Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions
Abstract
:1. Introduction to AI in Cancer Research
2. Applications of Artificial Intelligence in Cancer Diagnosis
3. Deep Learning and Artificial Intelligence in Oncology
4. AI in Nanomedicine and Nano-Oncology: Enhancing Cancer Treatment and Drug Delivery
4.1. AI-Driven Optimization of Nanomedicine in Drug Delivery Systems (DDSs)
4.2. AI-Powered Sensors for Cancer Diagnosis and Monitoring
4.3. AI in Personalized Nanomedicine and Therapeutic Synergism
5. Artificial Intelligence in Immunotherapy
5.1. Checkpoint Inhibition
5.2. AI-Driven Models
5.3. Radiographic and Non-Molecular Mechanisms
6. Social Determinants of Health and AI in Cancer Care
6.1. Financial Toxicity
6.2. Harvesting Unstructured Data Potential
6.3. Key SDOH Considerations and Areas for Further Research
7. Conclusions, Challenges, and Future Directions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Full Term |
AI | Artificial Intelligence |
BCL2 | B-cell Leukemia/Lymphoma 2 Protein |
CAD | Computer-Aided Diagnosis |
CADe | Computer-Aided Detection |
CADx | Computer-Aided Diagnosis System |
CD | Cluster of Differentiation |
CNN | Convolutional Neural Network |
CT | Computed Tomography |
DDS | Drug Delivery System |
DL | Deep Learning |
EHR | Electronic Health Record |
FDA | Food and Drug Administration |
ICI | Immune Checkpoint Inhibitor |
ML | Machine Learning |
MRI | Magnetic Resonance Imaging |
MYC | Avian Myelocytomatosis Viral Oncogene Homolog |
NLP | Natural Language Processing |
PD-1 | Programmed Cell Death Protein 1 |
PD-L1 | Programmed Death Ligand 1 |
PET | Positron Emission Tomography |
RNN | Recurrent Neural Network |
SDOH | Social Determinants of Health |
TEM | Transmission Electron Microscopy |
TME | Tumor Microenvironment |
TP53 | Tumor Protein 53 |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar]
- Hanna, T.P.; King, W.D.; Thibodeau, S.; Jalink, M.; Paulin, G.A.; Harvey-Jones, E.; Aggarwal, A. Mortality due to cancer treatment delay: Systematic review and meta-analysis. Bmj 2020, 371, m4087. [Google Scholar] [PubMed]
- Jaghbir, M.; Salam, M.; Al-Omari, A.; Al-Rawashdeh, N. Unravelling the predictors of late cancer presentation and diagnosis in Jordan: A cross-sectional study of patients with lung and colorectal cancers. BMJ Open 2023, 13, e069529. [Google Scholar]
- Zhang, L.; Sanagapalli, S.; Stoita, A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol. 2018, 24, 2047–2060. [Google Scholar] [PubMed]
- Neal, R.D.; Robbé, I.J.; Lewis, M.; Williamson, I.; Hanson, J. The complexity and difficulty of diagnosing lung cancer: Findings from a national primary-care study in Wales. Prim. Health Care Res. Dev. 2015, 16, 436–449. [Google Scholar]
- Neal, R.D.; Tharmanathan, P.; France, B.; Din, N.U.; Cotton, S.; Fallon-Ferguson, J.; Emery, J. Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. Br. J. Cancer 2015, 112, S92–S107. [Google Scholar]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Zhang, J. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar]
- Guo, L.; Wang, Z.; Du, Y.; Mao, J.; Zhang, J.; Yu, Z.; Guo, J.; Zhao, J.; Zhou, H.; Wang, H.; et al. Random-forest algorithm based biomarkers in predicting prognosis in the patients with hepatocellular carcinoma. Cancer Cell Int. 2020, 20, 1–12. [Google Scholar]
- Rajpurkar, P.; Irvin, J.; Ball, R.L.; Zhu, K.; Yang, B.; Mehta, H.; Lungren, M.P. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018, 15, e1002686. [Google Scholar]
- Chandrashekar, M.; Lyngaas, I.; Hanson, H.A.; Gao, S.; Wu, X.C.; Gounley, J. Path-BigBird: An AI-driven transformer approach to classification of cancer pathology reports. JCO Clin. Cancer Inform. 2024, 8, e2300148. [Google Scholar]
- Orenuga, S.; Jordache, P.; Mirzai, D.; Monteros, T.; Gonzalez, E.; Madkoor, A.; Etienne, M. Traumatic Brain Injury and Artificial Intelligence: Shaping the Future of Neurorehabilitation—A Review. Life 2025, 15, 424. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huhulea, E.N.; Abraham, E.; Bienenstock, R.; Aifuwa, E.; Hirani, R.; Etienne, M. The Role of Artificial Intelligence in Obesity Risk Prediction and Management: Approaches, Insights, and Recommendations. Medicina 2025, 61, 358. [Google Scholar] [CrossRef]
- Benjamens, S.; Dhunnoo, P.; Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. NPJ Digit. Med. 2020, 3, 118. [Google Scholar]
- Velev, D.; Zlateva, P. Issues of Artificial Intelligence Application in Digital Marketing. Digit. Manag. Innov. II 2023, 376, 52–59. [Google Scholar]
- Hirani, R.; Noruzi, K.; Khuram, H.; Hussaini, A.S.; Aifuwa, E.I.; Ely, K.E.; Etienne, M. Artificial Intelligence and Healthcare: A Journey Through History, Present Innovations, and Future Possibilities. Life 2024, 14, 557. [Google Scholar] [CrossRef]
- Bao, H.; Sun, X.; Zhang, Y.; Pang, B.; Li, H.; Zhou, L.; Wang, L. The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening: A population-based cohort study of 0.7 million women. Cancer Med. 2020, 9, 6896–6906. [Google Scholar]
- Ehteshami Bejnordi, B.; Veta, M.; Van Diest, P.J.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G.; CAMELYON16 Consortium. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA 2017, 318, 2199–2210. [Google Scholar]
- Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Ross, A.G. Global Disparities of Cancer and Its Projected Burden in 2050. JAMA Netw. Open 2024, 7, e2443198. [Google Scholar]
- Boehm, K.M.; Aherne, E.A.; Ellenson, L.; Nikolovski, I.; Alghamdi, M.; Vázquez-García, I.; Shah, S.P. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nat. Cancer 2022, 3, 723–733. [Google Scholar] [PubMed]
- Vollmer, A.; Hartmann, S.; Vollmer, M.; Shavlokhova, V.; Brands, R.C.; Kübler, A.; Saravi, B. Multimodal artificial intelligence-based pathogenomics improves survival prediction in oral squamous cell carcinoma. Sci. Rep. 2024, 14, 5687. [Google Scholar]
- Spratt, D.E.; Tang, S.; Sun, Y.; Huang, H.C.; Chen, E.; Mohamad, O.; Feng, F.Y. Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer. NEJM Evid. 2023, 2, EVIDoa2300023. [Google Scholar]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Aerts, H.J. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA A Cancer J. Clin. 2019, 69, 127–157. [Google Scholar]
- Rangayyan, R.M.; Ayres, F.J.; Desautels, J.L. A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. J. Frankl. Inst. 2007, 344, 312–348. [Google Scholar]
- Ramadan, S.Z. Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. J. Healthc. Eng. 2020, 1, 9162464. [Google Scholar]
- Giger, M.L.; Karssemeijer, N.; Armato, S.G. Computer-aided diagnosis in medical imaging. IEEE Trans. Med. Imaging 2001, 20, 1205–1208. [Google Scholar] [PubMed]
- Marx, C.; Malich, A.; Facius, M.; Grebenstein, U.; Sauner, D.; Pfleiderer, S.O.; Kaiser, W.A. Are unnecessary follow-up procedures induced by computer-aided diagnosis (CAD) in mammography? Comparison of mammographic diagnosis with and without use of CAD. Eur. J. Radiol. 2004, 51, 66–72. [Google Scholar] [CrossRef]
- Malich, A.; Azhari, T.; Böhm, T.; Fleck, M.; Kaiser, W. Reproducibility—An important factor determining the quality of computer aided detection (CAD) systems. Eur. J. Radiol. 2000, 36, 170–174. [Google Scholar] [CrossRef]
- Sanchez Gomez, S.; Tabanera, M.T.; Bolivar, A.V.; Miranda, M.S.; Mazo, A.B.; Diaz, M.R.; Macias, T.D. Impact of a CAD system in a screen-film mammography screening program: A prospective study. Eur. J. Radiol. 2011, 80, e317–e321. [Google Scholar]
- Balleyguier, C.; Kinkel, K.; Fermanian, J.; Malan, S.; Djen, G.; Taourel, P.; Helenon, O. Computer-aided detection (CAD) in mammography: Does it help the junior or the senior radiologist? Eur. J. Radiol. 2005, 54, 90–96. [Google Scholar] [PubMed]
- Samarasena, J.; Yang, D.; Berzin, T.M. AGA Clinical Practice Update on the Role of Artificial Intelligence in Colon Polyp Diagnosis and Management: Commentary. Gastroenterology 2023, 165, 1568–1573. [Google Scholar]
- Lipkova, J.; Chen, R.J.; Chen, B.; Lu, M.Y.; Barbieri, M.; Shao, D.; Mahmood, F. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 2022, 40, 1095–1110. [Google Scholar] [PubMed]
- Kumar, A.; Fulham, M.; Feng, D.; Kim, J. Co-Learning Feature Fusion Maps from PET-CT Images of Lung Cancer. IEEE Trans. Med. Imaging 2019, 39, 204–217. [Google Scholar]
- Sedghi, A.; Mehrtash, A.; Jamzad, A.; Amalou, A.; Wells, W.M.; Kapur, T.; Mousavi, P. Improving detection of prostate cancer foci via information fusion of MRI and temporal enhanced ultrasound. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1215–1223. [Google Scholar]
- Vale-Silva, L.A.; Rohr, K. Long-term cancer survival prediction using multimodal deep learning. Sci. Rep. 2021, 11, 13505. [Google Scholar]
- Mohsen, F.; Ali, H.; El Hajj, N.; Shah, Z. Artificial intelligence-based methods for fusion of electronic health records and imaging data. Sci. Rep. 2022, 12, 17981. [Google Scholar]
- Luchini, C.; Pea, A.; Scarpa, A. Artificial intelligence in oncology: Current applications and future perspectives. Br. J. Cancer 2022, 126, 4–9. [Google Scholar]
- Darbandi, M.R.; Darbandi, M.; Darbandi, S.; Bado, I.; Hadizadeh, M.; Khorshid, H.R.K. Artificial intelligence breakthroughs in pioneering early diagnosis and precision treatment of breast cancer: A multimethod study. Eur. J. Cancer 2024, 209, 114227. [Google Scholar]
- Liu, M.; Wu, J.; Wang, N.; Zhang, X.; Bai, Y.; Guo, J.; Tao, K. The value of artificial intelligence in the diagnosis of lung cancer: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0273445. [Google Scholar]
- Saha, A.; Bosma, J.S.; Twilt, J.J.; van Ginneken, B.; Bjartell, A.; Padhani, A.R.; Fütterer, J.J. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): An international, paired, non-inferiority, confirmatory study. Lancet Oncol. 2024, 25, 879–887. [Google Scholar] [PubMed]
- Urban, G.; Tripathi, P.; Alkayali, T.; Mittal, M.; Jalali, F.; Karnes, W.; Baldi, P. Deep Learning Localizes and Identifies Polyps in Real Time with 96% Accuracy in Screening Colonoscopy. Gastroenterology 2018, 155, 1069–1078. [Google Scholar]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [PubMed]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Shetty, S. Addendum: International evaluation of an AI system for breast cancer screening. Nature 2020, 586, E19. [Google Scholar] [PubMed]
- Naskath, J.; Sivakamasundari, G.; Begum, A.A.S. A Study on Different Deep Learning Algorithms Used in Deep Neural Nets: MLP SOM and DBN. Wirel. Pers. Commun. 2023, 128, 2913–2936. [Google Scholar]
- Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. [Google Scholar]
- Xie, T.; Huang, A.; Yan, H.; Ju, X.; Xiang, L.; Yuan, J. Artificial intelligence: Illuminating the depths of the tumor microenvironment. J. Transl. Med. 2024, 22, 799. [Google Scholar]
- Faruqui, N.; Yousuf, M.A.; Kateb, F.A.; Hamid, M.A.; Monowar, M.M. Healthcare As a Service (HAAS): CNN-based cloud computing model for ubiquitous access to lung cancer diagnosis. Heliyon 2023, 9, e21520. [Google Scholar]
- Arslan, M.; Haider, A.; Khurshid, M.; Bakar, S.-A.; Jani, R.; Masood, F.; Mitchell, K.M. From Pixels to Pathology: Employing Computer Vision to Decode Chest Diseases in Medical Images. Cureus 2023, 15, e45587. [Google Scholar]
- Kumar, Y.; Shrivastav, S.; Garg, K.; Modi, N.; Wiltos, K.; Woźniak, M.; Ijaz, M.F. Automating cancer diagnosis using advanced deep learning techniques for multi-cancer image classification. Sci. Rep. 2024, 14, 25006. [Google Scholar]
- Thakur, G.K.; Thakur, A.; Kulkarni, S.; Khan, N.; Khan, S. Deep Learning Approaches for Medical Image Analysis and Diagnosis. Cureus 2024, 16, e59507. [Google Scholar]
- Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021, 221, 107753. [Google Scholar] [PubMed]
- Hai, L.; Jiang, Z.; Zhang, H.; Sun, Y. From multi-omics to predictive biomarker: AI in tumor microenvironment. Front. Immunol. 2024, 15, 1514977. [Google Scholar]
- Wang, S.; Rong, R.; Yang, D.M.; Fujimoto, J.; Yan, S.; Cai, L.; Yang, L.; Luo, D.; Behrens, C.; Parra, E.R.; et al. Computational staining of pathology images to study the tumor microenvironment in lung cancer. Cancer Res. 2020, 80, 2056–2066. [Google Scholar]
- Rostam, H.M.; Reynolds, P.M.; Alexander, M.R.; Gadegaard, N.; Ghaemmaghami, A.M. Image based Machine Learning for identification of macrophage subsets. Sci. Rep. 2017, 7, 3521. [Google Scholar]
- Li, Y.; Mahjoubfar, A.; Chen, C.L.; Niazi, K.R.; Pei, L.; Jalali, B. Deep cytometry: Deep learning with real-time inference in cell sorting and flow cytometry. Sci. Rep. 2019, 9, 11088. [Google Scholar]
- Kaneko, M.; Tsuji, K.; Masuda, K.; Ueno, K.; Henmi, K.; Nakagawa, S.; Fujita, R.; Suzuki, K.; Inoue, Y.; Teramukai, S.; et al. Urine cell image recognition using a deep-learning model for an automated slide evaluation system. BJU Int. 2022, 130, 235–243. [Google Scholar]
- Piansaddhayanon, C.; Koracharkornradt, C.; Laosaengpha, N.; Tao, Q.; Ingrungruanglert, P.; Israsena, N.; Chuangsuwanich, E.; Sriswasdi, S. Label-free tumor cells classification using deep learning and high-content imaging. Sci. Data 2023, 10, 570. [Google Scholar]
- Rajdeo, P.; Aronow, B.; Prasath, V.S. Deep learning-based multimodal spatial transcriptomics analysis for cancer. Adv. Cancer Res. 2024, 163, 1–38. [Google Scholar]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar]
- Vilhekar, R.S.; Rawekar, A. Artificial Intelligence in Genetics. Cureus 2024, 16, e52035. [Google Scholar]
- Namas, R.A.; Vodovotz, Y.; Almahmoud, K.; Abdul-Malak, O.; Zaaqoq, A.; Namas, R.; Billiar, T.R. Temporal Patterns of Circulating Inflammation Biomarker Networks Differentiate Susceptibility to Nosocomial Infection Following Blunt Trauma in Humans. Ann. Surg. 2016, 263, 191–198. [Google Scholar] [PubMed]
- Joshi, R.P.; Kumar, N. Artificial Intelligence for Autonomous Molecular Design: A Perspective. Molecules 2021, 26, 6761. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Marostica, E.; Yuan, W.; Jin, J.; Zhang, J.; Yu, K.H. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 2024, 634, 970–978. [Google Scholar]
- Serov, N.; Vinogradov, V. Artificial intelligence to bring nanomedicine to life. Adv. Drug Deliv. Rev. 2022, 184, 114194. [Google Scholar] [PubMed]
- Agrahari, V.; Choonara, Y.E.; Mosharraf, M.; Patel, S.K.; Zhang, F. The Role of Artificial Intelligence and Machine Learning in Accelerating the Discovery and Development of Nanomedicine. Pharm. Res. 2024, 41, 2289–2297. [Google Scholar] [PubMed]
- Hayat, H.; Nukala, A.; Nyamira, A.; Fan, J.; Wang, P. A concise review: The synergy between artificial intelligence and biomedical nanomaterials that empowers nanomedicine. Biomed. Mater. 2021, 16, 052001. [Google Scholar]
- Lee, B.; Yoon, S.; Lee, J.W.; Kim, Y.; Chang, J.; Yun, J.; Lee, J.H. Statistical Characterization of the Morphologies of Nanoparticles Through Machine Learning Based Electron Microscopy Image Analysis. ACS Nano 2020, 14, 17125–17133. [Google Scholar]
- Shirzad, M.; Salahvarzi, A.; Razzaq, S.; Javid-Naderi, M.J.; Rahdar, A.; Fathi-Karkan, S.; Ferreira, L.F.R. Revolutionizing Prostate Cancer Therapy: Artificial Intelligence–Based Nanocarriers for Precision Diagnosis and Treatment. Crit. Rev. Oncol. /Hematol. 2025, 208, 104653. [Google Scholar]
- da Silva, L.M.; Pereira, E.M.; Salles, P.G.; Godrich, R.; Ceballos, R.; Kunz, J.D.; Casson, A.; Viret, J.; Chandarlapaty, S.; Ferreira, C.G.; et al. Independent real-world application of a clinical-grade automated prostate cancer detection system. J. Pathol. 2021, 254, 147–158. [Google Scholar]
- Jiang, Y.; Wang, C.; Zu, C.; Rong, X.A.; Yu, Q.; Jiang, J. Synergistic potential of nanomedicine in prostate cancer immunotherapy: Breakthroughs and prospects. Int. J. Nanomed. 2024, 19, 9459–9486. [Google Scholar]
- Wang, P.; Wang, S.; Liu, F.; Ren, Y.N.; Guo, Q.; Zhang, Q.; Hou, X.; Yao, Y.; Zhu, H.; Yang, Z. Preclinical evaluation of a fibroblast activation protein and a prostate-specific membrane antigen dual-targeted probe for noninvasive prostate cancer imaging. Mol. Pharm. 2023, 20, 1415–1425. [Google Scholar] [PubMed]
- Taha, B.A.; Abdulrahm, Z.M.; Addie, A.J.; Haider, A.J.; Alkawaz, A.N.; Yaqoob, I.-M.; Arsad, N. Advancing Optical Nanosensors with Artificial Intelligence: A Powerful Tool to Identify Disease-Specific Biomarkers in Multi-Omics Profiling. Talanta 2025, 287, 127693. [Google Scholar]
- Xu, M.; Chen, Z.; Zheng, J.; Zhao, Q.; Yuan, Z. Artificial intelligence-aided optical imaging for cancer theranostics. Semin. Cancer Biol. 2023, 94, 62–80. [Google Scholar]
- Lu, M.Y.; Chen, T.Y.; Williamson, D.F.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-based pathology predicts origins for cancers of unknown primary. Nature 2021, 594, 106–110. [Google Scholar]
- Niikura, R.; Aoki, T.; Shichijo, S.; Yamada, A.; Kawahara, T.; Kato, Y.; Hirata, Y.; Hayakawa, Y.; Suzuki, N.; Ochi, M.; et al. Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer in patients who have undergone upper gastrointestinal endoscopy. Endoscopy 2022, 54, 780–784. [Google Scholar]
- Luo, H.; Xu, G.; Li, C.; He, L.; Luo, L.; Wang, Z.; Jing, B.; Deng, Y.; Jin, Y.; Li, Y.; et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: A multicentre, case-control, diagnostic study. Lancet Oncol. 2019, 20, 1645–1654. [Google Scholar] [PubMed]
- Yamada, A.; Niikura, R.; Otani, K.; Aoki, T.; Koike, K. Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using a deep convolutional neural network. Endoscopy 2021, 53, 832–836. [Google Scholar] [PubMed]
- Zhou, S.; Xie, Y.; Feng, X.; Li, Y.; Shen, L.; Chen, Y. Artificial Intelligence in Gastrointestinal Cancer Research: Image Learning Advances and Applications. Cancer Lett. 2025, 614, 217555. [Google Scholar]
- Hachache, R.; Yahyaouy, A.; Riffi, J.; Tairi, H.; Abibou, S.; Adoui, M.E.; Benjelloun, M. Advancing personalized oncology: A systematic review on the integration of artificial intelligence in monitoring neoadjuvant treatment for breast cancer patients. BMC Cancer 2024, 24, 1300. [Google Scholar]
- Ambreen, S.; Umar, M.; Noor, A.; Jain, H.; Ali, R. Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine. Eur. J. Med. Chem. 2025, 284, 117164. [Google Scholar]
- Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I.; Ranjan, K.; Rao, R.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother. 2018, 97, 1521–1537. [Google Scholar] [PubMed]
- Tan, P.; Chen, X.; Zhang, H.; Wei, Q.; Luo, K. Artificial intelligence aids in development of nanomedicines for cancer management. Semin. Cancer Biol. 2023, 89, 61–75. [Google Scholar]
- Halwani, A.A. Development of Pharmaceutical Nanomedicines: From the Bench to the Market. Pharmaceutics 2022, 14, 106. [Google Scholar] [CrossRef]
- Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine 2019, 14, 93–126. [Google Scholar] [PubMed]
- Ventola, C.L. Progress in Nanomedicine: Approved and Investigational Nanodrugs. Pharm. Ther. 2017, 42, 742–755. [Google Scholar]
- Tinkle, S.; McNeil, S.E.; Mühlebach, S.; Bawa, R.; Borchard, G.; Barenholz, Y.; Desai, N. Nanomedicines: Addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci. 2014, 1313, 35–56. [Google Scholar]
- Swierczewska, M.; Liu, G.; Lee, S.; Chen, X. High-sensitivity nanosensors for biomarker detection. Chem. Soc. Rev. 2012, 41, 2641–2655. [Google Scholar]
- Marin-Acevedo, J.A.; Soyano, A.E.; Dholaria, B.; Knutson, K.L.; Lou, Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J. Hematol. Oncol. 2018, 11, 8. [Google Scholar]
- Alard, E.; Butnariu, A.B.; Grillo, M.; Kirkham, C.; Zinovkin, D.A.; Newnham, L.; Pranjol, M.-I. Advances in Anti-Cancer Immunotherapy: Car-T Cell, Checkpoint Inhibitors, Dendritic Cell Vaccines, and Oncolytic Viruses, and Emerging Cellular and Molecular Targets. Cancers 2020, 12, 1826. [Google Scholar] [CrossRef]
- Abdelbaky, S.B.; Ibrahim, M.T.; Samy, H.; Mohamed, M.; Mohamed, H.; Mustafa, M.; Khalil, I.A. Cancer immunotherapy from biology to nanomedicine. J. Control. Release 2021, 336, 410–432. [Google Scholar]
- Li, T.; Li, Y.; Zhu, X.; He, Y.; Wu, Y.; Ying, T.; Xie, Z. Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Semin. Cancer Biol. 2023, 91, 50–69. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; He, X.; Yu, J.; Jing, J. Artificial Intelligence-Assisted Transcriptomic Analysis to Advance Cancer Immunotherapy. J. Clin. Med. 2023, 12, 1279. [Google Scholar] [CrossRef]
- Yin, X.; Liao, H.; Yun, H.; Lin, N.; Li, S.; Xiang, Y.; Ma, X. Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin. Cancer Biol. 2022, 86, 146–159. [Google Scholar] [CrossRef]
- Chang, E.; Pelosof, L.; Lemery, S.; Gong, Y.; Goldberg, K.B.; Farrell, A.T.; Theoret, M.R. Systematic Review of PD-1/PD-L1 Inhibitors in Oncology: From Personalized Medicine to Public Health. Oncol. 2021, 26, e1786–e1799. [Google Scholar] [CrossRef]
- Chen, Y.; Han, H.; Cheng, J.; Cheng, Q.; Zhu, S.; Zhan, P.; Lv, T. Efficacy and safety of anti-PD-1/PD-L1-based dual immunotherapies versus PD-1/PD-L1 inhibitor alone in patients with advanced solid tumor: A systematic review and meta-analysis. Cancer Immunol. Immunother. 2024, 73, 155. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Yang, Q.; Chi, H.; Wei, K.; Zhang, P.; Zhao, G.; Li, X. Ensemble deep learning enhanced with self-attention for predicting immunotherapeutic responses to cancers. Front. Immunol. 2022, 13, 1025330. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.H.; Abdalla, M. Immune Checkpoint Inhibitors: Recent Clinical Advances and Future Prospects. Curr. Med. Chem. 2023, 30, 3215–3237. [Google Scholar] [CrossRef]
- Chowell, D.; Yoo, S.K.; Valero, C.; Pastore, A.; Krishna, C.; Lee, M.; Chan, T.A. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. 2022, 40, 499–506. [Google Scholar] [CrossRef]
- Carreras, J.; Roncador, G.; Hamoudi, R. Artificial Intelligence Predicted Overall Survival and Classified Mature B-Cell Neoplasms Based on Immuno-Oncology and Immune Checkpoint Panels. Cancers 2022, 14, 5318. [Google Scholar] [CrossRef]
- Park, S.; Ock, C.Y.; Kim, H.; Pereira, S.; Park, S.; Ma, M.; Lee, S.H. Artificial Intelligence–Powered Spatial Analysis of Tumor-Infiltrating Lymphocytes as Complementary Biomarker for Immune Checkpoint Inhibition in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1916–1928. [Google Scholar] [CrossRef]
- Bang, Y.H.; Lee, C.K.; Bang, K.; Kim, H.D.; Kim, K.P.; Jeong, J.H.; Park, I.; Ryoo, B.Y.; Lee, D.K.; Choi, H.J.; et al. Artificial Intelligence-Powered Spatial Analysis of Tumor-Infiltrating Lymphocytes as a Potential Biomarker for Immune Checkpoint Inhibitors in Patients with Biliary Tract Cancer. Clin Cancer Res. 2024, 30, 4635–4643. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Hung, Y.P.; Chou, K.Y.; Lee, C.Y.; Lin, S.R.; Tsai, Y.H.; Chao, Y. Artificial intelligence-based immunoprofiling serves as a potentially predictive biomarker of nivolumab treatment for advanced hepatocellular carcinoma. Front. Med. 2022, 9, 1008855. [Google Scholar] [CrossRef]
- Trebeschi, S.; Drago, S.G.; Birkbak, N.J.; Kurilova, I.; Cǎlin, A.M.; Pizzi, A.D.; Aerts, H.-L. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann. Oncol. 2019, 30, 998–1004. [Google Scholar] [CrossRef]
- Kang, C.Y.; Duarte, S.E.; Kim, H.S.; Kim, E.; Park, J.; Lee, A.D.; Chae, Y.K. Artificial Intelligence-based Radiomics in the Era of Immuno-oncology. Oncologist 2022, 27, e471–e483. [Google Scholar] [CrossRef]
- McGale, J.P.; Chen, D.L.; Trebeschi, S.; Farwell, M.D.; Wu, A.M.; Cutler, C.S.; Dercle, L. Artificial intelligence in immunotherapy PET/SPECT imaging. Eur. Radiol. 2024, 34, 5829–5841. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, L.; Lu, M.; Jin, R.; Ye, H.; Ma, T. The artificial intelligence and machine learning in lung cancer immunotherapy. J. Hematol. Oncol. 2023, 16, 55. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yan, L.F.; Zhang, X.; Han, Y.; Nan, H.Y.; Hu, Y.C.; Hu, B.; Yan, S.L.; Zhang, J.; Cheng, D.L.; et al. Glioma grading on conventional MR images: A deep learning study with transfer learning. Front. Neurosci. 2018, 12, 804. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Y.; Yang, Z.; Yan, H.H.; Leung, S.Y.; Shi, J. Deep Learning–Based 3D Single-Cell Imaging Analysis Pipeline Enables Quantification of Cell–Cell Interaction Dynamics in the Tumor Microenvironment. Cancer Res. 2024, 84, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Harar, P.; Herrmann, L.; Grohs, P.; Haselbach, D. FakET: Simulating cryo-electron tomograms with neural style transfer. Structure 2023, 33, 820–827.e4. [Google Scholar] [CrossRef]
- Thompson, W.R.; Brecht, H.P.F.; Ivanov, V.; Yu, A.M.; Dumani, D.S.; Lawrence, D.J.; Emelianov, S.Y.; Ermilov, S.A. Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies. J. Biomed. Opt. 2023, 28, 036001. [Google Scholar] [CrossRef]
- Yoo, S.K.; Fitzgerald, C.W.; Cho, B.A.; Fitzgerald, B.G.; Han, C.; Koh, E.S.; Pandey, A.; Sfreddo, H.; Crowley, F.; Korostin, M.R.; et al. Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data. Nat. Med. 2025, 31, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Wang, X.; Ye, H.; Cao, W. Radiomic Models Predict Tumor Microenvironment Using Artificial Intelligence—The Novel Biomarkers in Breast Cancer Immune Microenvironment. Technol. Cancer Res. Treat. 2023, 22, 15330338231218227. [Google Scholar] [CrossRef]
- Takita, H.; Matsumoto, T.; Tatekawa, H.; Katayama, Y.; Nakajo, K.; Uda, T.; Mitsuyama, Y.; Walston, S.L.; Miki, Y.; Ueda, D. AI-based virtual synthesis of methionine PET from contrast-enhanced MRI: Development and external validation study. Radiology 2023, 308, e223016. [Google Scholar] [CrossRef]
- World Health Organization. Social Determinants of Health. 2025. Available online: https://www.who.int/health-topics/social-determinants-of-health#tab=tab_1 (accessed on 1 March 2025).
- Istasy, P.; Lee, W.S.; Iansavichene, A.; Upshur, R.; Gyawali, B.; Burkell, J.; Chin-Yee, B. The Impact of Artificial Intelligence on Health Equity in Oncology: Scoping Review. J. Med. Internet Res. 2022, 24, e39748. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yang, X.; Dang, C.; Wu, S.; Adekkanattu, P.; Pathak, J.; Wu, Y. A Study of Social and Behavioral Determinants of Health in Lung Cancer Patients Using Transformers-Based Natural Language Processing Models. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 5–9 November 2022; Volume 2021, p. 1225. [Google Scholar]
- Gilligan, A.M.; Alberts, D.S.; Roe, D.J.; Skrepnek, G.H. Death or Debt? National Estimates of Financial Toxicity in Persons with Newly-Diagnosed Cancer. Am. J. Med. 2018, 131, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Mohan, G.; Chattopadhyay, S. Cost-effectiveness of Leveraging Social Determinants of Health to Improve Breast, Cervical, and Colorectal Cancer Screening: A Systematic Review. JAMA Oncol. 2020, 6, 1434–1444. [Google Scholar] [CrossRef]
- Mariotto, A.B.; Enewold, L.; Zhao, J.; Zeruto, C.A.; Yabroff, K.R. Medical Care Costs Associated with Cancer Survivorship in the United States. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1304–1312. [Google Scholar] [CrossRef]
- Carrera, P.M.; Kantarjian, H.M.; Blinder, V.S. The financial burden and distress of patients with cancer: Understanding and stepping-up action on the financial toxicity of cancer treatment. CA A Cancer J. Clin. 2018, 68, 153–165. [Google Scholar] [CrossRef]
- Sidey-Gibbons, C.; Pfob, A.; Asaad, M.; Boukovalas, S.; Lin, Y.L.; Selber, J.C.; Offodile, A.C. Development of Machine Learning Algorithms for the Prediction of Financial Toxicity in Localized Breast Cancer Following Surgical Treatment. JCO Clin. Cancer Inform. 2021, 5, 338–347. [Google Scholar] [CrossRef]
- Bhattacharyya, G.S.; Bothra, S.J.; Malhotra, H.; Govindbabu, K. Solving the Malady of Financial Toxicity Using Augmented Intelligence. JCO Clin. Cancer Inform. 2021, 5, 348–352. [Google Scholar] [CrossRef]
- Deboever, N.; Eisenberg, M.; Hofstetter, W.L.; Mehran, R.J.; Rice, D.C.; Roth, J.; Sepesi, B.; Swisher, S.G.; Vaporciyan, A.A.; Walsh, G.L.; et al. Abstract 726: Machine learning prediction of financial toxicity in patients with resected lung cancer. Cancer Res. 2023, 83 (Suppl. S7), 726. [Google Scholar] [CrossRef]
- Jensen, K.; Soguero-Ruiz, C.; Oyvind Mikalsen, K.; Lindsetmo, R.O.; Kouskoumvekaki, I.; Girolami, M.; Augestad, K.M. Analysis of free text in electronic health records for identification of cancer patient trajectories. Sci. Rep. 2017, 7, 46226. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Peng, C.; Yang, X.; Dang, C.; Adekkanattu, P.; Patra, B.G.; Wu, Y. Identifying social determinants of health from clinical narratives: A study of performance, documentation ratio, and potential bias. J. Biomed. Inform. 2024, 153, 104642. [Google Scholar] [CrossRef]
- Guevara, M.; Chen, S.; Thomas, S.; Chaunzwa, T.L.; Franco, I.; Kann, B.H.; Bitterman, D.S. Large language models to identify social determinants of health in electronic health records. NPJ Digit. Med. 2024, 7, 6. [Google Scholar] [CrossRef]
- Iacobelli, F.; Yang, A.; Tom, L.; Leung, I.S.; Crissman, J.; Salgado, R.; Simon, M. Predicting Social Determinants of Health in Patient Navigation: Case Study. JMIR Form. Res. 2023, 7, e42683. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, J.; Zheng, Q.; Wang, Z. Building a cancer risk and survival prediction model based on social determinants of health combined with machine learning: A NHANES 1999 to 2018 retrospective cohort study. Medicine 2025, 104, e41370. [Google Scholar] [CrossRef]
- Stabellini, N.; Nazha, A.; Agrawal, N.; Huhn, M.; Shanahan, J.; Hamerschlak, N.; Montero, A.J. Thirty-Day Unplanned Hospital Readmissions in Patients with Cancer and the Impact of Social Determinants of Health: A Machine Learning Approach. JCO Clin. Cancer Inform. 2023, 7, e2200143. [Google Scholar] [CrossRef] [PubMed]
- Korn, A.R.; Walsh-Bailey, C.; Correa-Mendez, M.; DelNero, P.; Pilar, M.; Sandler, B.; Oh, A.Y. Social determinants of health and US cancer screening interventions: A systematic review. CA A Cancer J. Clin. 2023, 73, 461–479. [Google Scholar] [CrossRef]
- Rashid, D.; Hirani, R.; Khessib, S.; Ali, N.; Etienne, M. Unveiling biases of artificial intelligence in healthcare: Navigating the promise and pitfalls. Injury 2024, 55, 111358. [Google Scholar] [CrossRef]
- Hirani, R.; Farabi, B.; Marmon, S. Experimenting with ChatGPT: Concerns for academic medicine. J. Am. Acad. Dermatol. 2023, 89, e127–e129. [Google Scholar] [CrossRef]
- Chidambaram, S.; Jain, B.; Jain, U.; Mwavu, R.; Baru, R.; Thomas, B.; Darzi, A. An introduction to digital determinants of health. PLoS Digit. Health 2024, 3, e0000346. [Google Scholar] [CrossRef] [PubMed]
- Nazer, L.H.; Zatarah, R.; Waldrip, S.; Ke, J.-C.; Moukheiber, M.; Khanna, A.K.; Mathur, P. Bias in artificial intelligence algorithms and recommendations for mitigation. PLoS Digit. Health 2023, 2, e0000278. [Google Scholar] [CrossRef] [PubMed]
- Qamar, T.; Bawany, N.Z. Understanding the black-box: Towards interpretable and reliable deep learning models. PeerJ Comput. Sci. 2023, 9, e1629. [Google Scholar] [CrossRef] [PubMed]
Application | Description | Key Findings | References |
---|---|---|---|
CAD systems | AI-assisted detection (CADe) and diagnosis (CADx) of tumors via medical imaging. | Improves accuracy and efficiency; CADe enhances adenoma detection in colonoscopy. | [24,25,26,27,28,29,30,31,32] |
Multimodal AI Models | Integrates imaging, histology, genomics, and EHRs for enhanced diagnostics. | PET-CT aids lung cancer detection; MRI-ultrasound improves prostate cancer classification. | [33,34,35,36] |
AI for Cancer Imaging | AI-based tools enhance accuracy in detecting various cancers. | Breast: >96% accuracy; Lung: 87% sensitivity/specificity; Prostate: AI AUC 0.91 vs. radiologists 0.86; Colorectal: 97% sensitivity, 95% specificity. | [38,39,40,41,42] |
AI in Early Detection and Prognosis | AI improves screening, early diagnosis, and predictive modeling. | Matches or surpasses human experts but needs better validation for generalizability. | [33,43,44] |
Application | Description | Models Utilized | Key Findings | References |
---|---|---|---|---|
Deep Learning in Oncology | CNNs and RNNs improve medical imaging, tumor classification, and time-series data analysis. | DenseNet121, GoogLeNet, AlexNet (pre-trained on ImageNet) | DenseNet121 CNN achieved 99.4% accuracy in classifying seven cancers. | [45,46,47,48,49,50,51,108] |
TME Analysis | Analyzes tumor interactions at the cellular level for personalized therapy. | AI-enhanced MRI, genomics, SiQ-3D (Single-cell image quantifier for 3D) | AI-enhanced MRI and genomics improve glioma grading and identify drug resistance. | [52,53,59,109] |
Molecular Oncology | Integrates genomics, transcriptomics, and imaging to predict tumor progression and therapy response. | CHIEF AI model trained on 15 million unlabeled images | CHIEF AI model predicts tumor mutations and therapy responses. | [60,61,62,63,64] |
Nanomedicine and Drug Delivery | Optimizes nanoparticle design, drug delivery systems (DDSs), and treatment efficacy. | AI-based TEM analysis, FakET (trained on synthetic datasets) | AI-based TEM analysis achieved 99.75% accuracy in nanoparticle classification. | [65,66,67,68,69,110] |
AI-Powered Sensors | Enhance real-time biomarker detection and tumor tracking. | TriTom (integrates photoacoustic and fluorescence imaging) | Improves photoacoustic and fluorescence imaging for TME visualization. | [73,74,79,80,111] |
Personalized Nanomedicine | Refines nanocarrier targeting, drug interactions, and dosing. | CURATE.AI (uses minimal input-output data pairs) | CURATE.AI optimizes therapy for individualized dosing. | [81,82] |
Immunotherapy | Predicts immune responses and enhances checkpoint inhibitor therapy. | SCORPIO (trained on clinical data from 1628 patients) | ELISE model achieved 88.86% AUC in predicting PD-1/PD-L1 inhibitor efficacy. | [89,90,91,92,93,94,95,96,97,98,99,112], |
Imaging-Based Immunotherapy Response | Analyzes CT/PET scans to predict treatment response. | TME-radiomic models, DCE-MRI, Synthetic Methionine PET | Predicts anti-PD1 therapy response using contrast-enhanced CT. | [100,101,102,103,104,105,106,107,113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huhulea, E.N.; Huang, L.; Eng, S.; Sumawi, B.; Huang, A.; Aifuwa, E.; Hirani, R.; Tiwari, R.K.; Etienne, M. Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines 2025, 13, 951. https://doi.org/10.3390/biomedicines13040951
Huhulea EN, Huang L, Eng S, Sumawi B, Huang A, Aifuwa E, Hirani R, Tiwari RK, Etienne M. Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines. 2025; 13(4):951. https://doi.org/10.3390/biomedicines13040951
Chicago/Turabian StyleHuhulea, Ellen N., Lillian Huang, Shirley Eng, Bushra Sumawi, Audrey Huang, Esewi Aifuwa, Rahim Hirani, Raj K. Tiwari, and Mill Etienne. 2025. "Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions" Biomedicines 13, no. 4: 951. https://doi.org/10.3390/biomedicines13040951
APA StyleHuhulea, E. N., Huang, L., Eng, S., Sumawi, B., Huang, A., Aifuwa, E., Hirani, R., Tiwari, R. K., & Etienne, M. (2025). Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines, 13(4), 951. https://doi.org/10.3390/biomedicines13040951