Contrast Agents in Breast MRI: State of the Art and Future Perspectives
Abstract
:1. Introduction
2. State of the Art of Contrast-Enhanced Breast MRI
2.1. Multiparametric Breast MRI Protocols
2.2. Breast MRI Indications
Indication | EUSOBI | European Commission | United States | United Kingdom | Canada |
---|---|---|---|---|---|
Screening for high-risk populations | YES | YES | YES | YES | YES |
Breast implants (implant integrity, silicone leakage) | YES | YES | YES | Not specified | Not specified |
Assessment of newly diagnosed breast cancer | YES | YES | YES | YES | YES |
Dense breasts | Not specified | Not specified | Not specified | YES | Not specified |
Response to NAC | YES | Not specified | Not specified | YES | YES |
Suspected recurrent or residual disease | Not specified | YES | YES | Not specified | YES |
Assessment of inconclusive findings on other imaging | Not specified | YES | Not specified | Not specified | Not specified |
Guidance for interventional procedure | Not specified | YES (biopsy, localization) | Not specified | Not specified | Not specified |
Suspicious occult lesions on imaging | YES | YES | Not specified | Not specified | Not specified |
3. Gadolinium Breast MRI Contrast Agents
- Linear ionic:
- ⚬
- Gd-DTPA, gadopentetate dimeglumine (Magnevist);
- ⚬
- Gd-BOPTA, gadobenate dimeglumine (MultiHance);
- ⚬
- Gd-EOB-DTPA, gadoxetate disodium (Eovist, Primovist);
- ⚬
- MS325, gadofosveset trisodium (Vasovist, Ablavar).
- Linear non-ionic:
- ⚬
- Gd-DTPA-BMA, gadodiamide (Omniscan);
- ⚬
- Gd-DTPA-BMEA, gadoversetamide (OptiMARK).
- Macrocyclic ionic:
- ⚬
- Gd-DOTA, gadoterate meglumine (Dotarem, Artirem).
- Macrocyclic non-ionic:
- ⚬
- Gd-HP-DO3A, gadoteridol (ProHance);
- ⚬
- Gd-BT-DO3A, gadobutrol (Gadovist, Gadavist);
- ⚬
- Gadopiclenol (Elucirem, Vueway).
Adverse Effects of GBCAs
- -
- Mild reactions: These are the most frequently reported adverse effects, including nausea, headache, vomiting, erythema, site injection reactions (discomfort, sensation of warmth or cold), and a metallic taste in the mouth [40].
- -
- Moderate reactions: Hives, itching, facial swelling, dizziness, blood pressure variations, and irregular heart rhythms; medical intervention may be necessary [40].
- -
- Severe reactions: These are exceedingly rare but can be life-threatening. These may involve severe allergic reactions (anaphylaxis), cardiac issues, or kidney injury, particularly in renal failure patients [40].
- -
- Renal effects: GBCAs may occasionally exacerbate pre-existing renal problems, in addition to the risk of NSF, particularly linear GBCAs [41].
- -
- Although rare, PC-AKI can occur after GBCA administration, especially in those with pre-existing kidney issues. The risk is considered minimal at standard doses for patients with eGFR ≥ 30 mL/min/1.73 m2.
- -
4. Future Perspectives
4.1. Emerging Contrast Agents
4.2. Abbreviated Breast MRI
4.3. Role of MRI in Breast Evaluation in Plastic Surgery
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mann, R.M.; Cho, N.; Moy, L. Breast MRI: State of the Art. Radiology 2019, 292, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Kuhl, C.K.; Kinkel, K.; Boetes, C. Breast MRI: Guidelines from the European Society of Breast Imaging. Eur. Radiol. 2008, 18, 1307–1318. [Google Scholar] [CrossRef]
- Pesapane, F.; Agazzi, G.M.; Rotili, A.; Ferrari, F.; Cardillo, A.; Penco, S.; Dominelli, V.; D’Ecclesiis, O.; Vignati, S.; Raimondi, S.; et al. Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients With MRI-Radiomics: A Systematic Review and Meta-analysis. Curr. Probl. Cancer 2022, 46, 100883. [Google Scholar] [CrossRef]
- Pesapane, F.; Battaglia, O.; Rotili, A.; Gnocchi, G.; D’Ecclesiis, O.; Bellerba, F.; Penco, S.; Signorelli, G.; Nicosia, L.; Trentin, C.; et al. Comparative diagnostic efficacy of abbreviated and full protocol breast MRI: A systematic review and a meta-analysis. Br. J. Radiol. 2024, 97, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- Karam, R.; Elmokadem, A.H.; El-Rakhawy, M.M.; Soliman, N.; Elnahas, W.; Abdel-Khalek, A.M. Clinical utility of abbreviated breast MRI based on diffusion tensor imaging in patients underwent breast conservative therapy. Radiol. Med. 2023, 128, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Rotili, A.; Pesapane, F.; Signorelli, G.; Penco, S.; Nicosia, L.; Bozzini, A.; Meneghetti, L.; Zanzottera, C.; Mannucci, S.; Bonanni, B.; et al. An Unenhanced Breast MRI Protocol Based on Diffusion-Weighted Imaging: A Retrospective Single-Center Study on High-Risk Population for Breast Cancer. Diagnostics 2023, 13, 1996. [Google Scholar] [CrossRef]
- Sardanelli, F.; Boetes, C.; Borisch, B.; Decker, T.; Federico, M.; Gilbert, F.J.; Helbich, T.; Heywang-Köbrunner, S.H.; Kaiser, W.A.; Kerin, M.J.; et al. Magnetic resonance imaging of the breast: Recommendations from the EUSOMA working group. Eur. J. Cancer 2010, 46, 1296–1316. [Google Scholar] [CrossRef]
- Partridge, S.C.; Stone, K.M.; Strigel, R.M.; DeMartini, W.B.; Peacock, S.; Lehman, C.D. Breast DCE-MRI: Influence of postcontrast timing on automated lesion kinetics assessments and discrimination of benign and malignant lesions. Acad. Radiol. 2014, 21, 1195–1203. [Google Scholar] [CrossRef]
- Arponen, O.; Masarwah, A.; Sutela, A.; Taina, M.; Könönen, M.; Sironen, R.; Hakumäki, J.; Vanninen, R.; Sudah, M. Incidentally detected enhancing lesions found in breast MRI: Analysis of apparent diffusion coefficient and T2 signal intensity significantly improves specificity. Eur. Radiol. 2016, 26, 4361–4370. [Google Scholar] [CrossRef]
- Iacconi, C. Diffusion and perfusion of the breast. Eur. J. Radiol. 2010, 76, 386–390. [Google Scholar] [CrossRef]
- Wekking, D.; Porcu, M.; De Silva, P.; Saba, L.; Scartozzi, M.; Solinas, C. Breast MRI: Clinical indications, recommendations, and future applications in breast cancer diagnosis. Curr. Oncol. Rep. 2023, 25, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Broeks, A.; Braaf, L.M.; Huseinovic, A.; Nooijen, A.; Urbanus, J.; Hogervorst, F.B.; Schmidt, M.K.; Klijn, J.G.; Russell, N.S.; Van Leeuwen, F.E.; et al. Identification of women with an increased risk of developing radiation-induced breast cancer: A case only study. Breast Cancer Res. 2007, 9, R26. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Kelly, E.D.; Abraham, J.; Kruse, M. Invasive lobular breast cancer: A review of pathogenesis, diagnosis, management, and future directions of early-stage disease. Semin. Oncol. 2019, 46, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Hoogeveen, Y.L.; Blickman, J.G.; Boetes, C. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: A review of existing literature. Breast Cancer Res. Treat. 2008, 107, 1–14. [Google Scholar] [CrossRef]
- Hovis, K.K.; Lee, J.M.; Hippe, D.S.; Linden, H.; Flanagan, M.R.; Kilgore, M.R.; Yee, J.; Partridge, S.C.; Rahbar, H. Accuracy of Preoperative Breast MRI Versus Conventional Imaging in Measuring Pathologic Extent of Invasive Lobular Carcinoma. J. Breast Imaging 2021, 3, 288–298. [Google Scholar] [CrossRef]
- Mann, R.M.; Balleyguier, C.; Baltzer, P.A.; Bick, U.; Colin, C.; Cornford, E.; Evans, A.N.; Fallenberg, E.M.; Forrai, G.; Fuchsjäger, M.H.; et al. European Society of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Breast MRI: EUSOBI recommendations for women’s information. Eur. Radiol. 2015, 25, 3669–3678. [Google Scholar] [CrossRef]
- European Breast Cancer Guidelines. Available online: https://cancer-screening-and-care.jrc.ec.europa.eu/en/ecibc/european-breast-cancer-guidelines (accessed on 5 January 2025).
- American Society of Breast Surgeons. MRI Recommendations. Available online: https://www.breastsurgeons.org/docs/statements/asbrs-ccs-mri.pdf (accessed on 5 January 2025).
- National Institute for Health and Care Excellence (NICE). Breast Cancer Guidelines. Available online: https://www.nice.org.uk/guidance/cg164 (accessed on 5 January 2025).
- Cancer Care Ontario. Breast Cancer High-Risk Screening Guidelines. Available online: https://www.cancercareontario.ca/en/guidelines-advice/cancer-continuum/screening/breast-cancer-high-risk (accessed on 5 January 2025).
- U.S. Food & Drug Administration (FDA). Information on Gadolinium-Based Contrast Agents. Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/information-gadolinium-based-contrast-agents (accessed on 5 January 2025).
- Darnall, D.W.; Birnbaum, E.R. Lanthanide ions activate alpha-amylase. Biochemistry 1973, 12, 3489–3491. [Google Scholar] [CrossRef]
- Sherry, A.D.; Caravan, P.; Lenkinski, R.E. Primer on gadolinium chemistry. J. Magn. Reson. Imaging 2009, 30, 1240–1248. [Google Scholar] [CrossRef]
- Hao, D.; Ai, T.; Goerner, F.; Hu, X.; Runge, V.M.; Tweedle, M. MRI contrast agents: Basic chemistry and safety. J. Magn. Reson. Imaging 2012, 36, 1060–1071. [Google Scholar] [CrossRef]
- Si, G.; Du, Y.; Tang, P.; Ma, G.; Jia, Z.; Zhou, X.; Mu, D.; Shen, Y.; Lu, Y.; Mao, Y.; et al. Unveiling the next generation of MRI contrast agents: Current insights and perspectives on ferumoxytol-enhanced MRI. Natl. Sci. Rev. 2024, 11, nwae057. [Google Scholar] [CrossRef]
- Bendszus, M.; Laghi, A.; Munuera, J.; Tanenbaum, L.N.; Taouli, B.; Thoeny, H.C. MRI Gadolinium-Based Contrast Media: Meeting Radiological, Clinical, and Environmental Needs. J. Magn. Reson. Imaging 2024, 60, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Czarniecki, M.; Pesapane, F.; Wood, B.J.; Choyke, P.L.; Turkbey, B. Ultra-Small Superparamagnetic Iron Oxide Contrast Agents for Lymph Node Staging of High-Risk Prostate Cancer. Transl. Androl. Urol. 2018, 7 (Suppl. 4), S453–S461. [Google Scholar] [CrossRef] [PubMed]
- Niendorf, H.P. Gadolinium-DTPA: A new contrast agent. Bristol Med. Chir. J. 1988, 103, 34. [Google Scholar] [PubMed]
- European Medicines Agency. EMA’s Final Opinion Confirms Restrictions on Use of Linear Gadolinium Agents for Body Scans; European Medicines Agency: Amsterdam, The Netherlands, 8 December 2017. [Google Scholar]
- Robic, C.; Port, M.; Rousseaux, O.; Louguet, S.; Fretellier, N.; Catoen, S.; Factor, C.; Le Greneur, S.; Medina, C.; Bourrinet, P.; et al. Physicochemical and pharmacokinetic profiles of gadopiclenol: A new macrocyclic gadolinium chelate with high T1 relaxivity. Investig. Radiol. 2019, 54, 475–484. [Google Scholar] [CrossRef]
- Martincich, L.; Faivre-Pierret, M.; Zechmann, C.M.; Corcione, S.; Van Den Bosch, H.C.; Peng, W.J.; Petrillo, A.; Siegmann, K.C.; Heverhagen, J.T.; Panizza, P.; et al. Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for Breast MR imaging (DETECT Trial). Radiology 2011, 258, 396–408. [Google Scholar] [CrossRef]
- Pediconi, F.; Catalano, C.; Occhiato, R.; Venditti, F.; Fraioli, F.; Napoli, A.; Kirchin, M.A.; Passariello, R. Breast lesion detection and characterization at contrast-enhanced MR mammography: Gadobenate dimeglumine versus gadopentetate dimeglumine. Radiology 2005, 237, 45–56. [Google Scholar] [CrossRef]
- Pediconi, F.; Catalano, C.; Padula, S.; Roselli, A.; Dominelli, V.; Cagioli, S.; Kirchin, M.A.; Pirovano, G.; Passariello, R. Contrast-enhanced MR mammography: Improved lesion detection and differentiation with gadobenate dimeglumine. AJR Am. J. Roentgenol. 2008, 191, 1339–1346. [Google Scholar] [CrossRef]
- Gilbert, F.J.; van den Bosch, H.C.; Petrillo, A.; Siegmann, K.; Heverhagen, J.T.; Panizza, P.; Gehl, H.B.; Pediconi, F.; Diekmann, F.; Peng, W.J.; et al. Comparison of gadobenate dimeglumine-enhanced breast MRI and gadopentetate dimeglumine-enhanced breast MRI with mammography and ultrasound for the detection of breast cancer. J. Magn. Reson. Imaging 2014, 39, 1272–1286. [Google Scholar] [CrossRef]
- Clauser, P.; Helbich, T.H.; Kapetas, P.; Pinker, K.; Bernathova, M.; Woitek, R.; Kaneider, A.; Baltzer, P.A.T. Breast lesion detection and characterization with contrast-enhanced magnetic resonance imaging: Prospective randomized intraindividual comparison of gadoterate meglumine (0.15 mmol/kg) and gadobenate dimeglumine (0.075 mmol/kg) at 3T. J. Magn. Reson. Imaging 2019, 49, 1157–1165. [Google Scholar] [CrossRef]
- Anelli, P.L.; Lorusso, V.; Tedoldi, F. Magnetic Resonance Imaging Contrast Agents. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Cavagna, F.M.; Maggioni, F.; Castelli, P.M.; Dapra, M.; Imperatori, L.G.; Lorusso, V.; Jenkins, B.G. Gadolinium chelates with weak binding to serum proteins: A new class of high-efficiency, general-purpose contrast agents for magnetic resonance imaging. Investig. Radiol. 1997, 32, 780–796. [Google Scholar] [CrossRef]
- Pediconi, F.; Kubik-Huch, R.; Chilla, B.; Schwenke, C.; Kinkel, K. Intra-individual randomised comparison of gadobutrol 1.0 M versus gadobenate dimeglumine 0.5 M in patients scheduled for preoperative breast MRI. Eur. Radiol. 2013, 23, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Renz, D.M.; Durmus, T.; Böttcher, J.; Taupitz, M.; Diekmann, F.; Huppertz, A.; Pfeil, A.; Maurer, M.H.; Streitparth, F.; Bick, U.; et al. Comparison of gadoteric acid and gadobutrol for detection as well as morphologic and dynamic characterization of lesions on breast dynamic contrast-enhanced magnetic resonance imaging. Investig. Radiol. 2014, 49, 474–484. [Google Scholar] [CrossRef]
- Granata, V.; Cascella, M.; Fusco, R.; dell’Aprovitola, N.; Catalano, O.; Filice, S.; Schiavone, V.; Izzo, F.; Cuomo, A.; Petrillo, A. Immediate adverse reactions to gadolinium-based MR contrast media: A retrospective analysis on 10,608 examinations. Biomed Res. Int. 2016, 2016, 3918292. [Google Scholar] [CrossRef]
- Nicola, R.; Shaqdan, K.W.; Aran, K.; Mansouri, M.; Singh, A.; Abujudeh, H.H. Contrast-induced nephropathy: Identifying the risks, choosing the right agent, and reviewing effective prevention and management methods. Curr. Probl. Diagn. Radiol. 2015, 44, 501–504. [Google Scholar] [CrossRef]
- McDonald, R.J.; Levine, D.; Weinreb, J.; Kanal, E.; Davenport, M.S.; Ellis, J.H.; Jacobs, P.M.; Lenkinski, R.E.; Maravilla, K.R.; Prince, M.R.; et al. Gadolinium retention: A research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 2018, 289, 517–534. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. New Warnings for Gadolinium-Based Contrast Agents (GBCAs) for MRI; FDA Drug Safety Communication; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2023. [Google Scholar]
- Choi, J.W.; Moon, W.J. Gadolinium Deposition in the Brain: Current Updates. Korean J. Radiol. 2019, 20, 134–147. [Google Scholar] [CrossRef]
- Orlacchio, A.; Guastoni, C.; Beretta, G.D.; Cosmai, L.; Galluzzo, M.; Gori, S.; Grassedonio, E.; Incorvaia, L.; Marcantoni, C.; Netti, G.S.; et al. SIRM-SIN-AIOM: Appropriateness Criteria for Evaluation and Prevention of Renal Damage in the Patient Undergoing Contrast Medium Examinations—Consensus Statements from Italian College of Radiology (SIRM), Italian College of Nephrology (SIN), and Italian Association of Medical Oncology (AIOM). Radiol. Med. 2022, 127, 534–542. [Google Scholar] [CrossRef]
- Stacul, F.; van der Molen, A.J.; Reimer, P.; Webb, J.A.; Thomsen, H.S.; Morcos, S.K.; Almén, T.; Aspelin, P.; Bellin, M.F.; Clement, O.; et al. Contrast-Induced Nephropathy: Updated ESUR Contrast Media Safety Committee Guidelines. Eur. Radiol. 2011, 21, 2527–2541. [Google Scholar] [CrossRef]
- Guo, B.J.; Yang, Z.L.; Zhang, L.J. Gadolinium Deposition in Brain: Current Scientific Evidence and Future Perspectives. Front. Mol. Neurosci. 2018, 11, 335. [Google Scholar] [CrossRef]
- Semelka, R.C.; Ramalho, M. Physicians with Self-Diagnosed Gadolinium Deposition Disease: A Case Series. Radiol. Bras. 2021, 54, 238–242. [Google Scholar] [CrossRef]
- Gathings, R.M.; Reddy, R.; Santa Cruz, D.; Brodell, R.T. Gadolinium-Associated Plaques: A New, Distinctive Clinical Entity. JAMA Dermatol. 2015, 151, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Ishii, K.; Kawaguchi, H.; Kitajima, K.; Takenaka, D. High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-Weighted MR Images: Relationship with Increasing Cumulative Dose of a Gadolinium-Based Contrast Material. Radiology 2014, 270, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Matsuda, M.; Oba, H.; Toyoda, K.; Furui, S. Gadolinium Deposition after Contrast-Enhanced MR Imaging. Radiology 2015, 277, 924–925. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.H.; Pujara, A.C.; Srinivasan, A.; Chenevert, T.L.; Malyarenko, D.; Khalatbari, S.; Helvie, M.A.; Noroozian, M.; Jeruss, J.S.; Pearlman, M.D.; et al. Prospective Imaging Trial Assessing Gadoteridol Retention in the Deep Brain Nuclei of Women Undergoing Breast MRI. Acad. Radiol. 2020, 27, 1734–1741. [Google Scholar] [CrossRef]
- Thomsen, H.S.; Marckmann, P.; Logager, V.B. Nephrogenic Systemic Fibrosis (NSF): A Late Adverse Reaction to Some of the Gadolinium-Based Contrast Agents. Cancer Imaging 2007, 7, 130–137. [Google Scholar] [CrossRef]
- Cowper, S.E.; Bucala, R.; Leboit, P.E. Nephrogenic Systemic Fibrosis: Clinicopathological Definition and Workup Recommendations. J. Am. Acad. Dermatol. 2011, 65, 1095–1106. [Google Scholar] [CrossRef]
- Rydahl, C.; Thomsen, H.S.; Marckmann, P. High Prevalence of Nephrogenic Systemic Fibrosis in Chronic Renal Failure Patients Exposed to Gadodiamide, a Gadolinium-Containing Magnetic Resonance Contrast Agent. Investig. Radiol. 2008, 43, 141–144. [Google Scholar]
- Daftari Besheli, L.; Aran, S.; Shaqdan, K.; Kay, J.; Abujudeh, H. Current Status of Nephrogenic Systemic Fibrosis. Clin. Radiol. 2014, 69, 661–668. [Google Scholar] [CrossRef]
- ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media; American College of Radiology: Reston, VA, USA, 2021. [Google Scholar]
- Minton, L.E.; Pandit, R.; Porter, K.K. Contrast-Enhanced MRI: History and Current Recommendations. Appl. Radiol. 2021, 50, 15–19. [Google Scholar]
- Lancelot, E.; Desche, P. Gadolinium Retention as a Safety Signal: Experience of a Manufacturer. Investig. Radiol. 2020, 55, 20–24. [Google Scholar]
- Runge, V.M.; Heverhagen, J.T. Advocating the Development of Next-Generation High-Relaxivity Gadolinium Chelates for Clinical Magnetic Resonance. Investig. Radiol. 2018, 53, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.29181 (accessed on 5 January 2025).
- Loevner, L.A.; Kolumban, B.; Hutoczki, G.; Dziadziuszko, K.; Bereczki, D.; Bago, A.; Pichiecchio, A. Efficacy and Safety of Gadopiclenol for Contrast-Enhanced MRI of the Central Nervous System: The PICTURE Randomized Clinical Trial. Investig. Radiol. 2023, 58, 307–313. [Google Scholar]
- Kuhl, C.; Csoszi, T.; Piskorski, W.; Miszalski, T.; Lee, J.M.; Otto, P.M. Efficacy and Safety of Half-Dose Gadopiclenol versus Full-Dose Gadobutrol for Contrast-Enhanced Body MRI. Radiology 2023, 308, e222612. [Google Scholar] [PubMed]
- Lohrke, J.; Berger, M.; Frenzel, T.; Hilger, C.S.; Jost, G.; Panknin, O.; Bauser, M.; Ebert, W.; Pietsch, H. Preclinical Profile of Gadoquatrane: A Novel Tetrameric, Macrocyclic High Relaxivity Gadolinium-Based Contrast Agent. Investig. Radiol. 2022, 57, 629–638. [Google Scholar]
- Hofmann, B.M.; Riecke, K.; Klein, S.; Berse, M.; Rottmann, A.; Sutter, G.; Ebert, W. Pharmacokinetics, Safety, and Tolerability of the Novel Tetrameric, High-Relaxivity, Macrocyclic Gadolinium-Based Contrast Agent Gadoquatrane in Healthy Adults. Investig. Radiol. 2024, 59, 140–149. [Google Scholar] [CrossRef]
- Gale, E.M.; Wey, H.Y.; Ramsay, I.; Yen, Y.-F.; Sosnovik, D.E.; Caravan, P. A Manganese-Based Alternative to Gadolinium: Contrast-Enhanced MR Angiography, Excretion, Pharmacokinetics, and Metabolism. Radiology 2018, 286, 865–872. [Google Scholar]
- Pan, D.; Schmieder, A.H.; Wickline, S.A.; Lanza, G.M. Manganese-Based MRI Contrast Agents: Past, Present and Future. Tetrahedron 2011, 67, 8431–8444. [Google Scholar]
- Minton, L.E.; Pandit, R.; Willoughby, W.R.; Porter, K.K. The Future of Magnetic Resonance Imaging Contrast Agents. Appl. Radiol. 2022, 51, 7–11. [Google Scholar]
- Sardanelli, F.; Magni, V.; Rossini, G.; Kilburn-Toppin, F.; Healy, N.A.; Gilbert, F.J. The Paradox of MRI for Breast Cancer Screening: High-Risk and Dense Breasts—Available Evidence and Current Practice. Insights Imaging 2024, 15, 96. [Google Scholar] [CrossRef]
- Bahl, M. Screening MRI in Women at Intermediate Breast Cancer Risk: An Update of the Recent Literature. J. Breast Imaging 2022, 4, 231–240. [Google Scholar] [CrossRef]
- Tollens, F.; Baltzer, P.A.T.; Dietzel, M.; Rübenthaler, J.; Froelich, M.F.; Kaiser, C.G. Cost-Effectiveness of Digital Breast Tomosynthesis vs. Abbreviated Breast MRI for Screening Women with Intermediate Risk of Breast Cancer—How Low-Cost Must MRI Be? Cancers 2021, 13, 1241. [Google Scholar] [CrossRef] [PubMed]
- Heacock, L.; Reig, B.; Lewin, A.A.; Toth, H.K.; Moy, L.; Lee, C.S. Abbreviated Breast MRI: Road to Clinical Implementation. J. Breast Imaging 2020, 2, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K.; Schrading, S.; Strobel, K.; Schild, H.H.; Hilgers, R.D.; Bieling, H.B. Abbreviated Breast Magnetic Resonance Imaging (MRI): First Postcontrast Subtracted Images and Maximum-Intensity Projection—A Novel Approach to Breast Cancer Screening with MRI. J. Clin. Oncol. 2014, 32, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Cho, N.; Hong, H.; Lee, Y.; Yoen, H.; Kim, Y.S.; Park, A.R.; Ha, S.M.; Lee, S.H.; Chang, J.M.; et al. Abbreviated Screening MRI for Women with a History of Breast Cancer: Comparison with Full-Protocol Breast MRI. Radiology 2022, 305, 36–45. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, P.; Zhang, S.; Lu, H. Abbreviated Protocol Combining Quantitative Diffusion-Weighted Imaging: A New Strategy Increasing Diagnostic Accuracy for Breast Magnetic Resonance Imaging? Gland Surg. 2021, 10, 2705–2714. [Google Scholar] [CrossRef]
- Kim, E.S.; Cho, N.; Kim, S.Y.; Kwon, B.R.; Yi, A.; Ha, S.M.; Lee, S.H.; Chang, J.M.; Moon, W.K. Comparison of Abbreviated MRI and Full Diagnostic MRI in Distinguishing between Benign and Malignant Lesions Detected by Breast MRI: A Multireader Study. Korean J. Radiol. 2021, 22, 297–307. [Google Scholar] [CrossRef]
- Kataoka, M.; Iima, M.; Miyake, K.K.; Matsumoto, Y. Multiparametric Imaging of Breast Cancer: An Update of Current Applications. Diagn. Interv. Imaging 2022, 103, 574–583. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, Y.; Chen, X.; Wang, W.; Chen, H.; Yin, T.; Nickel, D.; Li, C.; Shao, J.; Zhang, S.; et al. Optimizing Ultrafast Dynamic Contrast-Enhanced MRI Scan Duration in the Differentiation of Benign and Malignant Breast Lesions. Insights Imaging 2024, 15, 112. [Google Scholar] [CrossRef]
- Bogdan, R.G.; Helgiu, A.; Cimpean, A.M.; Ichim, C.; Todor, S.B.; Iliescu-Glaja, M.; Bodea, I.C.; Crainiceanu, Z.P. Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques. J. Clin. Med. 2024, 13, 7209. [Google Scholar] [CrossRef]
- Pesapane, F.; Rotili, A.; Signorelli, G.; Dominelli, V.; Mazzocconi, L.; Sorce, A.; Battaglia, O.; Cugliari, G.; Gandini, S.; Nicosia, L.; et al. Retrospective study on the strength of magnetic resonance signs for predicting breast implant rupture: Assessing the impact of radiologist expertise at a breast cancer referral center. Radiol. Med. 2024, 129, 1802–1811. [Google Scholar] [CrossRef]
Structure | Ionic/Non-Ionic | Contrast-Agents (Commercial Name) |
---|---|---|
Linear | Ionic | Gadopentetate (Magnevist) |
Linear | Non-ionic | Gadodiamide (Omniscan) |
Linear | Non-ionic | Gadoversetamide (Optimark) |
Macrocyclic | Ionic | Gadoterate (Dotarem) |
Macrocyclic | Non-ionic | Gadobutrol (Gadovist) |
Macrocyclic | Non-ionic | Gadoteridol (ProHance) |
Hypersensitivity/Allergy-like | Chemotoxic | |
---|---|---|
Mild | Mild urticaria Mild itching Erythema | Nause/mild vomiting Warmth/chills Anxiety Vasovagal-reaction (spontaneously resolved) |
Moderate | Marked urticaria Mild bronchospasm Facial/laryngeal edema | Vasovagal-reaction |
Severe | Hypotensive shock Respiratory attest Cardiac arrest | Arrythmia Convulsion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesapane, F.; Sorce, A.; Battaglia, O.; Mallardi, C.; Nicosia, L.; Mariano, L.; Rotili, A.; Dominelli, V.; Penco, S.; Priolo, F.; et al. Contrast Agents in Breast MRI: State of the Art and Future Perspectives. Biomedicines 2025, 13, 829. https://doi.org/10.3390/biomedicines13040829
Pesapane F, Sorce A, Battaglia O, Mallardi C, Nicosia L, Mariano L, Rotili A, Dominelli V, Penco S, Priolo F, et al. Contrast Agents in Breast MRI: State of the Art and Future Perspectives. Biomedicines. 2025; 13(4):829. https://doi.org/10.3390/biomedicines13040829
Chicago/Turabian StylePesapane, Filippo, Adriana Sorce, Ottavia Battaglia, Carmen Mallardi, Luca Nicosia, Luciano Mariano, Anna Rotili, Valeria Dominelli, Silvia Penco, Francesca Priolo, and et al. 2025. "Contrast Agents in Breast MRI: State of the Art and Future Perspectives" Biomedicines 13, no. 4: 829. https://doi.org/10.3390/biomedicines13040829
APA StylePesapane, F., Sorce, A., Battaglia, O., Mallardi, C., Nicosia, L., Mariano, L., Rotili, A., Dominelli, V., Penco, S., Priolo, F., Carrafiello, G., & Cassano, E. (2025). Contrast Agents in Breast MRI: State of the Art and Future Perspectives. Biomedicines, 13(4), 829. https://doi.org/10.3390/biomedicines13040829