A Cross-Sectional Pilot Analysis of Downregulated Circulating MicroRNAs in Laryngeal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Design
2.2. Blood Sample Collection and Processing
2.3. Laboratory Profiling of Downregulated miRNAs
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Analysis of Findings
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Chan, S.C.M.; Ko, S.G.; Lok, V.; Zhang, L.; Lin, X.; Lucero-Prisno, D.E., III; Xu, W.; Zheng, Z.-J.; Elcarte, E.M.; et al. Updated disease distributions, risk factors, and trends of laryngeal cancer: A global analysis of cancer registries. Int. J. Surg. 2024, 110, 810–819. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, Y.; Wang, M.; Zhou, L.; Zheng, Y.; Li, N.; Tian, T.; Zhai, Z.; Yang, S.; Hao, Q.; Wu, Y.; et al. Global burden of larynx cancer, 1990–2017: Estimates from the global burden of disease 2017 study. Aging 2020, 12, 2545–2583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Igissin, N.; Zatonskikh, V.; Telmanova, Z.; Tulebaev, R.; Moore, M. Laryngeal Cancer: Epidemiology, Etiology, and Prevention: A Narrative Review. Iran. J. Public Health 2023, 52, 2248–2259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verro, B.; Saraniti, C.; Carlisi, D.; Chiesa-Estomba, C.; Maniaci, A.; Lechien, J.R.; Mayo, M.; Fakhry, N.; Lauricella, M. Biomarkers in Laryngeal Squamous Cell Carcinoma: The Literature Review. Cancers 2023, 15, 5096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falco, M.; Tammaro, C.; Takeuchi, T.; Cossu, A.M.; Scafuro, G.; Zappavigna, S.; Itro, A.; Addeo, R.; Scrima, M.; Lombardi, A.; et al. Overview on Molecular Biomarkers for Laryngeal Cancer: Looking for New Answers to an Old Problem. Cancers 2022, 14, 1716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menon, A.; Abd-Aziz, N.; Khalid, K.; Poh, C.L.; Naidu, R. miRNA: A Promising Therapeutic Target in Cancer. Int. J. Mol. Sci. 2022, 23, 11502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farazi, T.A.; Hoell, J.I.; Morozov, P.; Tuschl, T. MicroRNAs in human cancer. Adv. Exp. Med. Biol. 2013, 774, 1–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pekarek, L.; Torres-Carranza, D.; Fraile-Martinez, O.; García-Montero, C.; Pekarek, T.; Saez, M.A.; Rueda-Correa, F.; Pimentel-Martinez, C.; Guijarro, L.G.; Diaz-Pedrero, R.; et al. An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis. Int. J. Mol. Sci. 2023, 24, 7268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharma, G.; Dua, P.; Agarwal, S. A Comprehensive Review of Dysregulated miRNAs Involved in Cervical Cancer. Curr. Genom. 2014, 15, 310–323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- İlhan, A.; Golestani, S.; Shafagh, S.G.; Asadi, F.; Daneshdoust, D.; Al-Naqeeb, B.Z.T.; Nemati, M.M.; Khalatbari, F.; Yaseri, A.F. The dual role of microRNA (miR)-20b in cancers: Friend or foe? Cell Commun. Signal. 2023, 21, 26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Otmani, K.; Lewalle, P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front. Oncol. 2021, 11, 708765. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, L.; Lan, Z.; Xiong, X.; Ao, H.; Feng, Y.; Gu, H.; Yu, M.; Cui, Q. The Dual Role of MicroRNAs in Colorectal Cancer Progression. Int. J. Mol. Sci. 2018, 19, 2791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frezzetti, D.; De Menna, M.; Zoppoli, P.; Guerra, C.; Ferraro, A.; Bello, A.M.; De Luca, P.; Calabrese, C.; Fusco, A.; Ceccarelli, M.; et al. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene 2011, 30, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Biamonte, F.; Santamaria, G.; Sacco, A.; Perrone, F.M.; Di Cello, A.; Battaglia, A.M.; Salatino, A.; Di Vito, A.; Aversa, I.; Venturella, R.; et al. MicroRNA let-7g acts as tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer. Sci. Rep. 2019, 9, 5668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Larrea, E.; Sole, C.; Manterola, L.; Goicoechea, I.; Armesto, M.; Arestin, M.; Caffarel, M.M.; Araujo, A.M.; Araiz, M.; Fernandez-Mercado, M.; et al. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int. J. Mol. Sci. 2016, 17, 627. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Canatan, D.; Sönmez, Y.; Yılmaz, Ö.; Çim, A.; Coşkun, H.Ş.; Göksu, S.S.; Ucar, S.; Aktekin, M.R. MicroRNAs as biomarkers for breast cancer. Acta Biomed. 2021, 92, e2021028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, P.; Liu, H.; Wang, Z.; He, F.; Wang, H.; Shi, Z.; Yang, A.; Ye, J. MicroRNAs in laryngeal cancer: Implications for diagnosis, prognosis and therapy. Am. J. Transl. Res. 2016, 8, 1935–1944. [Google Scholar] [PubMed] [PubMed Central]
- Gambari, R.; Brognara, E.; Spandidos, D.A.; Fabbri, E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review). Int. J. Oncol. 2016, 49, 5–32. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crimi, S.; Falzone, L.; Gattuso, G.; Grillo, C.M.; Candido, S.; Bianchi, A.; Libra, M. Droplet Digital PCR Analysis of Liquid Biopsy Samples Unveils the Diagnostic Role of hsa-miR-133a-3p and hsa-miR-375-3p in Oral Cancer. Biology 2020, 9, 379. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arora, A.; Tsigelny, I.F.; Kouznetsova, V.L. Laryngeal cancer diagnosis via miRNA-based decision tree model. Eur. Arch. Oto-Rhino-Laryngol. 2024, 281, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Broseghini, E.; Filippini, D.M.; Fabbri, L.; Leonardi, R.; Abeshi, A.; Molin, D.D.; Fermi, M.; Ferracin, M.; Fernandez, I.J. Diagnostic and Prognostic Value of microRNAs in Patients with Laryngeal Cancer: A Systematic Review. Non-Coding RNA 2023, 9, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Falzone, L.; Lupo, G.; La Rosa, G.R.M.; Crimi, S.; Anfuso, C.D.; Salemi, R.; Rapisarda, E.; Libra, M.; Candido, S. Identification of Novel MicroRNAs and Their Diagnostic and Prognostic Significance in Oral Cancer. Cancers 2019, 11, 610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeuchi, T.; Kawasaki, H.; Luce, A.; Cossu, A.M.; Misso, G.; Scrima, M.; Bocchetti, M.; Ricciardiello, F.; Caraglia, M.; Zappavigna, S. Insight toward the MicroRNA Profiling of Laryngeal Cancers: Biological Role and Clinical Impact. Int. J. Mol. Sci. 2020, 21, 3693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamakuchi, M.; Lotterman, C.D.; Bao, C.; Hruban, R.H.; Karim, B.; Mendell, J.T.; Huso, D.; Lowenstein, C.J. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 6334–6339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Han, L.; Chen, F. Let-7a-5p regulates the inflammatory response in chronic rhinosinusitis with nasal polyps. Diagn. Pathol. 2021, 16, 27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Li, X.; Li, T.; Wang, L.; Wu, X.; Liu, J.; Xu, Y.; Wei, W. Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma (Review). Oncol. Lett. 2019, 18, 5033–5042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ota, Y.; Takahashi, K.; Otake, S.; Tamaki, Y.; Okada, M.; Aso, K.; Makino, Y.; Fujii, S.; Ota, T.; Haneda, M. Extracellular vesicle-encapsulated miR-30e suppresses cholangiocarcinoma cell invasion and migration via inhibiting epithelial-mesenchymal transition. Oncotarget 2018, 9, 16400–16417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, T.; Xie, M.; Jing, X.; Jiang, H.; Wu, X.; Wang, X.; Shu, Y. Loss of miR-26b-5p promotes gastric cancer progression via miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop. J. Transl. Med. 2023, 21, 77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dai, X.; Jiang, Y.; Tan, C. Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy. PLoS ONE 2015, 10, e0126653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Campos-Viguri, G.E.; Peralta-Zaragoza, O.; Jiménez-Wences, H.; Longinos-González, A.E.; Castañón-Sánchez, C.A.; Ramírez-Carrillo, M.; Camarillo, C.L.; Castañeda-Saucedo, E.; Jiménez-López, M.A.; Martínez-Carrillo, D.N.; et al. MiR-23b-3p reduces the proliferation, migration and invasion of cervical cancer cell lines via the reduction of c-Met expression. Sci. Rep. 2020, 10, 3256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Guo, D.; Li, C. Downregulation of miRNA-26b inhibits cancer proliferation of laryngeal carcinoma through autophagy by targeting ULK2 and inactivation of the PTEN/AKT pathway. Oncol. Rep. 2017, 38, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cai, X.; Du, B.; Cai, J.; Luo, Z. MicroRNA-150-5p inhibits the proliferation and invasion of human larynx epidermiod cancer cells though regulating peptidyl-prolyl cis/trans isomerase. Braz. J. Otorhinolaryngol. 2023, 89, 383–392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, T.; Liu, M.; Wang, C.; Lin, C.; Sun, Y.; Jin, D. Down-regulation of MiR-206 promotes proliferation and invasion of laryngeal cancer by regulating VEGF expression. Anticancer Res. 2011, 31, 3859–3863. [Google Scholar] [PubMed]
- Song, F.; Yang, Y.; Liu, J.J. MicroRNA-548ac induces apoptosis in laryngeal squamous cell carcinoma cells by targeting transmembrane protein 158. Oncol. Lett. 2020, 20, 69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, M.; Tian, L.; Wang, L.; Yao, H.; Zhang, J.; Lu, J.; Sun, Y.; Gao, X.; Xiao, H.; Liu, M. Down-Regulation of miR-129-5p Inhibits Growth and Induces Apoptosis in Laryngeal Squamous Cell Carcinoma by Targeting APC. PLoS ONE 2013, 8, e77829. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Y.; Gu, M.; Tang, Y.; Sun, Z.; Luo, J.; Li, Z. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in laryngeal squamous cell cancer. Cancer Cell Int. 2021, 21, 316. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Z.; Xue, F.; Chen, W.; Ma, R.; Cheng, S.; Cui, P. MicroRNA-24 inhibits growth, induces apoptosis, and reverses radioresistance in laryngeal squamous cell carcinoma by targeting X-linked inhibitor of apoptosis protein. Cancer Cell Int. 2015, 15, 61. [Google Scholar] [CrossRef]
- Tang, Z.; Wei, G.; Zhang, L.; Xu, Z. Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network. Mol. Med. Rep. 2019, 19, 4806–4818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gattuso, G.; Crimi, S.; Lavoro, A.; Rizzo, R.; Musumarra, G.; Gallo, S.; Facciponte, F.; Paratore, S.; Russo, A.; Bordonaro, R.; et al. Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Non-Coding RNA 2022, 8, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roi, A.; Boia, S.; Rusu, L.-C.; Roi, C.I.; Boia, E.R.; Riviș, M. Circulating miRNA as a Biomarker in Oral Cancer Liquid Biopsy. Biomedicines 2023, 11, 965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, L.; Birkeland, A.C. Liquid Biopsies in Head and Neck Cancer: Current State and Future Challenges. Cancers 2021, 13, 1874. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Group | Sample Origin | Number of Samples Pooled | Treatment Phase |
---|---|---|---|
P1 | Pre-Treatment (Plasma) | 10 | Before Intervention |
P2 | Pre-Treatment (Plasma) | 10 | Before Intervention |
P3 | Pre-Treatment (Plasma) | 10 | Before Intervention |
C1 | Post-Treatment (Plasma) | 10 | 2–4 Weeks After |
C2 | Post-Treatment (Plasma) | 10 | 2–4 Weeks After |
C3 | Post-Treatment (Plasma) | 10 | 2–4 Weeks After |
miRNA | Mean ∆Ct Pre (P) | Mean ∆Ct Post (C) | Fold Change (Pre vs. Post) | p-Value |
---|---|---|---|---|
hsa-miR-107 | 3.48 | 1.18 | 0.2 | 0.008 |
hsa-let-7a-5p | 2.05 | −0.3 | 0.2 | 0.01 |
hsa-miR-146a-5p | 2.32 | −0.16 | 0.18 | 0.03 |
hsa-miR-30e-5p | 1.05 | −0.48 | 0.35 | 0.045 |
hsa-miR-26b-5p | 3.57 | 1.6 | 0.26 | 0.04 |
hsa-let-7c-5p | 6.13 | 3.19 | 0.13 | 0.035 |
hsa-miR-23b-3p | 3.6 | 0.78 | 0.14 | 0.025 |
miRNA | miR-107 | let-7a-5p | miR-146a-5p | miR-30e-5p | miR-26b-5p | let-7c-5p | miR-23b-3p |
---|---|---|---|---|---|---|---|
miR-107 | 1 | 0.44 * | 0.25 | 0.12 | 0.38 * | 0.3 | 0.2 |
let-7a-5p | 0.44 * | 1 | 0.29 | 0.32 | 0.16 | 0.35 | 0.22 |
miR-146a-5p | 0.25 | 0.29 | 1 | 0.33 | 0.12 | 0.1 | 0.27 |
miR-30e-5p | 0.12 | 0.32 | 0.33 | 1 | 0.23 | 0.3 | 0.40 * |
miR-26b-5p | 0.38 * | 0.16 | 0.12 | 0.23 | 1 | 0.13 | 0.19 |
let-7c-5p | 0.3 | 0.35 | 0.1 | 0.3 | 0.13 | 1 | 0.29 |
miR-23b-3p | 0.2 | 0.22 | 0.27 | 0.40 * | 0.19 | 0.29 | 1 |
miRNA | AUC | 95% CI | Sensitivity (%) | Specificity (%) | p-Value |
---|---|---|---|---|---|
miR-107 | 0.78 | 0.62–0.90 | 72 | 74 | 0.005 |
let-7a-5p | 0.75 | 0.59–0.87 | 70 | 72 | 0.01 |
miR-146a-5p | 0.7 | 0.54–0.82 | 65 | 68 | 0.03 |
miR-30e-5p | 0.68 | 0.51–0.81 | 62 | 65 | 0.045 |
Variable | Odds Ratio (95% CI) | p-Value |
---|---|---|
miR-107 | 0.54 (0.34–0.85) | 0.012 |
let-7a-5p | 0.62 (0.40–0.94) | 0.027 |
Constant | – | 0.001 |
miRNA | Putative Pathway Targets | Principal Biological Roles | Potential Clinical Impact |
---|---|---|---|
miR-107 [26] | CDK regulation, Hypoxia response | Cell cycle control, angiogenesis | Prognostic biomarker for progression |
let-7a-5p [27] | RAS oncogene, MAPK cascade | Oncogenic checkpoint, differentiation | Therapeutic target to restore tumor suppression |
miR-146a-5p [28] | NF-κB, immune modulation | Inflammation, apoptosis | Might influence therapy-induced immunity |
miR-30e-5p [29] | Notch, TGF-β | Epithelial homeostasis | Alteration linked to metastasis risk |
miR-26b-5p [30] | Cyclin E, Wnt signaling | Cell cycle arrest, growth inhibition | Potential synergy with chemotherapeutics |
let-7c-5p [31] | HMGA2, KRAS | Cell proliferation, metabolism | Could impact treatment responsiveness |
miR-23b-3p [32] | p53 network, invasion genes | DNA damage repair, EMT | Prognostic for aggressive disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintea, C.O.; Vaduva, D.B.; Seclaman, E.; Balica, N.C.; Guran, K.; Horhat, D.I. A Cross-Sectional Pilot Analysis of Downregulated Circulating MicroRNAs in Laryngeal Cancer. Biomedicines 2025, 13, 830. https://doi.org/10.3390/biomedicines13040830
Pintea CO, Vaduva DB, Seclaman E, Balica NC, Guran K, Horhat DI. A Cross-Sectional Pilot Analysis of Downregulated Circulating MicroRNAs in Laryngeal Cancer. Biomedicines. 2025; 13(4):830. https://doi.org/10.3390/biomedicines13040830
Chicago/Turabian StylePintea, Crina Oana, Delia Berceanu Vaduva, Edward Seclaman, Nicolae Constantin Balica, Kristine Guran, and Delia Ioana Horhat. 2025. "A Cross-Sectional Pilot Analysis of Downregulated Circulating MicroRNAs in Laryngeal Cancer" Biomedicines 13, no. 4: 830. https://doi.org/10.3390/biomedicines13040830
APA StylePintea, C. O., Vaduva, D. B., Seclaman, E., Balica, N. C., Guran, K., & Horhat, D. I. (2025). A Cross-Sectional Pilot Analysis of Downregulated Circulating MicroRNAs in Laryngeal Cancer. Biomedicines, 13(4), 830. https://doi.org/10.3390/biomedicines13040830