Quantification of the Dynamics of the Vascular Flows in the Cerebral Arterial and Venous Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Acquisition
2.3. Image Processing
2.4. Calculation of the Pulsatility Index
2.5. Cerebral Flows
2.6. Distribution
2.7. Cerebral Drainage Dominance
2.8. Data Analysis
3. Results
4. Discussion
4.1. Acquisition
4.2. The System Can Also Be Studied in 4D
4.3. Influence of Respiration
4.4. Anatomical Studies
4.5. Venous Drainage and Its Physiological Implications
4.6. Pulsatility Index
4.7. In Pathology
4.8. Gravity
4.9. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burlakoti, A.; Kumaratilake, J.; Taylor, J.; Massy-Westropp, N.; Henneberg, M. The cerebral basal arterial network: Morphometry of inflow and outflow components. Am. J. Anat. 2017, 230, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Lui, F. Neuroanatomy, Brain Arteries. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK549894/ (accessed on 8 January 2025).
- Kiliç, T.; Akakin, A. Anatomy of cerebral veins and sinuses. Front. Neurol. Neurosci. 2008, 23, 4–15. [Google Scholar] [CrossRef]
- Dalip, D.; Iwanaga, J.; Loukas, M.; Oskouian, R.J.; Tubbs, R.S. Review of the Variations of the Superficial Veins of the Neck. Cureus 2018, 10, e2826. [Google Scholar] [CrossRef]
- Alperin, N.; Lee, S.H.; Sivaramakrishnan, A.; Hushek, S.G. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J. Magn. Reson. Imaging 2005, 22, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Gisolf, J.; van Lieshout, J.J.; van Heusden, K.; Pott, F.; Stok, W.J.; Karemaker, J.M. Human cerebral venous outflow pathway depends on posture and central venous pressure. J. Physiol. 2004, 560 Pt 1, 317–327. [Google Scholar] [CrossRef]
- Wilson, M.H. Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological components of intracranial pressure. J. Cereb. Blood Flow Metab. 2016, 36, 1338–1350. [Google Scholar] [CrossRef]
- Czosnyka, M.; Czosnyka, Z. Origin of intracranial pressure pulse waveform. Acta Neurochir. 2020, 162, 1815–1817. [Google Scholar] [CrossRef] [PubMed]
- van Zandwijk, J.K.; Kuijer, K.M.; Stassen, C.M.; Ten Haken, B.; Simonis, F.F.J. Internal Jugular Vein Geometry Under Multiple Inclination Angles with 3D Low-Field MRI in Healthy Volunteers. J. Magn. Reson. Imaging JMRI 2022, 56, 1302–1308. [Google Scholar] [CrossRef]
- Kubo, M.; Kuwayama, N.; Massoud, T.F.; Hacein-Bey, L. Anatomy of Intracranial Veins. Neuroimaging Clin. N. Am. 2022, 32, 637–661. [Google Scholar] [CrossRef]
- Schaller, B. Physiology of cerebral venous blood flow: From experimental data in animals to normal function in humans. Brain Res. Rev. 2004, 46, 243–260. [Google Scholar] [CrossRef]
- Park, H.K.; Bae, H.G.; Choi, S.K.; Chang, J.C.; Cho, S.J.; Byun, B.J.; Sim, K.B. Morphological study of sinus flow in the confluence of sinuses. Clin. Anat. 2008, 21, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Saiki, K.; Tsurumoto, T.; Okamoto, K.; Wakebe, T. Relation between bilateral differences in internal jugular vein caliber and flow patterns of dural venous sinuses. Anat. Sci. Int. 2013, 88, 141–150. [Google Scholar] [CrossRef]
- Stoquart-Elsankari, S.; Lehmann, P.; Villette, A.; Czosnyka, M.; Meyer, M.-E.; Deramond, H.; Balédent, O. A phase-contrast MRI study of physiologic cerebral venous flow. J. Cereb. Blood Flow Metab. 2009, 29, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Lokossou, A.; Metanbou, S.; Gondry-Jouet, C.; Balédent, O. Extracranial versus intracranial hydro-hemodynamics during aging: A PC-MRI pilot cross-sectional study. Fluids Barriers CNS 2020, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Ciuti, G.; Righi, D.; Forzoni, L.; Fabbri, A.; Pignone, A.M. Differences between internal jugular vein and vertebral vein flow examined in real time with the use of multigate ultrasound color Doppler. AJNR Am. J. Neuroradiol. 2013, 34, 2000–2004. [Google Scholar] [CrossRef]
- Feinberg, D.A.; Crooks, L.; Hoenninger, J.; Arakawa, M.; Watts, J. Pulsatile blood velocity in human arteries displayed by magnetic resonance imaging. Radiology 1984, 153, 177–180. [Google Scholar] [CrossRef]
- Nayler, G.L.; Firmin, D.N.; Longmore, D.B. Blood flow imaging by cine magnetic resonance. J. Comput. Assist. Tomogr. 1986, 10, 715–722. [Google Scholar] [CrossRef]
- Pelc, N.J.; Herfkens, R.J.; Shimakawa, A.; Enzmann, D.R. Phase contrast cine magnetic resonance imaging. Magn. Reson. Q. 1991, 7, 229–254. [Google Scholar]
- Bhadelia, R.A.; Bogdan, A.R.; Wolpert, S.M. Analysis of cerebrospinal fluid flow waveforms with gated phase-contrast MR velocity measurements. AJNR Am. J. Neuroradiol. 1995, 16, 389–400. [Google Scholar]
- Bhadelia, R.A.; Bogdan, A.R.; Wolpert, S.M. Cerebrospinal fluid flow waveforms: Effect of altered cranial venous outflow. A phase-contrast MR flow imaging study. Neuroradiology 1998, 40, 283–292. [Google Scholar] [CrossRef]
- Norager, N.H.; Olsen, M.H.; Pedersen, S.H.; Riedel, C.S.; Czosnyka, M.; Juhler, M. Reference values for intracranial pressure and lumbar cerebrospinal fluid pressure: A systematic review. Fluids Barriers CNS 2021, 18, 19. [Google Scholar] [CrossRef] [PubMed]
- Balédent, O.; Henry-Feugeas, M.C.; Idy-Peretti, I. Cerebrospinal fluid dynamics and relation with blood flow: A magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Investig. Radiol. 2001, 36, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Holmlund, P.; Eklund, A.; Koskinen, L.-O.D.; Johansson, E.; Sundström, N.; Malm, J.; Qvarlander, S. Venous collapse regulates intracranial pressure in upright body positions. Am. J. Physiol. Integr. Comp. Physiol. 2018, 314, R377–R385. [Google Scholar] [CrossRef] [PubMed]
- Liu, P. Acquisition et traitement de l’imagerie par Résonance Magnétique en contraste de phase pour la quantification des écoulements cérébraux du sang et du Liquide Cérébro-Spinal sous influence respiratoire. Ph.D. Thesis, Université de Picardie Jules Verne, Amiens, France, 2020. [Google Scholar]
- Liu, P.; Fall, S.; Ahiatsi, M.; Balédent, O. Real-time phase contrast MRI versus conventional phase contrast MRI at different spatial resolutions and velocity encodings. Clin. Imaging 2023, 94, 93–102. [Google Scholar] [CrossRef]
- Enzmann, D.R.; Ross, M.R.; Marks, M.P.; Pelc, N.J. Blood flow in major cerebral arteries measured by phase-contrast cine MR. AJNR Am. J. Neuroradiol. 1994, 15, 123–129. [Google Scholar]
- Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- Stock, K.W.; Wetzel, S.G.; Lyrer, P.A.; Radü, E.W. Quantification of blood flow in the middle cerebral artery with phase-contrast MR imaging. Eur. Radiol. 2000, 10, 1795–1800. [Google Scholar] [CrossRef]
- Laganà, M.M.; Pirastru, A.; Ferrari, F.; Di Tella, S.; Cazzoli, M.; Pelizzari, L.; Jin, N.; Zacà, D.; Alperin, N.; Baselli, G.; et al. Cardiac and Respiratory Influences on Intracranial and Neck Venous Flow, Estimated Using Real-Time Phase-Contrast MRI. Biosensors 2022, 12, 612. [Google Scholar] [CrossRef]
- Schnell, S.; Ansari, S.A.; Wu, C.; Garcia, J.; Murphy, I.G.; Rahman, O.A.; Rahsepar, A.A.; Aristova, M.; Collins, J.D.; Carr, J.C.; et al. Accelerated dual-venc 4D flow MRI for neurovascular applications. J. Magn. Reson. Imaging JMRI 2017, 46, 102–114. [Google Scholar] [CrossRef]
- Dai, C.; Zhao, P.; Ding, H.; Lv, H.; Qiu, X.; Tang, R.; Xu, N.; Huang, Y.; Han, X.; Yang, Z.; et al. Cerebral Sinus Hemodynamics in Adults Revealed by 4D Flow MRI. J. Magn. Reson. Imaging JMRI 2024, 60, 1706–1717. [Google Scholar] [CrossRef]
- Chen, L.; Beckett, A.; Verma, A.; Feinberg, D.A. Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. NeuroImage 2015, 122, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Fall, S.; Balédent, O. Use of real-time phase-contrast MRI to quantify the effect of spontaneous breathing on the cerebral arteries. NeuroImage 2022, 258, 119361. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Monnier, H.; Owashi, K.; Constans, J.-M.; Capel, C.; Balédent, O. The Effects of Free Breathing on Cerebral Venous Flow: A Real-Time Phase Contrast MRI Study in Healthy Adults. J. Neurosci. 2024, 44, e0965232023. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, S.G.; Lee, V.S.; Tan, A.G.; Heid, O.; Cha, S.; Johnson, G.; Rofsky, N.M. Real-time interactive duplex MR measurements: Application in neurovascular imaging. AJR Am. J. Roentgenol. 2001, 177, 703–707. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, L.-J.; Cao, T.-S.; Duan, Y.-Y.; Jia, H.-P.; Liu, J. Effects of respiration on pulmonary venous flow and its clinical applications by Doppler echocardiography. Echocardiography 2009, 26, 150–154. [Google Scholar] [CrossRef]
- Redington, A.N.; Penny, D.; Shinebourne, E.A. Pulmonary blood flow after total cavopulmonary shunt. Br. Heart J. 1991, 65, 213–217. [Google Scholar] [CrossRef]
- Schroth, G.; Klose, U. Cerebrospinal fluid flow. I. Physiology of cardiac-related pulsation. Neuroradiology 1992, 35, 1–9. [Google Scholar] [CrossRef]
- de Freitas, C.A.F.; Santos, L.R.M.D.; Santos, A.N.; do Amaral Neto, A.B.; Brandão, L.G. Anatomical study of jugular foramen in the neck. Braz. J. Otorhinolaryngol. 2020, 86, 44–48. [Google Scholar] [CrossRef]
- Lv, X.; Wu, Z. Anatomic variations of internal jugular vein, inferior petrosal sinus and its confluence pattern: Implications in inferior petrosal sinus catheterization. Interv. Neuroradiol. 2015, 21, 769–773. [Google Scholar] [CrossRef]
- Alperin, N.; Vikingstad, E.M.; Gomez-Anson, B.; Levin, D.N. Hemodynamically independent analysis of cerebrospinal fluid and brain motion observed with dynamic phase contrast MRI. Magn. Reson. Med. 1996, 35, 741–754. [Google Scholar] [CrossRef]
- Baddouh, N.; Elbakri, S.; Draiss, G.; Mouaffak, Y.; Rada, N.; Younous, S.; Bouskraoui, M. Cerebral venous thrombosis in children: About a series of 12 cases. Pan Afr. Med. J. 2019, 32, 22. [Google Scholar] [CrossRef]
- Warden, K.F.; Alizai, A.M.; Trobe, J.D.; Hoff, J.T. Short-term continuous intraparenchymal intracranial pressure monitoring in presumed idiopathic intracranial hypertension. J. Neuro-Ophthalmol. Off. J. N. Am. Neuro-Ophthalmol. Soc. 2011, 31, 202–205. [Google Scholar] [CrossRef]
- Renard, D.; Castelnovo, G.; Le Floch, A.; Guillamo, J.-S.; Thouvenot, E. Pseudotumoral brain lesions: MRI review. Acta Neurol. Belg. 2017, 117, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, D.; Chen, J.; Pearl, M.; Huang, J.; Gemmete, J.J.; Kathuria, S. Intracranial Dural Arteriovenous Fistulas: Classification, Imaging Findings, and Treatment. Am. J. Neuroradiol. 2012, 33, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Hurst, R.W.; Bagley, L.J.; Galetta, S.; Glosser, G.; Lieberman, A.P.; Trojanowski, J.; Sinson, G.; Stecker, M.; Zager, E.; Raps, E.C.; et al. Dementia resulting from dural arteriovenous fistulas: The pathologic findings of venous hypertensive encephalopathy. AJNR Am. J. Neuroradiol. 1998, 19, 1267–1273. [Google Scholar] [PubMed]
- Berenstein, A.; Lasjaunias, P.L.; Brugge, K.G. Cerebral Arteriovenous Shunts, Spinal Arteriovenous Shunts, Spinal Vascular Tumors, Technical Aspects of Endovascular Neurosurgery; with 155 Tables; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Bateman, G.A. The pathophysiology of idiopathic normal pressure hydrocephalus: Cerebral ischemia or altered venous hemodynamics? AJNR Am. J. Neuroradiol. 2008, 29, 198–203. [Google Scholar] [CrossRef]
- Hakim, S.; Adams, R.D. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci. 1965, 2, 307–327. [Google Scholar] [CrossRef]
- Zamboni, P.; Galeotti, R.; Menegatti, E.; Malagoni, A.M.; Tacconi, G.; Dall’Ara, S.; Bartolomei, I.; Salvi, F. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2009, 80, 392–399. [Google Scholar] [CrossRef]
- ElSankari, S.; Balédent, O.; van Pesch, V.; Sindic, C.; de Broqueville, Q.; Duprez, T. Concomitant analysis of arterial, venous, and CSF flows using phase-contrast MRI: A quantitative comparison between MS patients and healthy controls. J. Cereb. Blood Flow Metab. 2013, 33, 1314–1321. [Google Scholar] [CrossRef]
- Zivadinov, R.; Lopez-Soriano, A.; Weinstock-Guttman, B.; Schirda, C.V.; Magnano, C.R.; Dolic, K.; Kennedy, C.L.; Brooks, C.L.; Reuther, J.A.; Hunt, K.; et al. Use of MR venography for characterization of the extracranial venous system in patients with multiple sclerosis and healthy control subjects. Radiology 2011, 258, 562–570. [Google Scholar] [CrossRef]
- Hsieh, Y.-L.; Zuo, B.; Shi, Y.; Wang, S.; Wang, W. Dynamics of cerebrospinal fluid pressure alterations and bilateral transverse–sigmoid sinus morphologies in Asian patients with venous pulsatile tinnitus. J. Int. Med. Res. 2023, 51, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lefferts, W.K.; DeBlois, J.P.; Augustine, J.A.; Keller, A.P.; Heffernan, K.S. Age, sex, and the vascular contributors to cerebral pulsatility and pulsatile damping. J. Appl. Physiol. 2020, 129, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Utriainen, D.; Trifan, G.; Sethi, S.; Hubbard, D.; Haacke, E.M. Quantitative flow measurements in the internal jugular veins of multiple sclerosis patients using magnetic resonance imaging. Rev. Recent Clin. Trials 2012, 7, 117–126. [Google Scholar] [CrossRef] [PubMed]
3D PC Angiography | 2D CINE PC | |
---|---|---|
FOV (mm2) | 350 × 350 | 140 × 140 |
Resolution (mm2) | 1.5 × 1.5 | 1 × 1 |
Thickness (mm) | 3 | 2 |
Flip angle (°) | 12 | 30 |
SENSE | - | 1.5 |
TE (ms)/TR (ms) | 3/5 | 7/11 |
Velocity encoding (cm/s) | 30 | 5–60 |
Number of images | 107 | 32 |
Acquisition time min–max (s) | 150 | 40–115 |
Number of images/cycle | 1 | 32 |
Vessels | Number | Mean Flow (mL/min) | ||
---|---|---|---|---|
Intracranial | Artery | Right internal carotid | 36 | 284 ± 60 |
Left internal carotid | 36 | 289 ± 67 | ||
Basilar artery | 36 | 178 ± 61 | ||
Vein | Straight sinus | 36 | 116 ± 37 | |
Superior sagittal sinus | 36 | 341 ± 61 | ||
Extracranial | Artery | Right internal carotid | 36 | 288 ± 47 |
Left internal carotid | 36 | 300 ± 47 | ||
Right vertebral | 36 | 99 ± 48 | ||
Left vertebral | 36 | 122 ± 48 | ||
Vein | Right internal jugular | 34 | 329 ± 168 | |
Left internal jugular | 34 | 207 ± 134 | ||
Right epidural | 28 | 32 ± 39 | ||
Left epidural | 27 | 23 ± 18 | ||
Posterior | 116 | 127 ± 99 |
Extracranial | Intracranial | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arterial (ICAs + VAs) | Venous (IJVs + EVs + PVs) | Arterial (ICAs + BA) | Venous (SS + SSS) | |||||||||
Men | Women | p | Men | Women | p | Men | Women | p | Men | Women | p | |
Mean flow (mL/min) | 784 ± 80 | 842 ± 142 | 0.16 | 678 ± 90 | 739 ± 104 | 0.07 | 722 ± 145 | 787 ± 145 | 0.17 | 440 ± 94 | 478 ± 94 | 0.18 |
Pulsatility index | 1.06 ± 0.25 | 0.88 ± 0.18 | 0.02 * | 0.67 ± 0.26 | 0.74 ± 0.26 | 0.41 | 0.85 ± 0.14 | 0.78 ± 0.14 | 0.23 | 0.30 ± 0.07 | 0.29 ± 0.07 | 0.69 |
Men (N = 20) | Women (N = 16) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arterial | Venous | Arterial | Venous | |||||||||
Extra | Intra | p | Extra | Intra | p | Extra | Intra | p | Extra | Intra | p | |
Mean flow (mL/min) | 784 ± 80 | 722 ± 145 | 0.08 | 678 ± 90 | 440 ± 94 | 2 × 10−9 *** | 842 ± 142 | 787 ± 145 | 0.28 | 739 ± 104 | 478 ± 94 | 2 × 10−8 *** |
Pulsatility index | 1.06 ± 0.25 | 0.85 ± 0.14 | 4 × 10−3 ** | 0.67 ± 0.26 | 0.30 ± 0.07 | 3 × 10−6 *** | 0.88 ± 0.18 | 0.78 ± 0.14 | 0.09 | 0.74 ± 0.26 | 0.29 ± 0.07 | 2 × 10−6 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monnier, H.; Owashi, K.; Liu, P.; Metanbou, S.; Capel, C.; Balédent, O. Quantification of the Dynamics of the Vascular Flows in the Cerebral Arterial and Venous Trees. Biomedicines 2025, 13, 1106. https://doi.org/10.3390/biomedicines13051106
Monnier H, Owashi K, Liu P, Metanbou S, Capel C, Balédent O. Quantification of the Dynamics of the Vascular Flows in the Cerebral Arterial and Venous Trees. Biomedicines. 2025; 13(5):1106. https://doi.org/10.3390/biomedicines13051106
Chicago/Turabian StyleMonnier, Heimiri, Kimi Owashi, Pan Liu, Serge Metanbou, Cyrille Capel, and Olivier Balédent. 2025. "Quantification of the Dynamics of the Vascular Flows in the Cerebral Arterial and Venous Trees" Biomedicines 13, no. 5: 1106. https://doi.org/10.3390/biomedicines13051106
APA StyleMonnier, H., Owashi, K., Liu, P., Metanbou, S., Capel, C., & Balédent, O. (2025). Quantification of the Dynamics of the Vascular Flows in the Cerebral Arterial and Venous Trees. Biomedicines, 13(5), 1106. https://doi.org/10.3390/biomedicines13051106