Advances in Glaucoma Diagnosis and Treatment: Integrating Innovations for Enhanced Patient Outcomes
1. Novel Diagnostic Techniques
- Diverse Diagnostic Technologies
- Advancements in Structural Assessment Technologies
2. Advanced Therapeutic Interventions
- Emerging Drug Therapies
- Sustained-Release Systems
- 2.
- Rho Kinase Inhibitors (RKIs)
- 3.
- Advances in Neuroprotective Therapies
- Progress in Novel Surgical Techniques
3. Artificial Intelligence and Digital Health
- Diagnosis of Glaucoma
- Prediction of Disease Progression
- Evaluation of Surgical Outcomes
4. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Iannucci, V.; Bruscolini, A.; Iannella, G.; Visioli, G.; Alisi, L.; Salducci, M.; Greco, A.; Lambiase, A. Olfactory Dysfunction and Glaucoma. Biomedicines 2024, 12, 1002.
- Rodrigo, M.J.; Subías, M.; Montolío, A.; Martínez-Rincón, T.; Aragón-Navas, A.; Bravo-Osuna, I.; Pablo, L.E.; Cegoñino, J.; Herrero-Vanrell, R.; Garcia-Martin, E.; et al. Immune Analysis Using Vitreous Optical Coherence Tomography Imaging in Rats with Steroid-Induced Glaucoma. Biomedicines 2024, 12, 633.
- Tsai, Y.-C.; Lee, H.-P.; Tsung, T.-H.; Chen, Y.-H.; Lu, D.-W. Unveiling Novel Structural Biomarkers for the Diagnosis of Glaucoma. Biomedicines 2024, 12, 1211.
- Babighian, S.; Gattazzo, I.; Zanella, M.S.; Galan, A.; D’Esposito, F.; Musa, M.; Gagliano, C.; Lapenna, L.; Zeppieri, M. Nicotinamide: Bright Potential in Glaucoma Management. Biomedicines 2024, 12, 1655. https://doi.org/10.3390/biomedicines12081655.
- Bolek, B.; Wylęgała, A.; Rebkowska-Juraszek, M.; Wylęgała, E. Endocyclophotocoagulation Combined with Phacoemulsification in Glaucoma Treatment: Five-Year Results. Biomedicines 2024, 12, 186. https://doi.org/10.3390/biomedicines12010186
- Bolek, B.; Wylęgała, E.; Tarnawska, D. Long-Term Clinical Outcomes of Ahmed Valve Implantation in Aniridic Glaucoma. Biomedicines 2023, 11, 2996.
- Storp, J.J.; Schatten, H.; Vietmeier, F.E.; Merté, R.-L.; Lahme, L.; Zimmermann, J.A.; Englmaier, V.A.; Eter, N.; Brücher, V.C. The Preserflo MicroShunt Affects Microvascular Flow Density in Optical Coherence Tomography Angiography. Biomedicines 2023, 11, 3254.
- Chiang, Y.-Y.; Chen, C.-L.; Chen, Y.-H. Deep Learning Evaluation of Glaucoma Detection Using Fundus Photographs in Highly Myopic Populations. Biomedicines 2024, 12, 1394. https://doi.org/10.3390/biomedicines12071394.
- Yang, K.O.; Lee, J.M.; Shin, Y.; Yoon, I.Y.; Choi, J.W.; Lee, W.J. Diagnosis of Glaucoma Based on Few-Shot Learning with Wide-Field Optical Coherence Tomography Angiography. Biomedicines 2024, 12, 741.
- Ayala, M. Adding Genetics to the Risk Factors Model Improved Accuracy for Detecting Visual Field Progression in Newly Diagnosed Exfoliation Glaucoma Patients. Biomedicines 2024, 12, 1225.
- Seo, J.H.; Lee, Y. Possible Causal Association between Type 2 Diabetes and Glycaemic Traits in Primary Open-Angle Glaucoma: A Two-Sample Mendelian Randomisation Study. Biomedicines 2024, 12, 866.
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Coan, L.J.; Williams, B.M.; Krishna Adithya, V.; Upadhyaya, S.; Alkafri, A.; Czanner, S.; Venkatesh, R.; Willoughby, C.E.; Kavitha, S.; Czanner, G. Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Surv. Ophthalmol. 2023, 68, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Salowe, R.; Chow, C.; Li, S.; Bastani, O.; O’Brien, J.M. Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection. Bioengineering 2024, 11, 122. [Google Scholar] [CrossRef]
- Barry, S.; Wang, S.Y. Predicting Glaucoma Surgical Outcomes Using Neural Networks and Machine Learning on Electronic Health Records. Transl. Vis. Sci. Technol. 2024, 13, 15. [Google Scholar] [CrossRef]
- The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am. J. Ophthalmol. 2000, 130, 429–440. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Park, Y.G.; Cha, E.; Ku, M.; An, H.S.; Lee, K.P.; Huh, M.I.; Kim, J.; Kim, T.S.; et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nat. Biomed. Eng. 2021, 5, 772–782. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Y.; Lee, C.H.C.; Or, P.W.; Karunaratne, I.K.; Deng, M.; Yang, W.; Chong, I.T.; Yang, Y.; Chen, Z.; et al. Continuous 24-hour intraocular pressure monitoring in normal Chinese adults using a novel contact lens sensor system. Br. J. Ophthalmol. 2024, 108, 1535–1542. [Google Scholar] [CrossRef]
- Gillmann, K.; Wasilewicz, R.; Hoskens, K.; Simon-Zoula, S.; Mansouri, K. Continuous 24-hour measurement of intraocular pressure in millimeters of mercury (mmHg) using a novel contact lens sensor: Comparison with pneumatonometry. PLoS ONE 2021, 16, e0248211. [Google Scholar] [CrossRef]
- Wasilewicz, R.; Varidel, T.; Simon-Zoula, S.; Schlund, M.; Cerboni, S.; Mansouri, K. First-in-human continuous 24-hour measurement of intraocular pressure and ocular pulsation using a novel contact lens sensor. Br. J. Ophthalmol. 2020, 104, 1519–1523. [Google Scholar] [CrossRef]
- Yang, Z.; Tatham, A.J.; Zangwill, L.M.; Weinreb, R.N.; Zhang, C.; Medeiros, F.A. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am. J. Ophthalmol. 2015, 159, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Lee, J.; Kim, J.S.; Park, K.H. Diagnostic Accuracy of Wide-Field Map from Swept-Source Optical Coherence Tomography for Primary Open-Angle Glaucoma in Myopic Eyes. Am. J. Ophthalmol. 2020, 218, 182–191. [Google Scholar] [CrossRef]
- Janssens, R.; van Rijn, L.J.; Eggink, C.A.; Jansonius, N.M.; Janssen, S.F. Ultrasound biomicroscopy of the anterior segment in patients with primary congenital glaucoma: A review of the literature. Acta Ophthalmol. 2022, 100, 605–613. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Y.; Wang, L.; Chen, X.; Sun, X.; Chen, Y. The correlation of anterior segment structures in primary congenital glaucoma by ultrasound biomicroscopy with disease severity and surgical outcomes. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 1245–1252. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, K.; Wu, J. Comparison of anterior chamber depth measured by anterior segment optical coherence tomography and ultrasound biomicroscopy: A meta-analysis. Nan Fang Yi Ke Da Xue Xue Bao 2013, 33, 1533–1537. [Google Scholar]
- Alexander, J.L.; Wei, L.; Palmer, J.; Darras, A.; Levin, M.R.; Berry, J.L.; Ludeman, E. A systematic review of ultrasound biomicroscopy use in pediatric ophthalmology. Eye 2021, 35, 265–276. [Google Scholar] [CrossRef]
- Wang, S.B.; Cornish, E.E.; Grigg, J.R.; McCluskey, P.J. Anterior segment optical coherence tomography and its clinical applications. Clin. Exp. Optom. 2019, 102, 195–207. [Google Scholar] [CrossRef]
- Desmond, T.; Tran, V.; Maharaj, M.; Carnt, N.; White, A. Diagnostic accuracy of AS-OCT vs gonioscopy for detecting angle closure: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 1–23. [Google Scholar] [CrossRef]
- Olyntho, M.A.C., Jr.; Jorge, C.A.C.; Castanha, E.B.; Gonçalves, A.N.; Silva, B.L.; Nogueira, B.V.; Lima, G.M.; Gracitelli, C.P.B.; Tatham, A.J. Artificial Intelligence in Anterior Chamber Evaluation: A Systematic Review and Meta-Analysis. J. Glaucoma 2024, 33, 658–664. [Google Scholar] [CrossRef]
- Medeiros, F.A.; Walters, T.R.; Kolko, M.; Coote, M.; Bejanian, M.; Goodkin, M.L.; Guo, Q.; Zhang, J.; Robinson, M.R.; Weinreb, R.N. Phase 3, Randomized, 20-Month Study of Bimatoprost Implant in Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 1). Ophthalmology 2020, 127, 1627–1641. [Google Scholar] [CrossRef]
- Bacharach, J.; Tatham, A.; Ferguson, G.; Belalcázar, S.; Thieme, H.; Goodkin, M.L.; Chen, M.Y.; Guo, Q.; Liu, J.; Robinson, M.R.; et al. Phase 3, Randomized, 20-Month Study of the Efficacy and Safety of Bimatoprost Implant in Patients with Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 2). Drugs 2021, 81, 2017–2033. [Google Scholar] [CrossRef] [PubMed]
- Sarkisian, S.R., Jr.; Ang, R.E.; Lee, A.M.; Berdahl, J.P.; Heersink, S.B.; Burden, J.H.; Doan, L.V.; Stephens, K.G.; Kothe, A.C.; Usner, D.W.; et al. Phase 3 Randomized Clinical Trial of the Safety and Efficacy of Travoprost Intraocular Implant in Patients with Open-Angle Glaucoma or Ocular Hypertension. Ophthalmology 2024, 131, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Sirinek, P.E.; Lin, M.M. Intracameral sustained release bimatoprost implants (Durysta). Semin. Ophthalmol. 2022, 37, 385–390. [Google Scholar] [CrossRef]
- Liu, L.C.; Chen, Y.H.; Lu, D.W. The Application of Rho Kinase Inhibitors in the Management of Glaucoma. Int. J. Mol. Sci. 2024, 25, 5576. [Google Scholar] [CrossRef] [PubMed]
- Nana Wandji, B.; Bacq, N.; Ehongo, A. Efficacy and Safety of Rho Kinase Inhibitors vs. Beta-Blockers in Primary Open-Angle Glaucoma: A Systematic Review with Meta-Analysis. J. Clin. Med. 2024, 13, 1747. [Google Scholar] [CrossRef]
- Hsu, C.R.; Chen, Y.H.; Liu, C.P.; Chen, C.H.; Huang, K.K.; Huang, J.W.; Lin, M.N.; Lin, C.L.; Chen, W.R.; Hsu, Y.L.; et al. A Highly Selective Rho-Kinase Inhibitor (ITRI-E-212) Potentially Treats Glaucoma Upon Topical Administration With Low Incidence of Ocular Hyperemia. Investig. Ophthalmol. Vis. Sci. 2019, 60, 624–633. [Google Scholar] [CrossRef]
- Chang, E.E.; Goldberg, J.L. Glaucoma 2.0: Neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 2012, 119, 979–986. [Google Scholar] [CrossRef]
- Bou Ghanem, G.O.; Wareham, L.K.; Calkins, D.J. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog. Retin. Eye Res. 2024, 100, 101261. [Google Scholar] [CrossRef]
- Wang, L.H.; Huang, C.H.; Lin, I.C. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals 2024, 17, 1261. [Google Scholar] [CrossRef]
- Goldberg, J.L.; Beykin, G.; Satterfield, K.R.; Nuñez, M.; Lam, B.L.; Albini, T.A. Phase I NT-501 Ciliary Neurotrophic Factor Implant Trial for Primary Open-Angle Glaucoma: Safety, Neuroprotection, and Neuroenhancement. Ophthalmol. Sci. 2023, 3, 100298. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, H.; Liao, S.; Gao, Y.; Liao, R.; Little, P.J.; Xu, J.; Feng, Z.P.; Zheng, Y.; Zheng, W. Nerve growth factor protects retinal ganglion cells against injury induced by retinal ischemia-reperfusion in rats. Growth Factors 2015, 33, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Beykin, G.; Stell, L.; Halim, M.S.; Nuñez, M.; Popova, L.; Nguyen, B.T.; Groth, S.L.; Dennis, A.; Li, Z.; Atkins, M.; et al. Phase 1b Randomized Controlled Study of Short Course Topical Recombinant Human Nerve Growth Factor (rhNGF) for Neuroenhancement in Glaucoma: Safety, Tolerability, and Efficacy Measure Outcomes. Am. J. Ophthalmol. 2022, 234, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with cytidine-5’-diphosphocholine (citicoline): A study of 8 years of follow-up. Doc. Ophthalmol. 2005, 110, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Ottobelli, L.; Manni, G.L.; Centofanti, M.; Iester, M.; Allevena, F.; Rossetti, L. Citicoline oral solution in glaucoma: Is there a role in slowing disease progression? Ophthalmologica 2013, 229, 219–226. [Google Scholar] [CrossRef]
- Virno, M.; Pecori-Giraldi, J.; Liguori, A.; De Gregorio, F. The protective effect of citicoline on the progression of the perimetric defects in glaucomatous patients (perimetric study with a 10-year follow-up). Acta Ophthalmol. Scand. Suppl. 2000, 78, 56–57. [Google Scholar] [CrossRef]
- Lin, S.; Shang, X.; Wang, X.; Chu, X.; Hu, C.; Si, Y.; Chen, D.F.; Zhou, W.; Kong, Y.X.G.; Liang, Y. Decreased macular deep capillary plexus is associated with functional progression of normal tension glaucoma patients with unilateral visual field loss. Br. J. Ophthalmol. 2024, 108, 188–194. [Google Scholar] [CrossRef]
- Phene, S.; Dunn, R.C.; Hammel, N.; Liu, Y.; Krause, J.; Kitade, N.; Schaekermann, M.; Sayres, R.; Wu, D.J.; Bora, A.; et al. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs. Ophthalmology 2019, 126, 1627–1639. [Google Scholar] [CrossRef]
- Chiang, C.Y.N.; Braeu, F.A.; Chuangsuwanich, T.; Tan, R.K.Y.; Chua, J.; Schmetterer, L.; Thiery, A.H.; Buist, M.L.; Girard, M.J.A. Are Macula or Optic Nerve Head Structures Better at Diagnosing Glaucoma? An Answer Using Artificial Intelligence and Wide-Field Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2024, 13, 5. [Google Scholar] [CrossRef]
- Mohammadzadeh, V.; Wu, S.; Besharati, S.; Davis, T.; Vepa, A.; Morales, E.; Edalati, K.; Rafiee, M.; Martinyan, A.; Zhang, D.; et al. Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning. Am. J. Ophthalmol. 2024, 262, 141–152. [Google Scholar] [CrossRef]
- Mohammadzadeh, V.; Wu, S.; Davis, T.; Vepa, A.; Morales, E.; Besharati, S.; Edalati, K.; Martinyan, J.; Rafiee, M.; Martynian, A.; et al. Prediction of visual field progression with serial optic disc photographs using deep learning. Br. J. Ophthalmol. 2024, 108, 1107–1113. [Google Scholar] [CrossRef]
- Birla, S.; Varshney, T.; Singh, A.; Sharma, A.; Panigrahi, A.; Gupta, S.; Gupta, D.; Gupta, V. Machine learning-assisted prediction of trabeculectomy outcomes among patients of juvenile glaucoma by using 5-year follow-up data. Indian J. Ophthalmol. 2024, 72, 987–993. [Google Scholar] [CrossRef]
- Banna, H.U.; Zanabli, A.; McMillan, B.; Lehmann, M.; Gupta, S.; Gerbo, M.; Palko, J. Evaluation of machine learning algorithms for trabeculectomy outcome prediction in patients with glaucoma. Sci. Rep. 2022, 12, 2473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, S.-H.; Yen, W.-T.; Lu, D.-W. Advances in Glaucoma Diagnosis and Treatment: Integrating Innovations for Enhanced Patient Outcomes. Biomedicines 2025, 13, 850. https://doi.org/10.3390/biomedicines13040850
Hung S-H, Yen W-T, Lu D-W. Advances in Glaucoma Diagnosis and Treatment: Integrating Innovations for Enhanced Patient Outcomes. Biomedicines. 2025; 13(4):850. https://doi.org/10.3390/biomedicines13040850
Chicago/Turabian StyleHung, Shih-Heng, Wei-Ting Yen, and Da-Wen Lu. 2025. "Advances in Glaucoma Diagnosis and Treatment: Integrating Innovations for Enhanced Patient Outcomes" Biomedicines 13, no. 4: 850. https://doi.org/10.3390/biomedicines13040850
APA StyleHung, S.-H., Yen, W.-T., & Lu, D.-W. (2025). Advances in Glaucoma Diagnosis and Treatment: Integrating Innovations for Enhanced Patient Outcomes. Biomedicines, 13(4), 850. https://doi.org/10.3390/biomedicines13040850