Establishment and Hemodynamic Assessment of the Superior Cavopulmonary Anastomosis in a Reproducible Porcine Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Groups
2.2. Surgical Preparation
2.3. Surgical Set-Up
2.4. Cardiopulmonary Bypass Set-Up
2.5. Data Acquisition
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ao | aorta |
BDCPC | bidirectional cavopulmonary connection |
CO | cardiac output |
CPB | cardiopulmonary bypass |
CS | coronary sinus |
ePTFE | expanded polyetetrafluorethylene |
Fr. | French (1 Fr. = 0.33 mm) |
Hct | Hematocrit |
IVC | inferior vena cava |
LA | left atrium |
LITV | left internal thoracic vein |
LLL | left lower lobe |
LPA | left pulmonary artery |
LV | left ventricle |
LVEF | left ventricular ejection fraction |
MAP | mean arterial pressure |
MPA | main pulmonary artery |
PEEP | positive end expiratory pressure |
PIP | peak inspiratory pressure |
RA | right atrium |
RETV | right external thoracic vein |
RITV | right internal thoracic vein |
RJV | right jugular vein |
RPA | right pulmonary artery |
RSV | right subclavian vein |
RULB | right upper lobe pulmonary artery |
RV | right ventricle |
RVOT | right ventricular outflow tract |
SVC | superior vena cava |
TAPSE | tricuspid annular plane systolic excursion |
TI | truncus intermedius |
UDPCP | unidirectional cavopulmonary connection |
References
- Corno, A.F.; Findley, T.O.; Salazar, J.D. Narrative review of single ventricle: Where are we after 40 years? Transl. Pediatr. 2023, 12, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Rendas, A.; Branthwaite, M.; Reid, L. Growth of pulmonary circulation in normal pig--structural analysis and cardiopulmonary function. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1978, 45, 806–817. [Google Scholar] [CrossRef]
- Haworth, S.G. Normal structural and functional adaptation to extrauterine life. J. Pediatr. 1981, 98, 915–918. [Google Scholar] [CrossRef]
- Klimes, K.; Abdul-Khaliq, H.; Ovroutski, S.; Hui, W.; Alexi-Meskishvili, V.; Spors, B.; Hetzer, R.; Felix, R.; Lange, P.E.; Berger, F.; et al. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: A magnetic resonance study. Clin. Res. Cardiol. 2007, 96, 160–167. [Google Scholar] [CrossRef]
- Krimly, A.; Jain, C.C.; Egbe, A.; Alzahrani, A.; Al Najashi, K.; Albert-Brotons, D.; Veldtman, G.R. The pulmonary vascular bed in patients with functionally univentricular physiology and a Fontan circulation. Cardiol. Young 2021, 31, 1241–1250. [Google Scholar] [CrossRef]
- Kratz, T.; Gaukstern, L.; Wiebe, W.; Müller, N.; Freudenthal, N.; Breuer, J.; Luetkens, J.; Hart, C. Pulmonary blood flow in children with univentricular heart and unilateral diaphragmatic paralysis. Interdiscip. Cardiovasc. Thorac. Surg. 2024, 38, ivae011. [Google Scholar] [CrossRef]
- Akay, T.H.; Ozkan, S.; Gultekin, B.; Uguz, E.; Varan, B.; Sezgin, A.; Tokel, K.; Aslamaci, S. Diaphragmatic paralysis after cardiac surgery in children: Incidence, prognosis and surgical management. Pediatr. Surg. Int. 2006, 22, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.J.; Boulom, V.; Reemtsen, B.L.; Rollins, R.C.; Starnes, V.A.; Wells, W.J. Hemidiaphragm plication after repair of congenital heart defects in children: Quantitative return of diaphragm function over time. J. Thorac. Cardiovasc. Surg. 2008, 135, 56–61. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, M.; Williams, J.M.; Freedom, R.M.; Williams, W.G.; Shemie, S.D.; McCrindle, B.W. Impact of diaphragmatic paralysis after cardiothoracic surgery in children. J. Thorac. Cardiovasc. Surg. 1999, 118, 510–517. [Google Scholar] [CrossRef]
- Floh, A.A.; Zafurallah, I.; MacDonald, C.; Honjo, O.; Fan, C.S.; Laussen, P.C. The advantage of early plication in children diagnosed with diaphragm paresis. J. Thorac. Cardiovasc. Surg. 2017, 154, 1715–1721.e1714. [Google Scholar] [CrossRef]
- Joho-Arreola, A.L.; Bauersfeld, U.; Stauffer, U.G.; Baenziger, O.; Bernet, V. Incidence and treatment of diaphragmatic paralysis after cardiac surgery in children. Eur. J. Cardiothorac. Surg. 2005, 27, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Ovroutski, S.; Alexi-Meskishvili, V.; Stiller, B.; Ewert, P.; Abdul-Khaliq, H.; Lemmer, J.; Lange, P.E.; Hetzer, R. Paralysis of the phrenic nerve as a risk factor for suboptimal Fontan hemodynamics. Eur. J. Cardiothorac. Surg. 2005, 27, 561–565. [Google Scholar] [CrossRef]
- Danton, M.H.; Byrne, J.G.; Flores, K.Q.; Hsin, M.; Martin, J.S.; Laurence, R.G.; Cohn, L.H.; Aklog, L. Modified Glenn connection for acutely ischemic right ventricular failure reverses secondary left ventricular dysfunction. J. Thorac. Cardiovasc. Surg. 2001, 122, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Henaine, R.; Vergnat, M.; Bacha, E.A.; Baudet, B.; Lambert, V.; Belli, E.; Serraf, A. Effects of lack of pulsatility on pulmonary endothelial function in the Fontan circulation. J. Thorac. Cardiovasc. Surg. 2013, 146, 522–529. [Google Scholar] [CrossRef]
- Honjo, O.; Merklinger, S.L.; Poe, J.B.; Guerguerian, A.M.; Alghamdi, A.A.; Takatani, S.; Van Arsdell, G.S. Mechanical cavopulmonary assist maintains pulmonary and cerebral blood flow in a piglet model of a bidirectional cavopulmonary shunt with high pulmonary vascular resistance. J. Thorac. Cardiovasc. Surg. 2009, 137, 355–361. [Google Scholar] [CrossRef]
- Schmitt, B.; Sabi, T.M.; Sigler, M.; Berger, F.; Ewert, P. Upper cavo-pulmonary anastomosis by transcatheter technique. Catheter. Cardiovasc. Interv. 2012, 80, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Vikholm, P.; Schiller, P.; Johansson, J.; Hellgren, L. A modified Glenn shunt improves haemodynamics in acute right ventricular failure in an experimental model. Eur. J. Cardiothorac. Surg. 2013, 43, 612–618. [Google Scholar] [CrossRef]
- Crick, S.J.; Sheppard, M.N.; Ho, S.Y.; Gebstein, L.; Anderson, R.H. Anatomy of the pig heart: Comparisons with normal human cardiac structure. J. Anat. 1998, 193 Pt 1, 105–119. [Google Scholar] [CrossRef]
- Carlon, C.A.; Mondini, P.G.; De Marchi, R. A new vascular anastomosis for the surgical therapy of various cardiovascular defects. G. Ital. Chir. 1950, 6, 760–774. [Google Scholar]
- Darbinian, T.M.; Galankin, N.K. Anastomosis between superior venoa cava and the right pulmonary artery. Eksp. Khirurgiia 1956, 1, 54–57. [Google Scholar]
- Glenn, W.W.; Patino, J.F. Circulatory by-pass of the right heart. I. Preliminary observations on the direct delivery of vena caval blood into the pulmonary arterial circulation; azygos vein-pulmonary artery shunt. Yale J. Biol. Med. 1954, 27, 147–151. [Google Scholar]
- Macé, L.; Dervanian, P.; Weiss, M.; Daniel, J.P.; Losay, J.; Neveux, J.Y. Hemodynamics of different degrees of right heart bypass: Experimental assessment. Ann. Thorac. Surg. 1995, 60, 1230–1237. [Google Scholar] [CrossRef]
- Rodbard, S.; Wagner, D. By-passing the right ventricle. Proc. Soc. Exp. Biol. Med. 1949, 71, 69–70. [Google Scholar] [CrossRef]
- Ikai, A.; Riemer, R.K.; Ma, X.; Reinhartz, O.; Hanley, F.L.; Reddy, V.M. Pulmonary expression of the hepatocyte growth factor receptor c-Met shifts from medial to intimal layer after cavopulmonary anastomosis. J. Thorac. Cardiovasc. Surg. 2004, 127, 1442–1449. [Google Scholar] [CrossRef]
- Malhotra, S.P.; Riemer, R.K.; Thelitz, S.; He, Y.P.; Hanley, F.L.; Reddy, V.M. Superior cavopulmonary anastomosis suppresses the activity and expression of pulmonary angiotensin-converting enzyme. J. Thorac. Cardiovasc. Surg. 2001, 122, 464–469. [Google Scholar] [CrossRef]
- Ikai, A.; Shirai, M.; Nishimura, K.; Ikeda, T.; Kameyama, T.; Ueyama, K.; Komeda, M. Hypoxic pulmonary vasoconstriction disappears in a rabbit model of cavopulmonary shunt. J. Thorac. Cardiovasc. Surg. 2004, 127, 1450–1457. [Google Scholar] [CrossRef]
- Henaine, R.; Vergnat, M.; Mercier, O.; Serraf, A.; De Montpreville, V.; Ninet, J.; Bacha, E.A. Hemodynamics and arteriovenous malformations in cavopulmonary anastomosis: The case for residual antegrade pulsatile flow. J. Thorac. Cardiovasc. Surg. 2013, 146, 1359–1365. [Google Scholar] [CrossRef]
- Jahangiri, M.; Keogh, B.; Shinebourne, E.A.; Lincoln, C. Should the bidirectional Glenn procedure be performed through a thoracotomy without cardiopulmonary bypass? J. Thorac. Cardiovasc. Surg. 1999, 118, 367–368. [Google Scholar] [CrossRef]
- LaPar, D.J.; Mery, C.M.; Peeler, B.B.; Kron, I.L.; Gangemi, J.J. Short and long-term outcomes for bidirectional glenn procedure performed with and without cardiopulmonary bypass. Ann. Thorac. Surg. 2012, 94, 164–170; discussion 170–171. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y.; Chen, H.; Shi, Z.; Su, Z.; Ding, W. Bidirectional Glenn procedure without cardiopulmonary bypass. Ann. Thorac. Surg. 2004, 77, 1349–1352. [Google Scholar] [CrossRef]
- Schiller, P.; Vikholm, P.; Hellgren, L. A modified Glenn shunt reduces right ventricular stroke work during left ventricular assist device therapy. Eur. J. Cardiothorac. Surg. 2016, 49, 795–801. [Google Scholar] [CrossRef]
- Vikholm, P.; Schiller, P.; Hellgren, L. A modified Glenn shunt reduces venous congestion during acute right ventricular failure due to pulmonary banding: A randomized experimental study. Interact. Cardiovasc. Thorac. Surg. 2014, 18, 418–425. [Google Scholar] [CrossRef]
- Kavarana, M.N.; Mukherjee, R.; Eckhouse, S.R.; Rawls, W.F.; Logdon, C.; Stroud, R.E.; Patel, R.K.; Nadeau, E.K.; Spinale, F.G.; Graham, E.M.; et al. Pulmonary artery endothelial cell phenotypic alterations in a large animal model of pulmonary arteriovenous malformations after the Glenn shunt. Ann. Thorac. Surg. 2013, 96, 1442–1449. [Google Scholar] [CrossRef]
- Sinha, P.; Deutsch, N.; Ratnayaka, K.; He, D.; Peer, M.; Kurkluoglu, M.; Nuszkowski, M.; Montague, E.; Mikesell, G.; Zurakowski, D.; et al. Pump in Parallel-Mechanical Assistance of Partial Cavopulmonary Circulation Using a Conventional Ventricular Assist Device. ASAIO J. 2018, 64, 238–244. [Google Scholar] [CrossRef]
- Goto, T.; Ousaka, D.; Hirai, K.; Kotani, Y.; Kasahara, S. Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology. Eur. J. Cardiothorac. Surg. 2023, 64, ezad304. [Google Scholar] [CrossRef]
- Kalfa, D. Novel Valve Choices for Pulmonary Valve Replacement. Semin. Thorac. Cardiovasc. Surg. 2023, 35, 523–529. [Google Scholar] [CrossRef]
Bidirectional CPC | Unidirectional CPC | |||
---|---|---|---|---|
Baseline | 60 min Post CPC | Baseline | 60 min Post CPC | |
HR [min−1] | 94 ± 5 | 104 ± 7 | 91 ± 3 | 113 ± 6 * |
MAP [mmHg] | 80.8 ± 3.7 | 49.3 ± 7.3 * | 71.9 ± 2.3 | 62.4 ± 2.8 |
SVCP [mmHg] | 7.5 ± 1.3 | 17.0 ± 1.0 * | 7.3 ± 0.8 | 13.9 ± 0.8 *† |
IVCP [mmHg] | 8.2 ± 0.8 | 12.0 ± 1.5 | 7.7 ± 0.7 | 8.6 ± 0.9 |
LAP [mmHg] | 7.6 ± 1.0 | 7.7 ± 2.1 | 9.2 ± 0.8 | 9.3 ± 0.8 |
RVSP [mmHg] | 35 ± 3 | 46 ± 7 | 33 ± 2 | 41 ± 3 * |
Bidirectional CPC | Unidirectional CPC | |||
---|---|---|---|---|
Baseline | 60 min Post CPC | Baseline | 60 min Post CPC | |
CO [L/min] | 3.15 ± 0.21 | 2.17 ± 0.19 * | 2.97 ± 0.22 | 2.6 ± 0.25 |
F(SVC) [L/min] | 1.07 ± 0.19 | 0.43 ± 0.07 * | 0.97 ± 0.14 | 0.5 ± 0.1 * |
LVEF [%] | 68 ± 4 | 76 ± 5 | 74 ± 2 | 71 ± 3 |
TAPSE | 12 ± 0.7 | 5 ± 0.7 * | 13 ± 0.8 | 9 ± 0.4 *† |
Bidirectional CPC | Unidirectional CPC | |||
---|---|---|---|---|
Baseline | 60 min Post CPC | Baseline | 60 min Post CPC | |
pH | 7.45 ± 0 | 7.3 ± 0 * | 7.45 ± 0 | 7.41 ± 0 † |
pO2 [mmHg] | 91.0 ± 6.3 | 46.9 ± 6.9 * | 91.8 ± 4.2 | 151.8 ± 10.0 *† |
SO2 [%] | 95.8 ± 1.1 | 60.9 ± 10.4 * | 96.0 ± 1.0 | 99.4 ± 0.2 *† |
pCO2 [mmHg] | 41.3 ± 1.6 | 52.4 ± 3.1 * | 40.8 ± 1.2 | 44.4 ± 1.7 † |
Hct [%] | 24.0 ± 0.6 | 28.3 ± 1.7 * | 24.6 ± 1.8 | 26.0 ± 2.3 |
Lactate [mmol/L] | 0.82 ± 0.09 | 4.36 ± 0.96 * | 1.37 ± 0.18 † | 2.17 ± 0.45 † |
Bidirectional CPC | Unidirectional CPC | |
---|---|---|
CPB flow [L/min] | 2.57 ± 0.47 | 3.30 ± 0.22 * |
MAP [mmHg] | 62 ± 11 | 75 ± 10 |
CPB time [min] | 156 ± 36 | 133 ± 16 |
pH | 7.44 ± 0.05 | 7.41 ± 0.04 |
pO2 [mmHg] | 435 ± 77 | 407 ± 43 |
pCO2 [mmHg] | 41 ± 3 | 49 ± 5 * |
Hct [%] | 22 ± 1 | 21 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bierbach, B.; Pieterek, L.; Dauvergne, J.; Scholl, C.; Oetzmann von Sochaczewski, C.; Breuer, J.; Asfour, B.; Vergnat, M.; Kratz, T. Establishment and Hemodynamic Assessment of the Superior Cavopulmonary Anastomosis in a Reproducible Porcine Model. Biomedicines 2025, 13, 918. https://doi.org/10.3390/biomedicines13040918
Bierbach B, Pieterek L, Dauvergne J, Scholl C, Oetzmann von Sochaczewski C, Breuer J, Asfour B, Vergnat M, Kratz T. Establishment and Hemodynamic Assessment of the Superior Cavopulmonary Anastomosis in a Reproducible Porcine Model. Biomedicines. 2025; 13(4):918. https://doi.org/10.3390/biomedicines13040918
Chicago/Turabian StyleBierbach, Benjamin, Luca Pieterek, Jan Dauvergne, Carolin Scholl, Christina Oetzmann von Sochaczewski, Johannes Breuer, Boulos Asfour, Mathieu Vergnat, and Tobias Kratz. 2025. "Establishment and Hemodynamic Assessment of the Superior Cavopulmonary Anastomosis in a Reproducible Porcine Model" Biomedicines 13, no. 4: 918. https://doi.org/10.3390/biomedicines13040918
APA StyleBierbach, B., Pieterek, L., Dauvergne, J., Scholl, C., Oetzmann von Sochaczewski, C., Breuer, J., Asfour, B., Vergnat, M., & Kratz, T. (2025). Establishment and Hemodynamic Assessment of the Superior Cavopulmonary Anastomosis in a Reproducible Porcine Model. Biomedicines, 13(4), 918. https://doi.org/10.3390/biomedicines13040918