SAA1 Protein: A Potential Biomarker for Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples from Patients and Healthy Donors
2.2. Proteomic Study
2.2.1. Bone Marrow Plasma Preparation
2.2.2. Protein Quantification of Plasma Samples
2.2.3. In-Solution Tryptic Digestion
2.2.4. Label-Free Protein Quantitation by Mass Spectrometry
2.2.5. In Silico Analysis
2.3. ELISA
2.4. Statistical Analysis
3. Results
3.1. Bone Marrow Plasma Proteomic Analysis Reveals Differentially Expressed Proteins in AML Patients Compared with Healthy Donors
3.2. Proteins Associated with the Acute Inflammatory Response Are Altered in AML Bone Marrow
3.3. SAA1 Is Altered in AML Bone Marrow Plasma Samples
3.4. SAA1 and Immune Signaling Pathways
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AML | Acute myeloid leukemia |
BM | Bone marrow |
HN | Hematopoietic niche |
HD | Healthy donors |
DE | Differentially expressed |
HSC | Hematopoietic stem cell |
References
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D.; Leukemia, A.M. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, G.; Cai, X.; Liu, Y.; Qian, B.; Li, D. Global, regional, and national burden of acute myeloid leukemia, 1990–2021: A systematic analysis for the global burden of disease study 2021. Biomark. Res. 2024, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.; Farina, K.A.; Mascarenhas, J. Acute myeloid leukemia. J. Am. Acad. Physician Assist. 2024, 37, 34–39. [Google Scholar] [CrossRef]
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.; Gralnick, H.R.; Sultan, C. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann. Intern. Med. 1985, 103, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.M.; Catovsky, D.; Daniel, M.-T.; Flandrin, G.; Galton, D.A.G.; Gralnick, H.R.; Sultan, C. Proposals for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. Br. J. Haematol. 1976, 33, 451–458. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 ELN Recommendations from an International Expert Panel. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Kim, N.; Hahn, S.; Choi, Y.J.; Cho, H.; Chung, H.; Jang, J.E.; Lyu, C.J.; Lee, S.-T.; Choi, J.R.; Cheong, J.-W.; et al. Comprehensive insights into AML relapse: Genetic mutations, clonal evolution, and clinical outcomes. Cancer Cell Int. 2024, 24, 174. [Google Scholar] [CrossRef]
- Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367, 645–648. [Google Scholar] [CrossRef]
- Dick, J.E. Acute myeloid leukemia stem cells. Ann. N. Y. Acad. Sci. 2005, 1004, 1–5. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, C.; Li, J.; Han, J.; Liu, X.; Yang, H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res. Ther. 2019, 10, 327. [Google Scholar] [CrossRef]
- Pimenta, D.B.; Varela, V.A.; Datoguia, T.S.; Caraciolo, V.B.; Lopes, G.H.; Pereira, W.O. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. Front. Cell Dev. Biol. 2021, 9, 764698. [Google Scholar] [CrossRef] [PubMed]
- Ota, J.; Yamashita, Y.; Okawa, K.; Kisanuki, H.; Fujiwara, S.; Ishikawa, M.; Choi, Y.L.; Ueno, S.; Ohki, R.; Koinuma, K.; et al. Proteomic analysis of hematopoietic stem cell-like fractions in leukemic disorders. Oncogene 2003, 22, 5720–5728. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.-Y.; Ma, T.-Z.; Yoo, M.-J.; Choi, B.H.; Kim, H.-G.; Kim, S.-R.; Yim, C.-Y.; Kwak, Y.-G. The comparative analysis of serum proteomes for the discovery of biomarkers for acute myeloid leukemia. Exp. Hematol. 2004, 32, 836–842. [Google Scholar] [CrossRef]
- Balkhi, M.Y.; Trivedi, A.K.; Geletu, M.; Christopeit, M.; Bohlander, S.K.; Behre, H.M.; Behre, G. Proteomics of acute myeloid leukaemia: Cytogenetic risk groups differ specifically in their proteome, interactome and post-translational protein modifications. Oncogene 2006, 25, 7041–7058. [Google Scholar] [CrossRef]
- Strassberger, V.; Gutbrodt, K.L.; Krall, N.; Roesli, C.; Takizawa, H.; Manz, M.G.; Fugmann, T.; Neri, D. A comprehensive surface proteome analysis of myeloid leukemia cell lines for therapeutic antibody development. J. Proteom. 2014, 99, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Chernak, B.; Galan-Diez, M.; Ali, A.M.; Cuesta-Dominguez, A.; Chen, Z.; Koehnke, T.; Majeti, R.; Carroll, M.; Raza, A.; Kousteni, S. Serum Amyloid A1 (SAA1) Secreted By the Stromal Microenvironment Drives Malignant Clonal Proliferation in Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML). Blood 2023, 142, 4118. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Bradford, M.M. Determinacion de Proteinas: Metodo de Bradford. Anal. Biochem. 1976, 254, 248–254. Available online: http://bioquibi.webs.ull.es/practicas/3.pdf (accessed on 16 September 2023). [CrossRef]
- Pizzatti, L.; Panis, C.; Lemos, G.; Rocha, M.; Cecchini, R.; Souza, G.H.M.F.; Abdelhay, E. Label-free MS E proteomic analysis of chronic myeloid leukemia bone marrow plasma: Disclosing new insights from therapy resistance. Proteomics 2012, 12, 2618–2631. [Google Scholar] [CrossRef]
- Panis, C.; Pizzatti, L.; Herrera, A.C.; Corrêa, S.; Binato, R.; Abdelhay, E. Label-free proteomic analysis of breast cancer molecular subtypes. J. Proteome Res. 2014, 13, 4752–4772. [Google Scholar] [CrossRef]
- Corrêa, S.; Panis, C.; Binato, R.; Herrera, A.C.; Pizzatti, L.; Abdelhay, E. Identifying potential markers in Breast Cancer subtypes using plasma label-free proteomics. J. Proteom. 2017, 151, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Bueso-Ramos, C.E.; Yang, H.; Jia, Y.; Zheng, H.; Colla, S.; Nguyen, M.; Fernandez, M.; Kantarjian, H.M.; Garcia-Manero, G. Serum Amyloid Protein A 1 (hSAA1) Is Overexpressed in Myelodysplastic Syndromes and Potentially Mediates Toll-Like Receptor 2 Innate Immunity Signaling in CD34+ Hematopoietic Stem Cells. Blood 2012, 120, 1703. [Google Scholar] [CrossRef]
- de Mezer, M.; Rogaliński, J.; Przewoźny, S.; Chojnicki, M.; Niepolski, L.; Sobieska, M.; Przystańska, A. SERPINA3: Stimulator or Inhibitor of Pathological Changes. Biomedicines 2023, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cheng, Y.; Tang, L.; Martinka, M.; Kalia, S. Up-regulation of SERPINA3 correlates with high mortality of melanoma patients and increased migration and invasion of cancer cells. Oncotarget 2017, 8, 18712–18725. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wen, S.; Du, X.; Zhang, Y.; Yang, X.; Zou, R.; Feng, B.; Fu, X.; Jiang, F.; Zhou, G.; et al. SAA suppresses α-PD-1 induced anti-tumor immunity by driving TH2 polarization in lung adenocarcinoma. Cell Death Dis. 2023, 14, 718. [Google Scholar] [CrossRef]
- Niu, X.; Yin, L.; Yang, X.; Yang, Y.; Gu, Y.; Sun, Y.; Yang, M.; Wang, Y.; Zhang, Q.; Ji, H. Serum amyloid A 1 induces suppressive neutrophils through the Toll-like receptor 2–mediated signaling pathway to promote progression of breast cancer. Cancer Sci. 2022, 113, 1140–1153. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Wan, Q.; Xiao, C.; Guo, Z.; Du, X.; Hu, Y.; Zheng, A.; Cao, Z. Identification of SAA1 as a novel metastasis marker in ovarian cancer and development of a graphene-based detection platform for early assessment. J. Cancer Res. Clin. Oncol. 2023, 149, 16391–16406. [Google Scholar] [CrossRef]
- Li, Z.; Hou, Y.; Zhao, M.; Li, T.; Liu, Y.; Chang, J.; Ren, L. Serum amyloid a, a potential biomarker both in serum and tissue, correlates with ovarian cancer progression. J. Ovarian Res. 2020, 13, 67. [Google Scholar] [CrossRef]
- Sack, G.H. Serum amyloid A—A review. Mol. Med. 2018, 24, 46. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Zuo, R.; Liu, C.; Shu, Q.; Ying, H.; Sun, K. Induction of pro-inflammatory genes by serum amyloid A1 in human amnion fibroblasts. Sci. Rep. 2017, 7, 693. [Google Scholar] [CrossRef]
- Chen, D.-W.; Fan, J.-M.; Schrey, J.M.; Mitchell, D.V.; Jung, S.K.; Hurwitz, S.N.; Perez, E.B.; Muraro, M.J.; Carroll, M.; Taylor, D.M.; et al. Inflammatory recruitment of healthy hematopoietic stem and progenitor cells in the acute myeloid leukemia niche. Leukemia 2024, 38, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, I.J.; Jeong, B.Y.; Choi, M.; Kim, J.Y.; Kwon, K.; Lee, J.W.; Yu, A.; Shin, M. Use of MDLC-DIGE and LC-MS/MS to identify serum biomarkers for complete remission in patients with acute myeloid leukemia. Electrophoresis 2012, 33, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Braoudaki, M.; Tzortzatou-Stathopoulou, F.; Anagnostopoulos, A.K.; Papathanassiou, C.; Vougas, K.; Karamolegou, K.; Tsangaris, G.T. Proteomic analysis of childhood de novo acute myeloid leukemia and myelodysplastic syndrome/AML: Correlation to molecular and cytogenetic analyses. Amino Acids 2011, 40, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Ma, X. Study on serum protein mass spectrometric characteristics of acute leukemia. Zhonghua Xue Ye Xue Za Zhi 2013, 34, 426–429. [Google Scholar] [CrossRef]
- Xiang, W.; Lam, Y.H.; Periyasamy, G.; Chuah, C. Application of High Throughput Technologies in the Development of Acute Myeloid Leukemia Therapy: Challenges and Progress. Int. J. Mol. Sci. 2022, 23, 2863. [Google Scholar] [CrossRef]
- Lasry, A.; Nadorp, B.; Fornerod, M.; Nicolet, D.; Wu, H.; Walker, C.J.; Sun, Z.; Witkowski, M.T.; Tikhonova, A.N.; Guillamot-Ruano, M.; et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat. Cancer 2023, 4, 27–42. [Google Scholar] [CrossRef]
- Moser, B.; Edtmayer, S.; Witalisz-Siepracka, A.; Stoiber, D. The Ups and Downs of STAT Inhibition in Acute Myeloid Leukemia. Biomedicines 2021, 9, 1051. [Google Scholar] [CrossRef]
- Lowell, C.A.; Stearman, R.S.; Morrow, J.F. Transcriptional regulation of serum amyloid A gene expression. J. Biol. Chem. 1986, 261, 8453–8461. [Google Scholar] [CrossRef]
- Sander, L.E.; Sackett, S.D.; Dierssen, U.; Beraza, N.; Linke, R.P.; Müller, M.; Blander, J.M.; Tacke, F.; Trautwein, C. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J. Exp. Med. 2010, 207, 1453–1464. [Google Scholar] [CrossRef]
- Lin, H.; Tan, G.; Liu, Y.; Lin, S. The prognostic value of serum amyloid A in solid tumors: A meta-analysis. Cancer Cell Int. 2019, 19, 62. [Google Scholar] [CrossRef]
- Jajula, S.; Naik, V.; Kalita, B.; Yanamandra, U.; Sharma, S.; Chatterjee, T.; Bhanuse, S.; Bhavsar, P.P.; Taunk, K.; Rapole, S. Integrative proteome analysis of bone marrow interstitial fluid and serum reveals candidate signature for acute myeloid leukemia. J. Proteom. 2024, 303, 105224. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, V.; Fultang, L.; Booth, S.; De Simone, D.; Bartnik, A.; Scarpa, U.; Gneo, L.; Panetti, S.; Potluri, S.; Almowaled, M.; et al. Invariant NKT cells metabolically adapt to the acute myeloid leukaemia environment, Cancer Immunology. Immunotherapy 2023, 72, 543–560. [Google Scholar] [CrossRef]
- Galán-Díez, M.; Borot, F.; Ali, A.M.; Zhao, J.; Gil-Iturbe, E.; Shan, X.; Luo, N.; Liu, Y.; Huang, X.-P.; Bisikirska, B.; et al. Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer Discov. 2022, 12, 1106–1127. [Google Scholar] [CrossRef]
- Allert, C.; Müller-Tidow, C.; Blank, M.F. The relevance of the hematopoietic niche for therapy resistance in acute myeloid leukemia. Int. J. Cancer 2024, 154, 197–209. [Google Scholar] [CrossRef]
- Raza, S.K.; Saleem, M.; Shamsi, T.; Choudhary, M.I.; Rahman, A.U.; Musharraf, S.G. 5D proteomic approach for the biomarker search in plasma: Acute myeloid leukaemia as a case study. Sci. Rep. 2017, 7, 16440. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Bai, L.; Chen, W.; Xu, S. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert. Opin. Ther. Targets 2010, 14, 45–55. [Google Scholar] [CrossRef]
- Di Francesco, B.; Verzella, D.; Capece, D.; Vecchiotti, D.; Di Vito Nolfi, M.; Flati, I.; Cornice, J.; Di Padova, M.; Angelucci, A.; Alesse, E.; et al. NF-κB: A Druggable Target in Acute Myeloid Leukemia. Cancers 2022, 14, 3557. [Google Scholar] [CrossRef]
- Baumgartner, B.; Weber, M.; Quirling, M.; Fischer, C.; Page, S.; Adam, M.; von Schilling, C.; Waterhouse, C.; Schmid, C.; Neumeier, D.; et al. Increased IκB kinase activity is associated with activated NF-κB in acute myeloid blasts. Leukemia 2002, 16, 2062–2071. [Google Scholar] [CrossRef]
- Abbas, H.A.; Hao, D.; Tomczak, K.; Barrodia, P.; Im, J.S.; Reville, P.K.; Alaniz, Z.; Wang, W.; Wang, R.; Wang, F.; et al. Single-Cell Characterization of Acute Myeloid Leukemia (AML) and Its Microenvironment Identifies Signatures of Resistance to PD-1 Blockade Based Therapy. Blood 2020, 136, 29–31. [Google Scholar] [CrossRef]
Code Lab | Sex | Age (Years) | Proteomic Cohort | ELISA * Cohort |
---|---|---|---|---|
001/16 | Female | 25 | X | |
002/16 | Female | 32 | X | |
003/16 | Male | 23 | X | |
004/16 | Female | 30 | X | |
005/16 | Male | 28 | X | |
014/17 | Female | 26 | X | |
015/17 | Female | 58 | X | |
016/17 | Female | 60 | X | |
078/19 | Male | 44 | X | |
093/19 | Female | 44 | X | |
097/19 | Female | 46 | X | |
098/19 | Male | 22 | X | |
100/19 | Male | 34 | X | |
104/19 | Male | 29 | X | |
113/20 | Female | 43 | X | |
002/21 | Female | 52 | X | |
005/21 | Male | 46 | X | |
003/22 | Male | 60 | X | |
001/23 | Female | 37 | X | |
005/23 | Male | 41 | X | |
001/24 | Male | 34 | X |
Code Lab | Sex | Age (Years) | FAB Classification | Genetic Abnormality | Risk Category * | Proteomic Cohort | ELISA Cohort |
---|---|---|---|---|---|---|---|
002/12 | Male | 68 | M0/M1 | Normal karyotype | Favorable | X | |
003/12 | Female | 82 | M1/M2 | 47Xdel(X)(q23)+i(11)(q10)[13]/46,XX[15] | Intermediate | X | |
015/12 | Female | 44 | M2/M3 | Unknown | Unknown | X | |
017/12 | Female | 66 | M0 | Unknown | Unknown | X | X |
011/13 | Male | 35 | M4/M5 | Normal karyotype, Mutated FLT3 | Favorable | X | |
017/13 | Male | 25 | M3 | Unknown | Unknown | X | |
025/13 | Male | 38 | M3 | Normal karyotype | Favorable | X | |
033/13 | Female | 51 | M4/M5 | Normal karyotype | Favorable | X | |
053/14 | Male | 35 | M1 | Unknown | Unknown | X | |
001/16 | Female | 43 | M4/M5 | 46XX, +(3;19)(p22;p13);(t9:22)(q34 q11);del (13)(q11: q20)[20] | Adverse | X | |
007/16 | Male | 22 | M3 | PML::RARA fusion | Intermediate | X | |
008/16 | Female | 68 | M3 | PML::RARA fusion | Intermediate | X | |
013/16 | Female | 80 | M0/M1 | 47,XX,+[8]/47,XX,del(X)(q22),+8[13]/46,XX[1] | Adverse | X | X |
018/16 | Male | 37 | M3 | PML::RARA fusion | Intermediate | X | |
020/16 | Male | 64 | M2 | Unknown | Unknown | X | |
028/16 | Female | 40 | M0 | Normal karyotype | Favorable | X | |
029/16 | Male | 23 | M2 | t(9;11)(p21.3;q23.3)/MLLT3::KMT2A | Intermediate | X | |
031/16 | Male | 53 | M0/M1 | Normal karyotype | Favorable | X | X |
045/17 | Male | 51 | M0/M1 | Unknown | Unknown | X | |
049/17 | Female | 60 | M3 | t(15;17)(q24.1;q21.2)/PML::RARE | Intermediate | X | |
056/17 | Female | 65 | M2 | Unknown | Unknown | X | |
058/17 | Female | 53 | M2 | t(15;17)(q24.1;q21.2)/PML::RARE | Intermediate | X | |
001/18 | Male | 35 | M4/M5 | Normal karyotype | Favorable | X | |
004/18 | Female | 39 | M3 | PML::RARA fusion | Intermediate | X | |
001/19 | Male | 20 | M2 | t(2:14)(q22:q31) | Intermediate | X | |
006/20 | Male | 73 | M4 | Normal karyotype | Favorable | X | |
003/21 | Female | 21 | M4 | inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11 | Intermediate | X | |
008/22 | Female | 31 | M3 | Unknown | Unknown | X | |
001/24 | Female | 69 | M2 | Unknown | Unknown | X | |
003/24 | Female | 58 | M4 | Unknown | Unknown | X |
Accession Code | Symbol | Description | Expression |
---|---|---|---|
P02656 | APOC3 | Apolipoprotein C-III | Increased |
P0DJI8 | SAA1 | Serum amyloid A-1 protein | Increased |
P01011 | SERPINA3 | Alpha-1-antichymotrypsin | Increased |
P0DP03 | IGHV3-30-5 | Immunoglobulin heavy variable 3-30-5 | Decreased |
P07360 | C8G | Complement component C8 gamma chain | Decreased |
Q9GZL8 | BPESC1 | Putative BPES syndrome breakpoint region protein | Decreased |
Q2T9K0 | TMEM44 | Transmembrane protein 44 OS=Homo sapiens | Decreased |
P0DP02 | IGHV3-30-3 | Immunoglobulin heavy variable 3-30-3 | Decreased |
Q9BV90 | SNRNP25 | U11/U12 small nuclear ribonucleoprotein 25 kDa protein | Decreased |
P00751 | CFB | Complement factor B OS=Homo sapiens | Decreased |
Q4LEZ3 | AARD | Alanine and arginine-rich domain-containing protein | Decreased |
P54284 | CACNB3 | Voltage-dependent L-type calcium channel subunit beta-3 | Decreased |
P21453 | S1PR1 | Sphingosine 1-phosphate receptor 1 | Decreased |
P13796 | LCP1 | Plastin-2 OS=Homo sapiens | Decreased |
P0C1Z6 | TFPT | TCF3 fusion partner | Decreased |
P46926 | GNPDA1 | Glucosamine-6-phosphate isomerase 1 | Decreased |
A0A075B6N3 | TRBV24-1 | T cell receptor beta variable 24-1 | Decreased |
P01772 | IGHV3-33 | Immunoglobulin heavy variable 3-33 | Decreased |
P60709 | ACTB | Actin_ cytoplasmic 1 | Decreased |
P01008 | SERPINC1 | Antithrombin-III | Decreased |
P01768 | IGHV3-30 | Immunoglobulin heavy variable 3-30 | Decreased |
P41227 | NAA10 | N-alpha-acetyltransferase 10 | Decreased |
P01767 | IGHV3-53 | Immunoglobulin heavy variable 3-53 | Decreased |
A0A0C4DH42 | IGHV3-66 | Immunoglobulin heavy variable 3-66 | Decreased |
Q9Y3Q3 | TMED3 | Voltage-dependent L-type calcium channel subunit beta-3 | Decreased |
Q8WTR2 | DUSP19 | Dual specificity protein phosphatase 19 | Decreased |
P62324 | BTG1 | Protein BTG1 OS=Homo sapiens | Decreased |
Q03403 | TFF2 | Trefoil factor 2 OS=Homo sapiens | Decreased |
P01764 | IGHV3-23 | Immunoglobulin heavy variable 3-23 | Decreased |
Q9Y600 | CSAD | Cysteine sulfinic acid decarboxylase | Decreased |
Q86WV1 | SKAP1 | Src kinase-associated phosphoprotein 1 | Decreased |
Q6UXB4 | CLEC4G | C-type lectin domain family 4 member G | Decreased |
P63261 | ACTG1 | Actin_cytoplasmic 2 OS=Homo sapiens | Decreased |
Q6ZTI0 | DKFZ | Putative uncharacterized protein FLJ44636 | Decreased |
Q86VE3 | SATL1 | Spermidine/spermine N(1)-acetyltransferase-like protein 1 | Decreased |
Q8N6L0 | CCDC155 | Protein KASH5 OS=Homo sapiens | Decreased |
Overrepresentation Analysis | Common Differentially Expressed Proteins | |||
---|---|---|---|---|
Up * | Down * | FDR | Database | |
Acute inflammatory response | SAA1, SERPINA3 | C8G, CFB, SERPINC1 | 0.004 | GOBP (GO:0002526) |
Protein activation cascade | C8G, CFB, SERPINC1 | 0.148 | GOBP (GO:0072376) | |
Anatomical structure homeostasis | SERPINA3 | S1PR1, ACTB, TFF2, ACTG1 | 0.148 | GOBP (GO:0060249) |
Multicellular organismal homeostasis | SERPINA3 | S1PR1, ACTB, TFF2, ACTG1 | 0.210 | GOBP (GO:0048871) |
Coagulation | SAA1 | ACTB, SERPINC1, ACTG1 | 0.344 | GOBP (GO:0050817) |
Positive chemotaxis | SAA1 | S1PR1 | 0.708 | GOBP (GO:0050918) |
Homotypic cell–cell adhesion | ACTB, ACTG1 | 0.708 | GOBP (GO:0034109) | |
Ephrin receptor signaling pathway | ACTB, ACTG1 | 0.708 | GOBP (GO:0048013) | |
Regulation of body fluid levels | SAA1 | ACTB, SERPINC1, ACTG1 | 0.708 | GOBP (GO:0050878) |
Immune response-regulating signaling pathway | CACNB3, ACTB, SKAP1, ACTG1 | 0.708 | GOBP (GO:0002764) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, P.L.; Rezende, M.; Felix, M.; Corrêa, S.; Abdelhay, E.; Binato, R. SAA1 Protein: A Potential Biomarker for Acute Myeloid Leukemia. Biomedicines 2025, 13, 880. https://doi.org/10.3390/biomedicines13040880
Azevedo PL, Rezende M, Felix M, Corrêa S, Abdelhay E, Binato R. SAA1 Protein: A Potential Biomarker for Acute Myeloid Leukemia. Biomedicines. 2025; 13(4):880. https://doi.org/10.3390/biomedicines13040880
Chicago/Turabian StyleAzevedo, Pedro Leite, Mayara Rezende, Milena Felix, Stephany Corrêa, Eliana Abdelhay, and Renata Binato. 2025. "SAA1 Protein: A Potential Biomarker for Acute Myeloid Leukemia" Biomedicines 13, no. 4: 880. https://doi.org/10.3390/biomedicines13040880
APA StyleAzevedo, P. L., Rezende, M., Felix, M., Corrêa, S., Abdelhay, E., & Binato, R. (2025). SAA1 Protein: A Potential Biomarker for Acute Myeloid Leukemia. Biomedicines, 13(4), 880. https://doi.org/10.3390/biomedicines13040880