Insights into Pediatric GATA2-Related MDS: Unveiling Challenges in Clinical Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review
2.2. Case Presentations
2.2.1. Case 1: MDS-IB Associated with Germline GATA2 Mutation and Monosomy 7, Developing Rapid Progression to MDS-Related Acute Myeloid Leukemia and Post-HSCT Complications
2.2.2. Case 2: Novel Germline GATA2 Mutation Presenting as MDS-LB with Excessive Clinical Complications
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, C.N.; Chong, C.E.; Carmichael, C.L.; Wilkins, E.J.; Brautigan, P.J.; Li, X.C.; Babic, M.; Lin, M.; Carmagnac, A.; Lee, Y.K.; et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 2011, 43, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Vicente, C.; Conchillo, A.; Garcia-Sanchez, M.A.; Odero, M.D. The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit. Rev. Oncol. Hematol. 2012, 82, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rajput, R.V.; Arnold, D.E. GATA2 Deficiency: Predisposition to Myeloid Malignancy and Hematopoietic Cell Transplantation. Curr. Hematol. Malig. Rep. 2023, 18, 89–97. [Google Scholar] [CrossRef]
- Wlodarski, M.W.; Hirabayashi, S.; Pastor, V.; Stary, J.; Hasle, H.; Masetti, R.; Dworzak, M.; Schmugge, M.; van den Heuvel-Eibrink, M.; Ussowicz, M.; et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 2016, 127, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Donadieu, J.; Lamant, M.; Fieschi, C.; de Fontbrune, F.S.; Caye, A.; Ouachee, M.; Beaupain, B.; Bustamante, J.; Poirel, H.A.; Isidor, B.; et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica 2018, 103, 1278–1287. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Spinner, M.A.; Sanchez, L.A.; Hsu, A.P.; Shaw, P.A.; Zerbe, C.S.; Calvo, K.R.; Arthur, D.C.; Gu, W.; Gould, C.M.; Brewer, C.C.; et al. GATA2 deficiency: A protean disorder of hematopoiesis, lymphatics, and immunity. Blood 2014, 123, 809–821. [Google Scholar] [CrossRef]
- Parta, M.; Shah, N.N.; Baird, K.; Rafei, H.; Calvo, K.R.; Hughes, T.; Cole, K.; Kenyon, M.; Schuver, B.B.; Cuellar-Rodriguez, J.; et al. Allogeneic Hematopoietic Stem Cell Transplantation for GATA2 Deficiency Using a Busulfan-Based Regimen. Biol. Blood Marrow Transpl. Transplant. 2018, 24, 1250–1259. [Google Scholar] [CrossRef]
- Hofmann, I.; Avagyan, S.; Stetson, A.; Guo, D.; Al-Sayegh, H.; London, W.B.; Lehmann, L. Comparison of Outcomes of Myeloablative Allogeneic Stem Cell Transplantation for Pediatric Patients with Bone Marrow Failure, Myelodysplastic Syndrome and Acute Myeloid Leukemia with and without Germline GATA2 Mutations. Biol. Blood Marrow Transpl. Transplant. 2020, 26, 1124–1130. [Google Scholar] [CrossRef]
- Bortnick, R.; Wlodarski, M.; de Haas, V.; De Moerloose, B.; Dworzak, M.; Hasle, H.; Masetti, R.; Stary, J.; Turkiewicz, D.; Ussowicz, M.; et al. Hematopoietic stem cell transplantation in children and adolescents with GATA2-related myelodysplastic syndrome. Bone Marrow Transpl. Transplant. 2021, 56, 2732–2741. [Google Scholar] [CrossRef]
- Nichols-Vinueza, D.X.; Parta, M.; Shah, N.N.; Cuellar-Rodriguez, J.M.; Bauer, T.R., Jr.; West, R.R.; Hsu, A.P.; Calvo, K.R.; Steinberg, S.M.; Notarangelo, L.D.; et al. Donor source and post-transplantation cyclophosphamide influence outcome in allogeneic stem cell transplantation for GATA2 deficiency. Br. J. Haematol. 2022, 196, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Sicre de Fontbrune, F.; Chevillon, F.; Fahd, M.; Desseaux, K.; Poire, X.; Forcade, E.; Sterin, A.; Neven, B.; Gandemer, V.; Thepot, S.; et al. Long-term outcome after allogeneic stem cell transplantation for GATA2 deficiency: An analysis of 67 adults and children from France and Belgium. Br. J. Haematol. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Novakova, M.; Zaliova, M.; Sukova, M.; Wlodarski, M.; Janda, A.; Fronkova, E.; Campr, V.; Lejhancova, K.; Zapletal, O.; Pospisilova, D.; et al. Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica 2016, 101, 707–716. [Google Scholar] [CrossRef]
- van Lier, Y.F.; Krabbendam, L.; Haverkate, N.J.E.; Zeerleder, S.S.; Rutten, C.E.; Blom, B.; Spits, H.; Hazenberg, M.D. GATA2 haploinsufficient patients lack innate lymphoid cells that arise after hematopoietic cell transplantation. Front. Immunol. 2022, 13, 1020590. [Google Scholar] [CrossRef]
- Hirvonen, E.A.M.; Natri, I.; Mattila, P.; Mattila, J.; Pitkänen, E.; Porkka, K.; Kilpivaara, O.; Wartiovaara-Kautto, U. Abstract 2535: Single-cell transcriptome analysis on lymphocytes of GATA2 deficiency patients. Cancer Res. 2018, 78, 2535. [Google Scholar]
- Collin, M.; Dickinson, R.; Bigley, V. Haematopoietic and immune defects associated with GATA2 mutation. Br. J. Haematol. 2015, 169, 173–187. [Google Scholar] [CrossRef]
- Bruzzese, A.; Leardini, D.; Masetti, R.; Strocchio, L.; Girardi, K.; Algeri, M.; Del Baldo, G.; Locatelli, F.; Mastronuzzi, A. GATA2 Related Conditions and Predisposition to Pediatric Myelodysplastic Syndromes. Cancers 2020, 12, 2962. [Google Scholar] [CrossRef]
- Mir, M.A.; Kochuparambil, S.T.; Abraham, R.S.; Rodriguez, V.; Howard, M.; Hsu, A.P.; Jackson, A.E.; Holland, S.M.; Patnaik, M.M. Spectrum of myeloid neoplasms and immune deficiency associated with germline GATA2 mutations. Cancer Med. 2015, 4, 490–499. [Google Scholar] [CrossRef]
- Bodor, C.; Renneville, A.; Smith, M.; Charazac, A.; Iqbal, S.; Etancelin, P.; Cavenagh, J.; Barnett, M.J.; Kramarzova, K.; Krishnan, B.; et al. Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica 2012, 97, 890–894. [Google Scholar] [CrossRef]
- Della Porta, M.G.; Galli, A.; Bacigalupo, A.; Zibellini, S.; Bernardi, M.; Rizzo, E.; Allione, B.; van Lint, M.T.; Pioltelli, P.; Marenco, P.; et al. Clinical Effects of Driver Somatic Mutations on the Outcomes of Patients With Myelodysplastic Syndromes Treated With Allogeneic Hematopoietic Stem-Cell Transplantation. J. Clin. Oncol. 2016, 34, 3627–3637. [Google Scholar] [CrossRef] [PubMed]
- Hata, T. [Current diagnosis and treatment for myelodysplastc syndromes]. Rinsho Ketsueki 2017, 58, 373–380. [Google Scholar] [CrossRef] [PubMed]
- West, R.R.; Hsu, A.P.; Holland, S.M.; Cuellar-Rodriguez, J.; Hickstein, D.D. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica 2014, 99, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Carbuccia, N.; Murati, A.; Trouplin, V.; Brecqueville, M.; Adelaide, J.; Rey, J.; Vainchenker, W.; Bernard, O.A.; Chaffanet, M.; Vey, N.; et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 2009, 23, 2183–2186. [Google Scholar] [CrossRef]
- Gangat, N.; Mudireddy, M.; Lasho, T.L.; Finke, C.M.; Nicolosi, M.; Szuber, N.; Patnaik, M.M.; Pardanani, A.; Hanson, C.A.; Ketterling, R.P.; et al. Mutations and prognosis in myelodysplastic syndromes: Karyotype-adjusted analysis of targeted sequencing in 300 consecutive cases and development of a genetic risk model. Am. J. Hematol. 2018, 93, 691–697. [Google Scholar] [CrossRef]
- Tosello, V.; Mansour, M.R.; Barnes, K.; Paganin, M.; Sulis, M.L.; Jenkinson, S.; Allen, C.G.; Gale, R.E.; Linch, D.C.; Palomero, T.; et al. WT1 mutations in T-ALL. Blood 2009, 114, 1038–1045. [Google Scholar] [CrossRef]
- Bielinska, E.; Matiakowska, K.; Haus, O. Heterogeneity of human WT1 gene. Postep. Hig. Med. Dosw. 2017, 71, 595–601. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Hu, J.; Ren, Y.; Wang, H. Clinical features and prognosis of normal karyotype acute myeloid leukemia pediatric patients with WT1 mutations: An analysis based on TCGA database. Hematology 2020, 25, 79–84. [Google Scholar] [CrossRef]
- Yang, L.; Han, Y.; Suarez Saiz, F.; Minden, M.D. A tumor suppressor and oncogene: The WT1 story. Leukemia 2007, 21, 868–876. [Google Scholar] [CrossRef]
- Cortot, A.B.; Kherrouche, Z.; Descarpentries, C.; Wislez, M.; Baldacci, S.; Furlan, A.; Tulasne, D. Exon 14 Deleted MET Receptor as a New Biomarker and Target in Cancers. J. Natl. Cancer Inst. 2017, 109, djw262. [Google Scholar] [CrossRef]
- Tyner, J.W.; Fletcher, L.B.; Wang, E.Q.; Yang, W.F.; Rutenberg-Schoenberg, M.L.; Beadling, C.; Mori, M.; Heinrich, M.C.; Deininger, M.W.; Druker, B.J.; et al. MET receptor sequence variants R970C and T992I lack transforming capacity. Cancer Res. 2010, 70, 6233–6237. [Google Scholar] [CrossRef] [PubMed]
- Grossman, J.; Cuellar-Rodriguez, J.; Gea-Banacloche, J.; Zerbe, C.; Calvo, K.; Hughes, T.; Hakim, F.; Cole, K.; Parta, M.; Freeman, A.; et al. Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Biol. Blood Marrow Transpl. Transplant. 2014, 20, 1940–1948. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yuan, E.; Liu, Z.; Wu, T. Clinical Features of Myeloid Neoplasms with Germline GATA2 Mutations—A Systematic Review of Clinical Studies Retrieved through Extensive Searching. Blood 2023, 142, 6498. [Google Scholar] [CrossRef]
- Vinci, L.; Strahm, B.; Speckmann, C.; Erlacher, M. The different faces of GATA2 deficiency: Implications for therapy and surveillance. Front. Oncol. 2024, 14, 1423856. [Google Scholar] [CrossRef]
- Wlodarski, M.W.; Collin, M.; Horwitz, M.S. GATA2 deficiency and related myeloid neoplasms. Semin. Hematol. 2017, 54, 81–86. [Google Scholar] [CrossRef]
- Hofmann, I.; Avagyan, S.; Stetson, A.; Guo, D.; Al-Sayegh, H.; London, W.B.; Lehmann, L.E. Outcomes of Allogeneic Stem Cell Transplantation in Pediatric Patients with Myelodysplastic Syndrome and Bone Marrow Failure Due to GATA2 Haploinsufficiency: A Case Control Study. Blood 2016, 128, 4686. [Google Scholar] [CrossRef]
- Scherzer, C.R.; Grass, J.A.; Liao, Z.; Pepivani, I.; Zheng, B.; Eklund, A.C.; Ney, P.A.; Ng, J.; McGoldrick, M.; Mollenhauer, B.; et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene alpha-synuclein. Proc. Natl. Acad. Sci. USA 2008, 105, 10907–10912. [Google Scholar] [CrossRef]
- Conference, E.-M.C. Guidelines for Hematopoietic Stem Cell Transplantation (HSCT) in Childhood MDS and JMML for Patients Enrolled in EWOG-MDS Studies; EWOG-MDS HSCT Board: Freiburg, Germany, 2017; pp. 1–19. [Google Scholar]
- Strahm, B.; Locatelli, F.; Bader, P.; Ehlert, K.; Kremens, B.; Zintl, F.; Fuhrer, M.; Stachel, D.; Sykora, K.W.; Sedlacek, P.; et al. Reduced intensity conditioning in unrelated donor transplantation for refractory cytopenia in childhood. Bone Marrow Transpl. Transplant. 2007, 40, 329–333. [Google Scholar] [CrossRef]
- Nichols-Vinueza, D.X.; Shah, N.N.; Cuellar-Rodriguez, J.; Bauer, T.R.; Calvo, K.R.; Notarangelo, L.D.; Holland, S.M.; Hickstein, D.D. Allogeneic Hematopoietic Stem-Cell Transplantation in Patients with GATA 2 Deficiency: Influence of Donor Stem Cell Source and Post-Transplantation Cyclophosphamide. Blood 2020, 136, 37–38. [Google Scholar] [CrossRef]
- Amberge, S.; Kramer, M.; Schrottner, P.; Heidrich, K.; Schmelz, R.; Middeke, J.M.; Gunzer, F.; Hampe, J.; Schetelig, J.; Bornhauser, M.; et al. Clostridium Difficile infections in patients with AML or MDS undergoing allogeneic hematopoietic stem cell transplantation identify high risk for adverse outcome. Bone Marrow Transpl. Transplant. 2020, 55, 367–375. [Google Scholar] [CrossRef]
- Ramanathan, M.; Kim, S.; He, N.; Chen, M.; Hematti, P.; Abid, M.B.; Rotz, S.J.; Williams, K.M.; Lazarus, H.M.; Wirk, B.; et al. The incidence and impact of clostridioides difficile infection on transplant outcomes in acute leukemia and MDS after allogeneic hematopoietic cell transplant-a CIBMTR study. Bone Marrow Transpl. Transplant. 2023, 58, 360–366. [Google Scholar] [CrossRef]
- Johnson, K.D.; Hsu, A.P.; Ryu, M.J.; Wang, J.; Gao, X.; Boyer, M.E.; Liu, Y.; Lee, Y.; Calvo, K.R.; Keles, S.; et al. Cis-element mutated in GATA2-dependent immunodeficiency governs hematopoiesis and vascular integrity. J. Clin. Investing. 2012, 122, 3692–3704. [Google Scholar] [CrossRef] [PubMed]
- Lasbury, M.E.; Tang, X.; Durant, P.J.; Lee, C.H. Effect of transcription factor GATA-2 on phagocytic activity of alveolar macrophages from Pneumocystis carinii-infected hosts. Infect. Immun. 2003, 71, 4943–4952. [Google Scholar] [CrossRef] [PubMed]
- Waclawiczek, A.; Leppa, A.M.; Renders, S.; Stumpf, K.; Reyneri, C.; Betz, B.; Janssen, M.; Shahswar, R.; Donato, E.; Karpova, D.; et al. Combinatorial BCL2 Family Expression in Acute Myeloid Leukemia Stem Cells Predicts Clinical Response to Azacitidine/Venetoclax. Cancer Discov. 2023, 13, 1408–1427. [Google Scholar] [CrossRef]
- Masetti, R.; Baccelli, F.; Leardini, D.; Gottardi, F.; Vendemini, F.; Di Gangi, A.; Becilli, M.; Lodi, M.; Tumino, M.; Vinci, L.; et al. Venetoclax-based therapies in pediatric advanced MDS and relapsed/refractory AML: A multicenter retrospective analysis. Blood Adv. 2023, 7, 4366–4370. [Google Scholar] [CrossRef]
First Author | Year | No. of Patients | Median Age | Family History | MDS Subtype | Karyotype GATA2 Cohort | Other Features | Conclusions for GATA2mut Group |
---|---|---|---|---|---|---|---|---|
MA. Spinner [7] | 2014 | Total, N = 57 GATA2 deficiency | 20 yo | 30% |
|
|
|
|
MW. Wlodarski [4] | 2016 | Total, N = 508 Primary MDS, N = 426 Secondary MDS, N =82 | 12.3 yo | 29% |
|
|
|
|
J. Donadieu [5] | 2018 | Total, N = 79 Germline GATA2mut patients | 18.6 yo | 67% |
|
|
|
|
First Author | Year | No. of Patients | Median Age | GvHD | TRT | TRM | EFS/DFS/RFS | OS |
---|---|---|---|---|---|---|---|---|
M. Parta [8] | 2018 | Total, N = 22 GATA2mut MDS, N = 20 | 26 yo |
|
|
|
|
|
I. Hofmann [9] | 2020 | GATA2 BMF/MDS/AL, N = 15 Cohort A (BMF/MDS), N = 25 Cohort B (AML/ALL), N = 40 | 15.7 yo |
|
|
|
|
|
R. Bortnick [10] | 2021 | Total, N = 65 GATA2mut MDS/AML | 12.8 yo |
|
|
|
|
|
DX. Nichols- Vinueza [11] | 2022 | Total cohort GATA2mut, N = 59 | - | --- |
|
| - | - |
MRD/URD Tacro/MTX, N = 19 MDS, N = 14 | 28 yo |
|
|
|
|
| ||
MRD/URD PT/Cy, N = 23 MDS, N = 14 | 29 yo |
|
|
|
|
| ||
HRD PT/Cy, N = 17 MDS, N = 13 | 28 yo |
|
|
|
|
| ||
FS. Fontbrune [12] | 2024 | Total GATA2mut cohort, N = 67 MDS-LB, N = 44 MDS-IB, N = 10 AML, N = 13 | 17.4 yo (onset) 20.6 yo (HSCT) |
|
|
|
|
|
Case 1 (MDS-IB), Female | Case 2 (MDS-LB), Male | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Morphological findings (including EWOG) | Dysplasia | Peripheral Blood | Bone Marrow | Dysplasia | Peripheral Blood | Bone Marrow | ||||
Megakaryopoiesis/Platelets |
| - | Megakaryopoiesis/ Platelets |
|
| |||||
Erythropoiesis/Erythrocytes |
|
| Erythropoiesis/ Erythrocytes |
|
| |||||
Myelopoiesis/ Neutrophils |
|
| Myelopoiesis/ Neutrophils | - |
| |||||
BM blasts | 14% (flow-cytometry: CD45+ weak, CD34+, CD117+, HLADR+, CD38+, CD13+, CD33+, CD15−/+w, icMPO−/+w, CD7+ | 2% (flow-cytometry: CD34-, CD117++, HLADR++) | ||||||||
Karyotype/FISH | 46 XX/Monosomy 7 (first evaluation 46%, reevaluation 70%) | 46 XY/No monosomy 7 or trisomy 8 | ||||||||
Bone marrow biopsy | Erythroid and megakaryocytic dysplasia, 14–15% CD34+, 6–7% CD117+ Fibrosis | Cellularity ~80%, erythroid dysplasia with megaloblastic changes, megakaryocytic dysplasia, 3–4% CD34+ | ||||||||
TruSight Oncology 500 Panel | Gene | Depth | VAF | cDNA mutation | Protein mutation | Gene | Depth | VAF | cDNA mutation | Protein mutation |
GATA2 * | 3150 | 45% | c.599dupG | p.S201 * | GATA2 * | 544 | 47.1% | c. 1129_1131dupTA C | p.Y377dup | |
ASXL1 ** | 3121 | 50.9% | c.2957A>G | p.N986S | GATA2 ** | 824 | 7% | c.1036G>C | p.G346R | |
WT1 ** | 1670 | 4.7% | c.1385G>A | p.R462Q | MET ** | 1892 | 45% | c.2962C>T | p.R988C | |
GATA2 ** | 2171 | 12.7% | c.1349_1368del20 | p.G450Dfs | ||||||
EWOG-MDS | GATA2 exon 3 c.599dupG; [p.S201Ter], VAF 46% | GATA2 exon 5 c.1129_1131dupTAC; [p.Y377dup], VAF 40% | ||||||||
Germline confirmation (hair follicles) | Germline confirmation (hair follicles) | |||||||||
Negative family screening | Negative family screening | |||||||||
The variant classification system: * Tier I, strong clinical significance (level A and B evidence); ** Tier II, potential clinical significance (level C and D evidence) [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcu, A.D.; Bica, A.M.; Jercan, C.G.; Radu, L.E.; Serbanica, A.N.; Jardan, D.; Colita, A.; Dima, S.O.; Tomuleasa, C.; Tanase, A.D.; et al. Insights into Pediatric GATA2-Related MDS: Unveiling Challenges in Clinical Practice. Biomedicines 2025, 13, 827. https://doi.org/10.3390/biomedicines13040827
Marcu AD, Bica AM, Jercan CG, Radu LE, Serbanica AN, Jardan D, Colita A, Dima SO, Tomuleasa C, Tanase AD, et al. Insights into Pediatric GATA2-Related MDS: Unveiling Challenges in Clinical Practice. Biomedicines. 2025; 13(4):827. https://doi.org/10.3390/biomedicines13040827
Chicago/Turabian StyleMarcu, Andra Daniela, Ana Maria Bica, Cristina Georgiana Jercan, Letitia Elena Radu, Andreea Nicoleta Serbanica, Dumitru Jardan, Andrei Colita, Simona Olimpia Dima, Ciprian Tomuleasa, Alina Daniela Tanase, and et al. 2025. "Insights into Pediatric GATA2-Related MDS: Unveiling Challenges in Clinical Practice" Biomedicines 13, no. 4: 827. https://doi.org/10.3390/biomedicines13040827
APA StyleMarcu, A. D., Bica, A. M., Jercan, C. G., Radu, L. E., Serbanica, A. N., Jardan, D., Colita, A., Dima, S. O., Tomuleasa, C., Tanase, A. D., & Colita, A. (2025). Insights into Pediatric GATA2-Related MDS: Unveiling Challenges in Clinical Practice. Biomedicines, 13(4), 827. https://doi.org/10.3390/biomedicines13040827