Promising Antimicrobial Activities of Essential Oils and Probiotic Strains on Chronic Wound Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Pathogenic Strains
2.1.1. Virulence Factor Production
2.1.2. Semiquantitative Assessment of Biofilm Formation on Inert Substratum
2.2. Antimicrobial Activity of Essential Oils and Products
2.3. Probiotic Potential of Lactic Acid Bacteria (LAB) Strains
2.4. Bacterial Adherence to Cell Substrate
2.5. Statistical Analysis
3. Results
3.1. Characterization of the Phenotypic Profile of Virulence of Pathogenic Strains
3.1.1. Phenotypic Determination of the Production of Soluble Virulence Factors
3.1.2. Phenotypic Assessment of Bacterial Adherence to Inert Substrate
3.2. Assessment of the Antimicrobial Activity of Commercial Essential Oils and Pharmaceutical Products
3.2.1. Qualitative Assessment of Bacterial Inhibition
3.2.2. Quantitative Assessment of Bacterial Inhibition
3.2.3. Quantitative Assessment of Biofilm Eradication in Vitro
3.3. The Evaluation of Probiotic Potential of Selected Lactic Acid Bacteria Strains
3.4. Cell Substrate Adherence Assay of Pathogenic Bacteria in the Presence of Essential Oils Alone or in Combination with L. Rhamnosus SN Fraction
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, A.V.; Soulika, A.M. The Dynamics of the Skin’s Immune System. Int. J. Mol. Sci. 2019, 20, 1811. [Google Scholar] [CrossRef] [PubMed]
- Velarde, M.C.; Demaria, M. Targeting Senescent Cells: Possible Implications for Delaying Skin Aging: A Mini-Review. Gerontology 2016, 62, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Wendtner, M.-H.; Korting, H. The pH of the Skin Surface and Its Impact on the Barrier Function. Ski. Pharmacol. Physiol. 2006, 19, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.M.; Holban, A.M.; Giurcăneanu, C.; Popa, L.G.; Buzea, M.; Filipov, M.; Lazăr, V.; Chifiriuc, M.C.; Popa, M.I. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Romanian J. Morphol. Embryol. 2014, 55, 1401–1408. [Google Scholar]
- Mihai, M.M.; Holban, A.-M.; Ion, A.; Bălăceanu, B.; Gurău, C.-D.; Lazăr, V. Nano-targeted drug delivery ap-proaches for biofilm-associated infections. In Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Attinger, C.; Wolcott, R. Clinically Addressing Biofilm in Chronic Wounds. Adv. Wound Care 2012, 1, 127–132. [Google Scholar] [CrossRef]
- Mihai, M.M.; Dima, M.B.; Dima, B.; Holban, A.M. Nanomaterials for Wound Healing and Infection Control. Materials 2019, 12, 2176. [Google Scholar] [CrossRef]
- Truşcă, B.S.; Gheorghe-Barbu, I.; Manea, M.; Ianculescu, E.; Barbu, I.C.; Măruțescu, L.G.; Dițu, L.-M.; Chifiriuc, M.-C.; Lazăr, V. Snapshot of Phenotypic and Molecular Virulence and Resistance Profiles in Multidrug-Resistant Strains Isolated in a Tertiary Hospital in Romania. Pathogens 2023, 12, 609. [Google Scholar] [CrossRef]
- Vrancianu, C.O.; Gheorghe, I.; Dobre, E.-G.; Barbu, I.C.; Cristian, R.E.; Popa, M.; Lee, S.H.; Limban, C.; Vlad, I.M.; Chifiriuc, M.C. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int. J. Mol. Sci. 2020, 21, 8527. [Google Scholar] [CrossRef]
- Ahmad, I.; Beg, A.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 2001, 74, 113–123. [Google Scholar] [CrossRef]
- Vasile, B.S.; Birca, A.C.; Musat, M.C.; Holban, A.M. Wound Dressings Coated with Silver Nanoparticles and Essential Oils for The Management of Wound Infections. Materials 2020, 13, 1682. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.M.; Bălăceanu-Gurău, B.; Ion, A.; Holban, A.M.; Gurău, C.-D.; Popescu, M.N.; Beiu, C.; Popa, L.G.; Popa, M.I.; Dragomirescu, C.C.; et al. Host–Microbiome Crosstalk in Chronic Wound Healing. Int. J. Mol. Sci. 2024, 25, 4629. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, G.; Kompoura, V.; Nelios, G.; Kourkoutas, Y. Pathogenic Biofilm Removal Potential of Wild-Type Lacticaseibacilus rhamnosus Strains. Pathogens 2023, 12, 1449. [Google Scholar] [CrossRef] [PubMed]
- Preda, M.; Mihai, M.M.; Popa, L.I.; Dițu, L.-M.; Holban, A.M.; Manolescu, L.S.C.; Popa, G.-L.; Muntean, A.-A.; Gheorghe, I.; Chifiriuc, C.M.; et al. Phenotypic and genotypic virulence features of staphylococcal strains isolated from difficult-to-treat skin and soft tissue infections. PLoS ONE 2021, 16, e0246478. [Google Scholar] [CrossRef]
- Ilie, C.-I.; Oprea, E.; Geana, E.-I.; Spoiala, A.; Buleandra, M.; Pircalabioru, G.G.; Badea, I.A.; Ficai, D.; Andronescu, E.; Ficai, A.; et al. Bee Pollen Extracts: Chemical Composition, Antioxidant Properties, and Effect on the Growth of Selected Probiotic and Pathogenic Bacteria. Antioxidants 2022, 11, 959. [Google Scholar] [CrossRef]
- Stremmel, W.; Weiskirchen, R. Phosphatidylcholine in Intestinal Mucus Protects against Mucosal Invasion of Microbiota and Consequent Inflammation. Livers 2024, 4, 479–494. [Google Scholar] [CrossRef]
- Bender, J.; Flieger, A. Lipases as Pathogenicity Factors of Bacterial Pathogens of Humans. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Available online: https://link.springer.com/referenceworkentry/10.1007/978-3-540-77587-4_246#citeas (accessed on 27 February 2025).
- Chen, X.; Alonzo, F. Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses. Proc. Natl. Acad. Sci. USA 2019, 116, 3764–3773. [Google Scholar] [CrossRef]
- Han, S.-K.; Shin, M.-S.; Park, H.-E.; Kim, S.-Y.; Lee, W.-K. Screening of Bacteriocin-producing Enterococcus faecalis Strains for Antagonistic Activities against Clostridium perfringens. Korean J. Food Sci. Anim. Resour. 2014, 34, 614–621. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Nair, A.; Mallya, R.; Suvarna, V.; Khan, T.A.; Momin, M.; Omri, A. Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics 2022, 11, 108. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Francolini, I.; Norris, P.; Piozzi, A.; Donelli, G.; Stoodley, P. Usnic Acid, a Natural Antimicrobial Agent Able To Inhibit Bacterial Biofilm Formation on Polymer Surfaces. Antimicrob. Agents Chemother. 2004, 48, 4360–4365. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.T.H.; Lee, L.H.; Yin, W.F.; Chan, C.K.; Abdul, K.H.; Chan, K.G.; Goh, B.H. Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evid.-Based Complement. Altern. Med. 2015, 2015, 1–30. [Google Scholar]
- Orchard, A.; Van Vuuren, S. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. Evid.-Based Complement. Altern. Med. 2017, 2017, 4517971. [Google Scholar] [CrossRef]
- Sindle, A.; Martin, K. Art of Prevention: Essential Oils-Natural Products Not Necessarily Safe. Int. J. Women’s Dermatol. 2020, 7, 304–308. [Google Scholar] [CrossRef]
- Murbach Teles Andrade, B.F.; Nunes Barbosa, L.; Da Silva Probst, I.; Fernandes, A., Jr. Antimicrobial activity of essential oils. J. Essent. Oil Res. 2014, 26, 34–40. [Google Scholar] [CrossRef]
- Bharat, C.S.; Praveen, D. Evaluation of in vitro antimicrobial potential and phytochemical analysis of spruce, cajeput and jarosa essential oil against clinical isolates. Int. J. Green Pharm. (IJGP) 2016, 10. [Google Scholar] [CrossRef]
- Cutillas, A.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Composition and Antioxidant, Antienzymatic and Antimicrobial Activities of Volatile Molecules from Spanish Salvia lavandulifolia (Vahl) Essential Oils. Molecules 2017, 22, 1382. [Google Scholar] [CrossRef]
- Fernández-Calderón, M.C.; Navarro-Pérez, M.L.; Blanco-Roca, M.T.; Gómez-Navia, C.; Pérez-Giraldo, C.; Vadillo-Rodríguez, V. Chemical Profile and Antibacterial Activity of a Novel Spanish Propolis with New Polyphenols also Found in Olive Oil and High Amounts of Flavonoids. Molecules 2020, 25, 3318. [Google Scholar] [CrossRef]
- Moy, R.L.; Levenson, C. Sandalwood Album Oil as a Botanical Therapeutic in Dermatology. J. Clin. Aesthet. Dermatol. 2017, 10, 34–39. [Google Scholar]
- Sharma, M.; Levenson, C.; Browning, J.C.; Becker, E.M.; Clements, I.; Castella, P.; Cox, M.E. East Indian Sandalwood Oil Is a Phosphodiesterase Inhibitor: A New Therapeutic Option in the Treatment of Inflammatory Skin Disease. Front. Pharmacol. 2018, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Cantrell, C.L.; Semerdjieva, I.; Radoukova, T.; Stoyanova, A.; Maneva, V.; Kačániová, M.; Astatkie, T.; Borisova, D.; Dincheva, I.; et al. Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia. Molecules 2021, 26, 3659. [Google Scholar] [CrossRef] [PubMed]
- Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Kulevanova, S.; Sela, F. Chemical composition and antimicrobial activity of essential oils of Juniperus excelsa Bieb. (Cupressaceae) grown in R. Macedonia. Pharmacogn. Res. 2015, 7, 74. [Google Scholar] [CrossRef]
- Unlu, M.; Vardar-Unlu, G.; Vural, N.; Donmez, E.; Cakmak, O. Composition and antimicrobial activity of Juniperus excelsa essential oil. Chem. Nat. Compd. 2008, 44, 129–131. [Google Scholar] [CrossRef]
- Fijan, S.; Frauwallner, A.; Langerholc, T.; Krebs, B.; ter Haar née Younes, J.A.; Heschl, A.; Turk, D.M.; Rogelj, I. Efficacy of Using Probiotics with Antagonistic Activity against Pathogens of Wound Infections: An Integrative Review of Literature. BioMed Res. Int. 2019, 2019, 7585486. [Google Scholar] [CrossRef]
- Lukic, J.; Chen, V.; Strahinic, I.; Begovic, J.; Lev-Tov, H.; Davis, S.C.; Tomic-Canic, M.; Pastar, I. Probiotics or pro-healers: The role of beneficial bacteria in tissue repair. Wound Repair Regen. 2017, 25, 912–922. [Google Scholar] [CrossRef]
- Bagga, D.; Reichert, J.L.; Koschutnig, K.; Aigner, C.S.; Holzer, P.; Koskinen, K.; Moissl-Eichinger, C.; Schöpf, V. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 2018, 9, 486–496. [Google Scholar] [CrossRef]
- Bustamante, M.; Oomah, B.D.; Oliveira, W.P.; Burgos-Díaz, C.; Rubilar, M.; Shene, C. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. Folia Microbiol. 2019, 65, 245–264. [Google Scholar] [CrossRef]
- Al-Ghazzewi, F.H.; Tester, R.F. Effect of konjac glucomannan hydrolysates and probiotics on the growth of the skin bacterium Propionibacterium acnes in vitro. Int. J. Cosmet. Sci. 2010, 32, 139–142. [Google Scholar] [CrossRef]
- Bateni, E.; Tester, R.F.; Al-Ghazzewi, F.H.; Bateni, S.; Alvani, K.; Piggott, J.R. The Use of Konjac Glucomannan Hydrolysates (GMH) to Improve the Health of the Skin and Reduce Acne Vulgaris. Am. J. Dermatol. Venereol. 2013, 2, 10–14. Available online: https://scispace.com/pdf/the-use-of-konjac-glucomannan-hydrolysates-gmh-to-improve-1ap0ny4bok.pdf (accessed on 27 February 2025).
- Lopes, E.G.; Moreira, D.A.; Gullón, P.; Gullón, B.; Cardelle-Cobas, A.; Tavaria, F.K. Topical application of probiotics in skin: Adhesion, antimicrobial and antibiofilmin vitroassays. J. Appl. Microbiol. 2017, 122, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Blanchet-Réthoré, S.; Bourdès, V.; Mercenier, A.; Haddar, C.H.; Verhoeven, P.O.; Andres, P. Effect of a lotion containing the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on Staphylococcus aureus colonization in atopic dermatitis. Clin. Cosmet. Investig. Dermatol. 2017, 10, 249–257. [Google Scholar] [CrossRef]
Application | Medium | Incubation Conditions |
---|---|---|
Pathogenic strains (initial culture) | Nutrient agar | 24 h, 37 °C |
Hemolysis test | Blood agar | 24–48 h, 37 °C |
esculin hydrolysis | esculin and ferric citrate medium | 24 h, 37 °C |
Lecithinase Production | agar supplemented with egg yolk (2.5%) | 24 h, 37 °C |
Lipase Production | agar supplemented with 1% Tween 80 | 24 h, 37 °C |
Protease Production (caseinase, gelatinase) | agar supplemented with gelatin or milk casein | 24 h, 37 °C |
Amylase Production | agar supplemented with 1% starch | 24 h, 37 °C |
Biofilm formation on inert substratum | Nutrient broth (96-well plates) | 24/48/72 h, 37 °C |
Co-cultivation assay | LB/MRS broth | 24 h, 37 °C |
Bacterial adherence to HEp-2 cells | Dulbecco’s Modified Eagle’s Medium + 10% fetal serum bovine (FBS) | 2 h, 37 °C, 5% CO2 |
Product | Type | Concentration | Solvent |
---|---|---|---|
Sage essential oil (EO1) | Essential oil | 25% (1/4 diluted) | Ethanol |
Sandalwood essential oil (EO5) | Essential oil | 25% (1/4 diluted) | Ethanol |
Ylang-ylang essential oil (EO6) | Essential oil | 25% (1/4 diluted) | Ethanol |
Juniper berry essential oil (EO7) | Essential oil | 25% (1/4 diluted) | Ethanol |
Cajeput essential oil (EO8) | Essential oil | 25% (1/4 diluted) | Ethanol |
Propolis tincture (U2) | Pharmaceutical | 10% | Ethanol |
Propolis spray (U3) | Pharmaceutical | 30% | Not specified |
Usnic acid | Lichen-derived | 5 mM | DMSO |
No. | Lactic Acid Bacteria Strains | Source |
---|---|---|
1 | Lactobacillus acidophilus ATCC 4356 | Commercial strain, included in the Microbial collection of the Microbiology Department, Faculty of Biology, University of Bucharest |
2 | Lactobacillus plantarum 8 | Isolated from fermented vegetables and included in the Microbial collection of the Microbiology Department, Faculty of Biology, University of Bucharest |
3 | Lactobacillus paracasei MC1C | Isolated from newborn feces and included in the Microbial collection of the Microbiology Department, Faculty of Biology, University of Bucharest |
4 | Lactococcus lactis DP1 | Isolated from dental plaque and included in the Microbial collection of the Microbiology Department, Faculty of Biology, University of Bucharest |
5 | Lactobacillus rhamnosus MF9 | Isolated from newborn feces and included in the Microbial collection of the Microbiology Department, Faculty of Biology, University of Bucharest |
No. | LAB Strain | Supernatant (SN) | Cell Suspension (CS) |
---|---|---|---|
1 | L. acidophilus ATCC 4356 | SN1 | CS 1 |
2 | L. plantarum 8 | SN2 | CS 2 |
3 | L. paracasei MC1C | SN3 | CS 3 |
4 | L. lactis DP1 | SN4 | CS 4 |
5 | L. rhamnosus MF9 | SN5 | CS 5 |
1.6 mL broth medium + 200 µL SN1 + 200 µL pathogenic strain suspension | 1.6 mL broth medium + 200 µL SN2 + 200 µL pathogenic strain suspension | 1.6 mL broth medium + 200 µL SN3 + 200 µL pathogenic strain suspension | 1.6 mL broth medium + 200 µL SN4 + 200 µL pathogenic strain suspension | 1.6 mL broth medium + 200 µL SN5 + 200 µL pathogenic strain suspension | 1.8 mL broth medium + 200 µL pathogenic strain suspension (growth control) |
1.6 mL broth medium + 200 µL CS1 + 200 µL pathogenic strain suspension | 1.6 mL broth medium + 200 µL CS 2 + 200 µL pathogenic strain suspension | 1.6 mL broth medium + 200 µL CS 3 + 200 µL pathogenic strain suspension | 1.6 mL broth medium + 200 µL CS4 + 200 µL pathogenic strain suspension | 1.6 mL broth medium + 200 µL CS5 + 200 µL pathogenic strain suspension | 1.8 mL broth medium + 200 µL pathogenic strain suspension (growth control) |
Samples | Experimental Combinations |
---|---|
Adherence control | 200 μL: bacterial suspension in phosphate buffer saline (PBS) (1.5 × 108 CFU/mL) |
Combination 1 | 200 μL bacterial suspension in PBS (1.5 × 108 CFU/mL) + 100 μL free cells SN5 (pH 7) |
Combination 2 | 200 μL bacterial suspension in PBS (1.5 × 108 CFU/mL) + 20 μL EO5 or EO6 (dilution 1/5 in PBS) |
Combination 3 | 200 μL bacterial suspension in PBS (1.5 × 108 CFU/mL) + 100 μL free cells SN5 (pH 7) + 20 μL EO5 or EO6 (dilution 1/5 in PBS) |
Tested Strains | SN1 pH | SN1 pH aj | SN2 pH | SN2 pH aj | SN3 pH | SN3 pH aj | SN4 pH | SN4 pH aj | SN5 pH | SN5 pH aj |
---|---|---|---|---|---|---|---|---|---|---|
S. aureus ATCC 25923 | – | – | – | – | – | – | – | – | – | – |
S. aureus 6 | – | – | ± | ± | ± | ± | ± | ± | – | – |
S. aureus 11 | – | – | – | – | – | – | – | – | – | – |
S. aureus 15 | – | – | – | – | – | – | – | – | – | – |
S. aureus 21 | – | – | – | – | – | – | – | – | – | – |
P. aeruginosa 1 | ± | ± | ± | ± | ± | – | – | – | – | – |
S. marscescens 1 | ± | – | ± | – | ± | – | – | – | – | – |
E. faecalis 3 | ± | – | ± | – | ± | – | ± | – | ± | – |
M. morganii | ± | ± | ± | ± | ± | ± | ± | ± | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, M.-M.; Bălăceanu-Gurău, B.; Holban, A.M.; Ilie, C.-I.; Sima, R.M.; Gurău, C.-D.; Dițu, L.-M. Promising Antimicrobial Activities of Essential Oils and Probiotic Strains on Chronic Wound Bacteria. Biomedicines 2025, 13, 962. https://doi.org/10.3390/biomedicines13040962
Mihai M-M, Bălăceanu-Gurău B, Holban AM, Ilie C-I, Sima RM, Gurău C-D, Dițu L-M. Promising Antimicrobial Activities of Essential Oils and Probiotic Strains on Chronic Wound Bacteria. Biomedicines. 2025; 13(4):962. https://doi.org/10.3390/biomedicines13040962
Chicago/Turabian StyleMihai, Mara-Mădălina, Beatrice Bălăceanu-Gurău, Alina Maria Holban, Cornelia-Ioana Ilie, Romina Maria Sima, Cristian-Dorin Gurău, and Lia-Mara Dițu. 2025. "Promising Antimicrobial Activities of Essential Oils and Probiotic Strains on Chronic Wound Bacteria" Biomedicines 13, no. 4: 962. https://doi.org/10.3390/biomedicines13040962
APA StyleMihai, M.-M., Bălăceanu-Gurău, B., Holban, A. M., Ilie, C.-I., Sima, R. M., Gurău, C.-D., & Dițu, L.-M. (2025). Promising Antimicrobial Activities of Essential Oils and Probiotic Strains on Chronic Wound Bacteria. Biomedicines, 13(4), 962. https://doi.org/10.3390/biomedicines13040962