Multilevel Assessment of Glycemic, Hormonal, and Oxidative Parameters in an Experimental Diabetic Female Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antidiabetic Compound Synthesis and Confirmation
2.2. Extraction and Characterization of the Salvia officinalis Extract
2.3. In-Vitro Testing. Study Design
2.3.1. Used Substances
2.3.2. Animals
2.3.3. Experimental Groups and Diabetes Induction
- Group 1 (L1)—Untreated control
- Group 2 (L2)—Diabetes-induced, untreated
- Group 3 (L3)—Diabetes-induced, treated with metformin (300 mg/kg b.w./day)
- Group 4 (L4)—Diabetes-induced, treated with the synthetic compound (S) (150 mg/kg b.w./day)
- Group 5 (L5)—Diabetes-induced, treated with sage extract (150 mg/kg b.w./day)
- Group 6 (L6)—Diabetes-induced, treated with both the synthetic compound and sage extract (150 mg/kg b.w./day each)
2.3.4. Monitoring During the Study
2.3.5. Collection of Biological Samples and Conducted Analyses
2.3.6. Biochemical and Hormonal Analyses
2.4. Statistical Methods
3. Results
3.1. Structural Confirmation of the Sulfonamide Derivative and Antioxidant Activity In Vitro Test
3.2. In Vitro Testing of Antioxidant Effect of the Salvia officinalis Extract
3.3. Identification of Potentially Active Compound in Salvia officinalis Extract
3.4. In Vivo Testing
3.4.1. Effect on Body Weight
3.4.2. Effect on Blood Glucose Levels
3.4.3. Effect on Biochemical Parameters
3.4.4. Analysis of Relationships Between Variables—Statistical Correlations
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Cesare, M.D.; Danaei, G.; Bixby, H.; Cowan, M.J.; Ali, M.K.; Taddei, C.; et al. Worldwide Trends in Diabetes since 1980: A Pooled Analysis of 751 Population-Based Studies with 4·4 Million Participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef]
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.-F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [Google Scholar]
- Li, H.; Meng, Y.; He, S.; Tan, X.; Zhang, Y.; Zhang, X.; Wang, L.; Zheng, W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022, 11, 3001. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 Diabetes Mellitus in Adults: Pathogenesis, Prevention and Therapy. Signal Transduct. Target. Ther. 2024, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Rolo, A.P.; Palmeira, C.M. Diabetes and Mitochondrial Function: Role of Hyperglycemia and Oxidative Stress. Toxicol. Appl. Pharmacol. 2006, 212, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Bensellam, M.; Laybutt, D.R.; Jonas, J.-C. The Molecular Mechanisms of Pancreatic β-Cell Glucotoxicity: Recent Findings and Future Research Directions. Mol. Cell. Endocrinol. 2012, 364, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Kroger, C.J.; Tisch, R.M. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front. Immunol. 2017, 8, 1898. [Google Scholar] [CrossRef]
- Zaimi, M.; Michalopoulou, O.; Stefanaki, K.; Kazakou, P.; Vasileiou, V.; Psaltopoulou, T.; Karagiannakis, D.S.; Paschou, S.A. Gonadal Dysfunction in Women with Diabetes Mellitus. Endocrine 2024, 85, 461–472. [Google Scholar] [CrossRef]
- Yu, T.; Robotham, J.L.; Yoon, Y. Increased Production of Reactive Oxygen Species in Hyperglycemic Conditions Requires Dynamic Change of Mitochondrial Morphology. Proc. Natl. Acad. Sci. USA 2006, 103, 2653–2658. [Google Scholar] [CrossRef]
- Ipsa, E.; Cruzat, V.F.; Kagize, J.N.; Yovich, J.L.; Keane, K.N. Growth Hormone and Insulin-Like Growth Factor Action in Reproductive Tissues. Front. Endocrinol. 2019, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Richter, K.; Konzack, A.; Pihlajaniemi, T.; Heljasvaara, R.; Kietzmann, T. Redox-Fibrosis: Impact of TGFβ1 on ROS Generators, Mediators and Functional Consequences. Redox Biol. 2015, 6, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.-M.; Desai, L.P. Reciprocal Regulation of TGF-β and Reactive Oxygen Species: A Perverse Cycle for Fibrosis. Redox Biol. 2015, 6, 565–577. [Google Scholar] [CrossRef]
- Meng, X.-M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The Master Regulator of Fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.-R.; Wang, M.-Y.; Zhang, C.-L.; Wang, Y. Endothelial Dysfunction in Vascular Complications of Diabetes: A Comprehensive Review of Mechanisms and Implications. Front. Endocrinol. 2024, 15, 1359255. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Ryu, J.; Liu, W.; Zou, H.; Zhang, R.; Yan, Y.; Dai, Z.; Zhang, D.; Sun, L.-Z.; et al. Upregulated TGF-Β1 Contributes to Hyperglycaemia in Type 2 Diabetes by Potentiating Glucagon Signalling. Diabetologia 2023, 66, 1142–1155. [Google Scholar] [CrossRef]
- Makowski, L.-M.; Leffers, M.; Waltenberger, J.; Pardali, E. Transforming Growth Factor-Β1 Signalling Triggers Vascular Endothelial Growth Factor Resistance and Monocyte Dysfunction in Type 2 Diabetes Mellitus. J. Cell. Mol. Med. 2021, 25, 5316–5325. [Google Scholar] [CrossRef]
- Kassotis, C.D.; Stapleton, H.M. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat. Front. Endocrinol. 2019, 10, 39. [Google Scholar] [CrossRef]
- Golden, S.H.; Robinson, K.A.; Saldanha, I.; Anton, B.; Ladenson, P.W. Prevalence and Incidence of Endocrine and Metabolic Disorders in the United States: A Comprehensive Review. J. Clin. Endocrinol. Metab. 2009, 94, 1853. [Google Scholar] [CrossRef] [PubMed]
- Thong, E.P.; Codner, E.; Laven, J.S.E.; Teede, H. Diabetes: A Metabolic and Reproductive Disorder in Women. Lancet Diabetes Endocrinol. 2020, 8, 134–149. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Liu, C.; Zhang, Y.; Yang, H.; Fu, S.; Lv, H. Association of Insulin-Like Growth Factor-1 With Polycystic Ovarian Syndrome: A Systematic Review and Meta-Analysis. Endocr. Pract. 2023, 29, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, S.; Punjala-Patel, A.; Gavrilova-Jordan, L. Hypothalamic-Pituitary-Ovarian Axis Disorders Impacting Female Fertility. Biomedicines 2019, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Scaramuzzi, R.J. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem. J. 2016, 473, 1483–1501. [Google Scholar] [PubMed]
- Xing, C.; Zhang, J.; Zhao, H.; He, B. Effect of Sex Hormone-Binding Globulin on Polycystic Ovary Syndrome: Mechanisms, Manifestations, Genetics, and Treatment. Int. J. Women’s Health 2022, 14, 91. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, J.; Cheng, X.; Nie, X.; He, B. Insulin Resistance in Polycystic Ovary Syndrome across Various Tissues: An Updated Review of Pathogenesis, Evaluation, and Treatment. J. Ovarian Res. 2023, 16, 9. [Google Scholar] [CrossRef]
- Mehrabianfar, P.; Dehghani, F.; Karbalaei, N.; Mesbah, F. The Effects of Metformin on Stereological and Ultrastructural Features of the Ovary in Streptozotocin -Induced Diabetes Adult Rats: An Experimental Study. Int. J. Reprod. Biomed. 2020, 18, 651–666. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Yin, G.; Li, Q.Q.; Zeng, Q.; Duan, J. Diabetes Mellitus Causes Male Reproductive Dysfunction: A Review of the Evidence and Mechanisms. In Vivo 2021, 35, 2503. [Google Scholar] [CrossRef]
- Kotian, S.R.; Kumar, A.; Mallik, S.B.; Bhat, N.P.; Souza, A.D.; Pandey, A.K. Effect of Diabetes on the Male Reproductive System—A Histomorphological Study. J. Morphol. Sci. 2019, 36, 17–23. [Google Scholar] [CrossRef]
- O’Neill, J.; Czerwiec, A.; Agbaje, I.; Glenn, J.; Stitt, A.; McClure, N.; Mallidis, C. Differences in mouse models of diabetes mellitus in studies of male reproduction. Int. J. Androl. 2010, 33, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Attia, G.M.; Almouteri, M.M.; Alnakhli, F.T. Role of Metformin in Polycystic Ovary Syndrome (PCOS)-Related Infertility. Cureus 2023, 15, e44493. [Google Scholar] [CrossRef]
- Eidi, A.; Eidi, M. Antidiabetic Effects of Sage (Salvia officinalis L.) Leaves in Normal and Streptozotocin-Induced Diabetic Rats. Diabetes Metab. Syndr. Clin. Res. Rev. 2009, 3, 40–44. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Kumar, A.; Doble, M. Combination Therapy: A New Strategy to Manage Diabetes and Its Complications. Phytomedicine 2014, 21, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals 2021, 14, 806. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Arnold, A.P.; Bangasser, D.A.; Denton, K.M.; Gupta, A.; Hilliard Krause, L.M.; Mayer, E.A.; McCarthy, M.; Miller, W.L.; Raznahan, A.; et al. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr. Rev. 2021, 42, 219–258. [Google Scholar] [CrossRef]
- Aghaei Zarch, S.M.; Dehghan Tezerjani, M.; Talebi, M.; Vahidi Mehrjardi, M.Y. Molecular Biomarkers in Diabetes Mellitus (DM). Med. J. Islam. Repub. Iran 2020, 34, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Costea, L.; Chițescu, C.L.; Boscencu, R.; Ghica, M.; Lupuliasa, D.; Mihai, D.P.; Deculescu-Ioniță, T.; Duțu, L.E.; Popescu, M.L.; Luță, E.-A.; et al. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. Plants 2022, 11, 1680. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, E.R.; Chiţescu, C.L.; Geană, E.-I.; Gird, C.E.; Socoteanu, R.P.; Boscencu, R. Advanced Analytical Approaches for the Analysis of Polyphenols in Plants Matrices—A Review. Separations 2021, 8, 65. [Google Scholar] [CrossRef]
- Jeong, Y.-S.; Jusko, W.J. Meta-Assessment of Metformin Absorption and Disposition Pharmacokinetics in Nine Species. Pharmaceuticals 2021, 14, 545. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, Q.; Wang, H.; Yang, X.; Jiang, Y.; Chen, R.; Wang, L. Comparative Evaluation of the Effect of Metformin and Insulin on Gut Microbiota and Metabolome Profiles of Type 2 Diabetic Rats Induced by the Combination of Streptozotocin and High-Fat Diet. Front. Pharmacol. 2022, 12, 794103. [Google Scholar] [CrossRef]
- PubChem P-Toluenesulfonamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6269 (accessed on 26 March 2025).
- Athmuri, D.N.; Shiekh, P.A. Experimental Diabetic Animal Models to Study Diabetes and Diabetic Complications. MethodsX 2023, 11, 102474. [Google Scholar] [CrossRef]
- Qamar, F.; Sultana, S.; Sharma, M. Animal Models for Induction of Diabetes and Its Complications. J. Diabetes Metab. Disord. 2023, 22, 1021–1028. [Google Scholar] [CrossRef]
- Lenzen, S. The Mechanisms of Alloxan- and Streptozotocin-Induced Diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Directive-2010/63-EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj/eng (accessed on 29 March 2025).
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological Properties of Salvia officinalis and Its Components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Ene, A.C.; Nwankwo, E.A.; Samdi, L.M. Alloxan-induced diabetes in rats and the effects of black caraway (Carum carvi L.) oil on their body weight. Res. J. Med. Med. Sci. 2007, 2, 48–52. [Google Scholar] [CrossRef]
- Alsherif, D.A.; Hussein, M.A.; Abuelkasem, S.S. Salvia officinalis Improves Glycemia and Suppresses Pro-Inflammatory Features in Obese Rats with Metabolic Syndrome. Curr. Pharm. Biotechnol. 2024, 25, 623–636. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.H.; Muhammad, M.J.; Hussein, F.F. The Effect of Metformin on Some Physiological Traits in Rats with Alloxan-Induced Diabetes. IOP Conf. Ser. Earth Environ. Sci. 2024, 1371, 062008. [Google Scholar] [CrossRef]
- Abd El-Karim, S.S.; Anwar, M.M.; Syam, Y.M.; Nael, M.A.; Ali, H.F.; Motaleb, M.A. Rational Design and Synthesis of New Tetralin-Sulfonamide Derivatives as Potent Anti-Diabetics and DPP-4 Inhibitors: 2D & 3D QSAR, in Vivo Radiolabeling and Bio Distribution Studies. Bioorg. Chem. 2018, 81, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Markowicz-Piasecka, M.; Sadkowska, A.; Sikora, J.; Broncel, M.; Huttunen, K.M. Novel Sulfonamide-Based Analogs of Metformin Exert Promising Anti-Coagulant Effects without Compromising Glucose-Lowering Activity. Pharmaceuticals 2020, 13, 323. [Google Scholar] [CrossRef]
- Alarcon-Aguilar, F.J.; Roman-Ramos, R.; Flores-Saenz, J.L.; Aguirre-Garcia, F. Investigation on the Hypoglycaemic Effects of Extracts of Four Mexican Medicinal Plants in Normal and Alloxan-Diabetic Mice. Phytother. Res. 2002, 16, 383–386. [Google Scholar] [CrossRef]
- Eidi, M.; Eidi, A.; Zamanizadeh, H. Effect of Salvia officinalis L. Leaves on Serum Glucose and Insulin in Healthy and Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2005, 100, 310–313. [Google Scholar] [CrossRef]
- Lima, C.F.; Azevedo, M.F.; Araujo, R.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Metformin-like Effect of Salvia officinalis (Common Sage): Is It Useful in Diabetes Prevention? Br. J. Nutr. 2006, 96, 326–333. [Google Scholar] [CrossRef]
- Sabry, M.M.; Abdel-Rahman, R.F.; El-Shenawy, S.M.; Hassan, A.M.; El-Gayed, S.H. Estrogenic Activity of Sage (Salvia officinalis L.) Aerial Parts and Its Isolated Ferulic Acid in Immature Ovariectomized Female Rats. J. Ethnopharmacol. 2022, 282, 114579. [Google Scholar] [CrossRef] [PubMed]
- Ramalho-Santos, J.; Amaral, S.; Oliveira, P. Diabetes and the Impairment of Reproductive Function: Possible Role of Mitochondria and Reactive Oxygen Species. Curr. Diabetes Rev. 2008, 4, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Bank, S.; Maiti, S.; Sinha, A.K. The Control of Hyperglycemia by Estriol and Progesterone in Alloxan Induced Type I Diabetes Mellitus Mice Model through Hepatic Insulin Synthesis. Int. J. Biomed. Sci. 2014, 10, 8–15. [Google Scholar] [PubMed]
- Werner, E. An introduction to systems biology: Design principles of biological circuits. Nature 2007, 446, 493–494. [Google Scholar] [CrossRef]
- Karunakaran, U.; Park, K.-G. A Systematic Review of Oxidative Stress and Safety of Antioxidants in Diabetes: Focus on Islets and Their Defense. Diabetes Metab. J. 2013, 37, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Lohmiller, J.J.; Swing, S.P.; Hanson, M.M. Reproduction and breeding. In The Laboratory Rat; Academic Press: Cambridge, MA, USA, 2020; pp. 157–179. [Google Scholar] [CrossRef]
- Elvis-Offiah, U.B.; Isuman, S.; Johnson, M.O.; Ikeh, V.G.; Agbontaen, S. Our Clear-Cut Improvement to the Impact of Mouse and Rat Models in the Research Involving Female Reproduction. In Animal Models and Experimental Research in Medicine; IntechOpen: London, UK, 2022. [Google Scholar]
- Castelhano-Carlos, M.J.; Baumans, V. The Impact of Light, Noise, Cage Cleaning and in-House Transport on Welfare and Stress of Laboratory Rats. Lab Anim. 2009, 43, 311–327. [Google Scholar] [CrossRef] [PubMed]
Vegetal Extract | Total Polyphenols (g% Tannic Acid) | Phenolic Acids (g% Chlorogenic Acid) | Total Flavonoids (g% Rutozide) |
---|---|---|---|
Salvia officinalis | 30.12 (±6.19) | 26.88 (±1.06) | 8.33 (±1.53) |
DPPH IC50 (mg/mL) | ABTS IC50 (mg/mL) | FRAP EC50 (mg/mL) | |
Salvia officinalis | 0.123 | 0.0356 | 0.0543 |
Correlation | r | R2 |
---|---|---|
ABTS vs. DPPH | 1.00 | 0.9900 |
ABTS vs. FRAP | −0.999 | 0.9293 |
DPPH vs. FRAP | −0.998 | 0.9643 |
Total polyphenols vs. IC50 (DPPH, ABTS) | −0.265 | |
Phenolic acids vs. IC50 (DPPH, ABTS) | 0.991 | |
Total flavonoids vs. IC50 (DPPH, ABTS) | 0.468 |
Compound | Chemical Formula | Monitored Ion [M-H]− | Retention Time (min) | Amount (mg/g Extract) |
---|---|---|---|---|
Catechin | C15H14O6 | 289.0718 | 5.48 | 5.96 |
Luteolin | C15H10O6 | 285.0405 | 11.82 | 5.01 |
Kaempferol | C15H10O6 | 285.0405 | 15.88 | 31.2 |
Quercetin | C15H10O7 | 301.0354 | 10.33 | 3.12 |
Hesperidin | C16H14O6 | 301.0718 | 15.53 | 3.78 |
Rutin | C27H30O16 | 609.1461 | 8.44 | 5.12 |
Pinocembrin | C15H12O4 | 255.0663 | 18.31 | 3.12 |
Galangin | C15H10O5 | 269.0456 | 16.67 | 0.74 |
Apigenin | C15H10O5 | 269.0450 | 13.22 | 1.95 |
Gallic acid | C7H6O5 | 169.0143 | 1.18 | 1.41 |
Rosmarinic acid | C18H16O8 | 359.0773 | 13.38 | 37.85 |
Ferulic acid | C10H10O4 | 193.0507 | 19.3 | 3.58 |
Salvianolic acid A | C26H22O10 | 493.1140 | 14.95 | 6.27 |
Caffeic acid | C9H8O4 | 179.0350 | 6.44 | 1.46 |
Cinnamic acid | C9H8O2 | 147.0452 | 2.14 | 1.96 |
p-Coumaric acid | C9H8O3 | 163.0395 | 8.85 | 0.64 |
Glycitein | C16H12O5 | 283.0612 | 19.56 | 18.40 |
Chlorogenic acid | C16H18O9 | 353.0878 | 6.08 | 6.98 |
Pinostrobin | C16H14O4 | 269.0820 | 18.46 | 2.86 |
Vanillic acid | C8H8O4 | 167.0350 | 2.36 | 11.98 |
Syringic acid | C9H10O5 | 197.0456 | 6.24 | 0.51 |
Ellagic acid | C14H6O8 | 300.9990 | 12.04 | 0.56 |
Abscisic acid | C15H20O4 | 263.1289 | 14.79 | 0.41 |
Naringenin | C15H12O5 | 271.0612 | 15.51 | 1.81 |
Lot | FSH (mU/mL) | LH (mUI/mL) | Estradiol (pg/mL) | Progesteron (ng/mL) | GPX3 (ng/mL) | TGF-β1 (ng/mL) |
---|---|---|---|---|---|---|
L1 | 0.04 ± 0.05 | <0.07 * | 54.74 ± 17.5 | 3.59 ± 0.90 | 38.20 ± 12.84 | 21.55 ± 13.15 |
L2 | 0.05 ± 0.03 | <0.07 | 22.00 ± 4.1 | 17.38 ± 9.6 | 61.50 ± 11.3 | 27.73 ± 19.4 |
L3 | 0.09 ± 0.09 | <0.07 | 33.92 ± 6.0 | 31.56 ± 19.9 | 46.78 ± 24.2 | 22.57 ± 5.5 |
L4 | 0.00 ± 0.0 | <0.07 | 61.29 ± 24.2 | 8.34 ± 4.6 | 60.13 ± 21.0 | 17.65 ± 20.0 |
L5 | 0.00 ± 0.0 | <0.07 | 47.69 ± 18.7 | 26.55 ± 14.8 | 41.88 ± 14.9 | 28.66 ± 25.3 |
L6 | 0.02 ± 0.03 | <0.07 | 39.44 ± 21.5 | 38.35 ± 21.6 | 56.01 ± 18.0 | 15.60 ± 16.6 |
Group | Pearson Correlations |
---|---|
L1 | FSH vs. Estradiol (ρ = −0.362, p = 0.049), significant negative correlation Blood glucose vs. GPX3 (ρ = −0.956, p = 0.011), significant negative correlation |
L2 | FSH vs. estradiol (ρ = −0.996, p = 0.008), significant negative correlation GPX3 vs. FSH (ρ = −0.897, p = 0.039), significant negative correlation GPX3 vs. estradiol (ρ = −0.923, p = 0.025), significant negative correlation |
L3 | Blood glucose vs. FSH (ρ = −0.904, p = 0.035), significant positive correlation |
L4 | Estradiol vs. progesteron (ρ = 0.979, p = 0.004), significant positive correlation GPX3 vs. TGF-β (ρ = 0.938, p = 0.018), significant positive correlation |
L5 | No significant correlations between biomarkers |
L6 | GPX3 vs. FSH (ρ = 0.929, p = 0.023), significant positive correlation |
Parameter | R2 | F-Statistic | p-Value (Pr > F) | Conclusion |
---|---|---|---|---|
FSH | 0.046 | 1.206 | 0.286 | Not significant |
Estradiol | 0.048 | 1.186 | 0.6292 | Not significant |
Progesterone | 0.059 | 1.580 | 0.220 | Not significant |
GPX3 | 0.239 | 7.840 | 0.010 | Significant |
TGF-β1 | 0.0369 | 0.925 | 0.345 | Not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tătaru, I.; Gardikiotis, I.; Dragostin, O.-M.; Confederat, L.; Gîrd, C.; Zamfir, A.-S.; Morariu, I.D.; Chiţescu, C.L.; Dinu, A.; Popescu, L.C.; et al. Multilevel Assessment of Glycemic, Hormonal, and Oxidative Parameters in an Experimental Diabetic Female Rat Model. Biomedicines 2025, 13, 922. https://doi.org/10.3390/biomedicines13040922
Tătaru I, Gardikiotis I, Dragostin O-M, Confederat L, Gîrd C, Zamfir A-S, Morariu ID, Chiţescu CL, Dinu A, Popescu LC, et al. Multilevel Assessment of Glycemic, Hormonal, and Oxidative Parameters in an Experimental Diabetic Female Rat Model. Biomedicines. 2025; 13(4):922. https://doi.org/10.3390/biomedicines13040922
Chicago/Turabian StyleTătaru, Iulian, Ioannis Gardikiotis, Oana-Maria Dragostin, Luminita Confederat, Cerasela Gîrd, Alexandra-Simona Zamfir, Ionela Daniela Morariu, Carmen Lidia Chiţescu, Ancuța Dinu (Iacob), Liliana Costea Popescu, and et al. 2025. "Multilevel Assessment of Glycemic, Hormonal, and Oxidative Parameters in an Experimental Diabetic Female Rat Model" Biomedicines 13, no. 4: 922. https://doi.org/10.3390/biomedicines13040922
APA StyleTătaru, I., Gardikiotis, I., Dragostin, O.-M., Confederat, L., Gîrd, C., Zamfir, A.-S., Morariu, I. D., Chiţescu, C. L., Dinu, A., Popescu, L. C., & Zamfir, C. L. (2025). Multilevel Assessment of Glycemic, Hormonal, and Oxidative Parameters in an Experimental Diabetic Female Rat Model. Biomedicines, 13(4), 922. https://doi.org/10.3390/biomedicines13040922