 | 0.409–4.987 |
Hospitalization | 0.076 | 1.090 | 0.941–2.102 |
ICU admission | 0.092 | 2.097 | 0.067–2.503 |
Arterial hypertension | 0.913 | 9.211 | 1.092–12.402 |
Ischaemic heart disease | 0.729 | 11.43 | 2.617–12.098 |
Diabetes | 0.824 | 10.028 | 8.009–13.209 |
Dyslipidemia | 0.098 | 8.072 | 6.124–10.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherneva, R.; Cherneva, Z.; Youroukova, V.; Kadiyska, T.; Valev, D.; Hayrula-Manaf, E.M.; Mitev, V. Cardio-Respiratory Fitness and Fatigue in Post-COVID-19 Syndrome—A Three-Year Update. Biomedicines 2025, 13, 1097. https://doi.org/10.3390/biomedicines13051097
Cherneva R, Cherneva Z, Youroukova V, Kadiyska T, Valev D, Hayrula-Manaf EM, Mitev V. Cardio-Respiratory Fitness and Fatigue in Post-COVID-19 Syndrome—A Three-Year Update. Biomedicines. 2025; 13(5):1097. https://doi.org/10.3390/biomedicines13051097
Chicago/Turabian StyleCherneva, Radostina, Zheyna Cherneva, Vania Youroukova, Tanya Kadiyska, Dinko Valev, Ebru Myuyun Hayrula-Manaf, and Vanyo Mitev. 2025. "Cardio-Respiratory Fitness and Fatigue in Post-COVID-19 Syndrome—A Three-Year Update" Biomedicines 13, no. 5: 1097. https://doi.org/10.3390/biomedicines13051097
APA StyleCherneva, R., Cherneva, Z., Youroukova, V., Kadiyska, T., Valev, D., Hayrula-Manaf, E. M., & Mitev, V. (2025). Cardio-Respiratory Fitness and Fatigue in Post-COVID-19 Syndrome—A Three-Year Update. Biomedicines, 13(5), 1097. https://doi.org/10.3390/biomedicines13051097