Cholinesterase and Inflammation: Exploring Its Role and Associations with Inflammatory Markers in Patients with Lower Extremity Artery Disease
Abstract
:1. Introduction
1.1. PAD
1.2. Cholinesterase
1.3. PLR, NLR, HPR
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hiatt, W.R.; Goldstone, J.; Smith, S.C., Jr.; McDermott, M.; Moneta, G.; Oka, R.; Newman, A.B.; Pearce, W.H.; Group, American Heart Association Writing. Atherosclerotic Peripheral Vascular Disease Symposium II: Nomenclature for Vascular Diseases. Circulation 2008, 118, 2826–2829. [Google Scholar] [CrossRef]
- Dua, A.; Lee, C.J. Epidemiology of Peripheral Arterial Disease and Critical Limb Ischemia. Tech. Vasc. Interv. Radiol. 2016, 19, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Criqui, M.H.; Matsushita, K.; Aboyans, V.; Hess, C.N.; Hicks, C.W.; Kwan, T.W.; McDermott, M.M.; Misra, S.; Ujueta, F.; American Heart Association Council on Epidemiology and Prevention; et al. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e171–e191. [Google Scholar] [CrossRef]
- Steg, P.G.; Bhatt, D.L.; Wilson, P.W.F.; D’Agostino Sr, R.; Ohman, E.M.; Röther, J.; Liau, C.-S.; Hirsch, A.T.; Mas, J.-L.; Ikeda, Y.; et al. One-Year Cardiovascular Event Rates in Outpatients with Atherothrombosis. JAMA 2007, 297, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Mandapat, A.L.; Moates, A.; Albay, M.; Chiou, E.; Celic, L.; Greenland, P. Knowledge and Attitudes Regarding Cardiovascular Disease Risk and Prevention in Patients with Coronary or Peripheral Arterial Disease. Arch. Intern. Med. 2003, 163, 2157–2162. [Google Scholar] [CrossRef] [PubMed]
- Fioretti, V.; Gerardi, D.; Giugliano, G.; Di Fazio, A.; Stabile, E. Focus on Prevention: Peripheral Arterial Disease and the Central Role of the Cardiologist. J. Clin. Med. 2023, 12, 4338. [Google Scholar] [CrossRef]
- Skeik, N.; Nowariak, M.E.; Smith, J.E.; Alexander, J.Q.; Manunga, J.M.; Mirza, A.K.; Sullivan, T.M. Lipid-Lowering Therapies in Peripheral Artery Disease: A Review. Vasc. Med. 2020, 26, 71–80. [Google Scholar] [CrossRef]
- Eraso, L.H.; Fukaya, E.; Mohler, E.R., 3rd; Xie, D.; Sha, D.; Berger, J.S. Peripheral Arterial Disease, Prevalence and Cumulative Risk Factor Profile Analysis. Eur. J. Prev. Cardiol. 2012, 21, 704–711. [Google Scholar] [CrossRef]
- Libby, P. The Changing Landscape of Atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent Developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F.; Ritchie, R.H.; Woodman, O.L.; Zhou, X.; Qin, C.X. Novel Strategies to Promote Resolution of Inflammation to Treat Lower Extremity Artery Disease. Curr. Opin. Pharmacol. 2022, 65, 102263. [Google Scholar] [CrossRef] [PubMed]
- Poledniczek, M.; Neumayer, C.; Kopp, C.W.; Schlager, O.; Gremmel, T.; Jozkowicz, A.; Gschwandtner, M.E.; Koppensteiner, R.; Wadowski, P.P. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease—Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023, 11, 2284. [Google Scholar] [CrossRef] [PubMed]
- Poledniczek, M.; Neumayer, C.; Kopp, C.W.; Schlager, O.; Gremmel, T.; Jozkowicz, A.; Gschwandtner, M.E.; Koppensteiner, R.; Wadowski, P.P. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease—Pathophysiology and Translational Therapeutic Approaches. Preprints 2023, 11, 2284. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, D.; Alvarez, C.V.; Perez-Romero, S.; Devesa, J. The Inflammatory Pattern of Chronic Limb-Threatening Ischemia in Muscles: The TNF-α Hypothesis. Biomedicines 2022, 10, 489. [Google Scholar] [CrossRef]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A.; et al. 2024 ESC Guidelines for the Management of Peripheral Arterial and Aortic Diseases. Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar] [CrossRef]
- Beckman, J.A.; Schneider, P.A.; Conte, M.S. Advances in Revascularization for Peripheral Artery Disease: Revascularization in PAD. Circ. Res. 2021, 128, 1885–1912. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Hamburg, N.M.; Creager, M.A. Contemporary Medical Management of Peripheral Artery Disease. Circ. Res. 2021, 128, 1868–1884. [Google Scholar] [CrossRef]
- Adabag, A.S.; Grandits, G.A.; Prineas, R.J.; Crow, R.S.; Bloomfield, H.E.; Neaton, J.D.; MRFIT Research Group. Relation of Heart Rate Parameters during Exercise Test to Sudden Death and All-Cause Mortality in Asymptomatic Men. Am. J. Cardiol. 2008, 101, 1437–1443. [Google Scholar] [CrossRef]
- Leeper, N.J.; Dewey, F.E.; Ashley, E.A.; Sandri, M.; Tan, S.Y.; Hadley, D.; Myers, J.; Froelicher, V. Prognostic Value of Heart Rate Increase at Onset of Exercise Testing. Circulation 2007, 115, 468–474. [Google Scholar] [CrossRef]
- Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Snader, C.E.; Lauer, M.S. Heart-Rate Recovery Immediately after Exercise as a Predictor of Mortality. N. Engl. J. Med. 1999, 341, 1351–1357. [Google Scholar] [CrossRef]
- Jouven, X.; Empana, J.-P.; Schwartz, P.J.; Desnos, M.; Courbon, D.; Ducimetière, P. Heart-Rate Profile during Exercise as a Predictor of Sudden Death. N. Engl. J. Med. 2005, 352, 1951–1958. [Google Scholar] [CrossRef]
- Arbel, Y.; Shenhar-Tsarfaty, S.; Waiskopf, N.; Finkelstein, A.; Halkin, A.; Revivo, M.; Berliner, S.; Herz, I.; Shapira, I.; Keren, G.; et al. Decline in Serum Cholinesterase Activities Predicts 2-Year Major Adverse Cardiac Events. Mol. Med. 2014, 20, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Goliasch, G.; Kleber, M.E.; Richter, B.; Plischke, M.; Hoke, M.; Haschemi, A.; Marculescu, R.; Endler, G.; Grammer, T.B.; Pilz, S.; et al. Routinely Available Biomarkers Improve Prediction of Long-Term Mortality in Stable Coronary Artery Disease: The Vienna and Ludwigshafen Coronary Artery Disease (VILCAD) Risk Score. Eur. Heart J. 2012, 33, 2282–2289. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, A.; Marniemi, J.; Inberg, M.; Maatela, J.; Alanen, E.; Niittymäki, K. Levels of Serum Lipids, Apolipoproteins A-I and B and Pseudocholinesterase Activity and Their Discriminative Values in Patients with Coronary by-Pass Operation. Atherosclerosis 1986, 59, 215–221. [Google Scholar] [CrossRef]
- Mito, T.; Takemoto, M.; Antoku, Y.; Tanaka, A.; Matsuo, A.; Hida, S.; Yoshitake, K.; Kosuga, K.-I.; Miura, S.-I. Influence of Serum Cholinesterase Levels on Patients Suspected of Having Stable Coronary Artery Disease. Intern. Med. 2020, 60, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Gremmel, T.; Wadowski, P.P.; Mueller, M.; Kopp, C.W.; Koppensteiner, R.; Panzer, S. Serum Cholinesterase Levels Are Associated with 2-Year Ischemic Outcomes After Angioplasty and Stenting for Peripheral Artery Disease. J. Endovasc. Ther. 2016, 23, 738–743. [Google Scholar] [CrossRef]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef]
- de Jonge, W.J.; van der Zanden, E.P.; The, F.O.; Bijlsma, M.F.; van Westerloo, D.J.; Bennink, R.J.; Berthoud, H.-R.; Uematsu, S.; Akira, S.; van den Wijngaard, R.M.; et al. Stimulation of the Vagus Nerve Attenuates Macrophage Activation by Activating the Jak2-STAT3 Signaling Pathway. Nat. Immunol. 2005, 6, 844–851. [Google Scholar] [CrossRef]
- Metz, C.N.; Tracey, K.J. It Takes Nerve to Dampen Inflammation. Nat. Immunol. 2005, 6, 756–757. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Yang, J. Cholinesterase Level Is a Predictor of Systemic Inflammatory Response Syndrome and Complications after Cardiopulmonary Bypass. Ann. Palliat. Med. 2021, 10, 11714–11720. [Google Scholar] [CrossRef]
- Rocha-Resende, C.; da Silva, A.M.; Prado, M.A.M.; Guatimosim, S. Protective and Anti-Inflammatory Effects of Acetylcholine in the Heart. Am. J. Physiol. Cell Physiol. 2020, 320, C155–C161. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Alves, I.; Coimbra-Campos, L.M.C.; Sancho, M.; da Silva, R.F.; Cortes, S.F.; Lemos, V.S. Role of the A7 Nicotinic Acetylcholine Receptor in the Pathophysiology of Atherosclerosis. Front. Physiol. 2020, 11, 621769. [Google Scholar] [CrossRef]
- Khuanjing, T.; Ongnok, B.; Maneechote, C.; Siri-Angkul, N.; Prathumsap, N.; Arinno, A.; Chunchai, T.; Arunsak, B.; Chattipakorn, S.C.; Chattipakorn, N. Acetylcholinesterase Inhibitor Ameliorates Doxorubicin-Induced Cardiotoxicity through Reducing RIP1-Mediated Necroptosis. Pharmacol. Res. 2021, 173, 105882. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-J.; Fu, H.; Tong, J.; Li, Y.-H.; Qu, L.-F.; Wang, P.; Shen, F.-M. Cholinergic Anti-Inflammatory Pathway Inhibits Neointimal Hyperplasia by Suppressing Inflammation and Oxidative Stress. Redox Biol. 2017, 15, 22–33. [Google Scholar] [CrossRef]
- Yu, J.-G.; Song, S.-W.; Shu, H.; Fan, S.-J.; Liu, A.-J.; Liu, C.; Guo, W.; Guo, J.-M.; Miao, C.-Y.; Su, D.-F. Baroreflex Deficiency Hampers Angiogenesis after Myocardial Infarction via Acetylcholine-A7-Nicotinic ACh Receptor in Rats. Eur. Heart J. 2011, 34, 2412–2420. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ma, M.; Song, Y.; Hua, Y.; Jia, H.; Liu, J.; Wang, Y. Exercise Attenuates Myocardial Ischemia-Reperfusion Injury by Regulating Endoplasmic Reticulum Stress and Mitophagy Through M(2) Acetylcholine Receptor. Antioxid. Redox Signal. 2023, 40, 209–221. [Google Scholar] [CrossRef]
- Kakinuma, Y.; Ando, M.; Kuwabara, M.; Katare, R.G.; Okudela, K.; Kobayashi, M.; Sato, T. Acetylcholine from Vagal Stimulation Protects Cardiomyocytes against Ischemia and Hypoxia Involving Additive Non-Hypoxic Induction of HIF-1alpha. FEBS Lett. 2005, 579, 2111–2118. [Google Scholar] [CrossRef]
- Xu, M.; Xue, R.-Q.; Lu, Y.; Yong, S.-Y.; Wu, Q.; Cui, Y.-L.; Zuo, X.-T.; Yu, X.-J.; Zhao, M.; Zang, W.-J. Choline Ameliorates Cardiac Hypertrophy by Regulating Metabolic Remodelling and UPRmt through SIRT3-AMPK Pathway. Cardiovasc. Res. 2019, 115, 530–545. [Google Scholar] [CrossRef]
- Liu, J.-J.; Li, D.-L.; Zhou, J.; Sun, L.; Zhao, M.; Kong, S.-S.; Wang, Y.-H.; Yu, X.-J.; Zhou, J.; Zang, W.-J. Acetylcholine Prevents Angiotensin II-Induced Oxidative Stress and Apoptosis in H9c2 Cells. Apoptosis 2011, 16, 94–103. [Google Scholar] [CrossRef]
- Li, M.; Zheng, C.; Sato, T.; Kawada, T.; Sugimachi, M.; Sunagawa, K. Vagal Nerve Stimulation Markedly Improves Long-Term Survival after Chronic Heart Failure in Rats. Circulation 2003, 109, 120–124. [Google Scholar] [CrossRef]
- Lara, A.; Damasceno, D.D.; Pires, R.; Gros, R.; Gomes, E.R.; Gavioli, M.; Lima, R.F.; Guimarães, D.; Lima, P.; Bueno, C.R., Jr.; et al. Dysautonomia Due to Reduced Cholinergic Neurotransmission Causes Cardiac Remodeling and Heart Failure. Mol. Cell. Biol. 2010, 30, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Ming, C.L.C.; Wang, X.; Gentile, C. Protective Role of Acetylcholine and the Cholinergic System in the Injured Heart. iScience 2024, 27, 110726. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, T.; Hang, P.; Li, W.; Guo, J.; Pan, Y.; Du, J.; Zheng, Y.; Du, Z. Choline Attenuates Cardiac Fibrosis by Inhibiting P38MAPK Signaling Possibly by Acting on M(3) Muscarinic Acetylcholine Receptor. Front. Pharmacol. 2019, 10, 1386. [Google Scholar] [CrossRef] [PubMed]
- Pabon, M.; Cheng, S.; Altin, S.E.; Sethi, S.S.; Nelson, M.D.; Moreau, K.L.; Hamburg, N.; Hess, C.N. Sex Differences in Peripheral Artery Disease. Circ. Res. 2022, 130, 496–511. [Google Scholar] [CrossRef]
- Bath, J.; Smith, J.B.; Kruse, R.L.; Vogel, T.R. Neutrophil-Lymphocyte Ratio Predicts Disease Severity and Outcome after Lower Extremity Procedures. J. Vasc. Surg. 2019, 72, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Teperman, J.; Carruthers, D.; Guo, Y.; Barnett, M.P.; Harris, A.A.; Sedlis, S.P.; Pillinger, M.; Babaev, A.; Staniloae, C.; Attubato, M.; et al. Relationship between Neutrophil-Lymphocyte Ratio and Severity of Lower Extremity Peripheral Artery Disease. Int. J. Cardiol. 2016, 228, 201–204. [Google Scholar] [CrossRef]
- Kurtul, A.; Ornek, E. Platelet to Lymphocyte Ratio in Cardiovascular Diseases: A Systematic Review. Angiology 2019, 70, 802–818. [Google Scholar] [CrossRef]
- Gary, T.; Pichler, M.; Belaj, K.; Hafner, F.; Gerger, A.; Froehlich, H.; Eller, P.; Pilger, E.; Brodmann, M. Neutrophil-to-Lymphocyte Ratio and Its Association with Critical Limb Ischemia in PAOD Patients. PLoS ONE 2013, 8, e56745. [Google Scholar] [CrossRef]
- Gary, T.; Pichler, M.; Belaj, K.; Hafner, F.; Gerger, A.; Froehlich, H.; Eller, P.; Rief, P.; Hackl, G.; Pilger, E.; et al. Platelet-to-Lymphocyte Ratio: A Novel Marker for Critical Limb Ischemia in Peripheral Arterial Occlusive Disease Patients. PLoS ONE 2013, 8, e67688. [Google Scholar] [CrossRef]
- Lee, S.; Hoberstorfer, T.; Wadowski, P.P.; Kopp, C.W.; Panzer, S.; Gremmel, T. Platelet-to-Lymphocyte and Neutrophil-to-Lymphocyte Ratios Predict Target Vessel Restenosis after Infrainguinal Angioplasty with Stent Implantation. J. Clin. Med. 2020, 9, 1729. [Google Scholar] [CrossRef]
- Arbănași, E.M.; Mureșan, A.V.; Coșarcă, C.M.; Kaller, R.; Bud, T.I.; Hosu, I.; Voidăzan, S.T.; Arbănași, E.M.; Russu, E. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio Impact on Predicting Outcomes in Patients with Acute Limb Ischemia. Life 2022, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Ozbeyaz, N.B.; Gokalp, G.; Gezer, A.E.; Algul, E.; Sahan, H.F.; Aydinyilmaz, F.; Guliyev, I.; Kalkan, K. Novel Marker for Predicting the Severity and Prognosis of Acute Pulmonary Embolism: Platelet-to-Hemoglobin Ratio. Biomark. Med. 2022, 16, 915–924. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, T.; Zhou, J. The Short-Term Prognostic Value of Serum Platelet to Hemoglobin in Patients with Type A Acute Aortic Dissection. Perfusion 2020, 37, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Bao, K.; Huang, H.; Huang, G.; Wang, J.; Liao, Y.; Pan, Y.; Chen, W.; Lu, J.; Yang, Y.; Huang, Z.; et al. Platelet-to-Hemoglobin Ratio as a Valuable Predictor of Long-Term All-Cause Mortality in Coronary Artery Disease Patients with Congestive Heart Failure. BMC Cardiovasc. Disord. 2021, 21, 618. [Google Scholar] [CrossRef]
- Işık, F.; Soner, S. Platelet-to-Hemoglobin Ratio Is an Important Predictor of In-Hospital Mortality in Patients with ST-Segment Elevation Myocardial Infarction. Cureus 2022, 14, e26833. [Google Scholar] [CrossRef] [PubMed]
- Ozbeyaz, N.B.; Gokalp, G.; Algul, E.; Sahan, H.F.; Aydinyilmaz, F.; Guliyev, I.; Kalkan, K.; Erken Pamukcu, H. Platelet-Hemoglobin Ratio Predicts Amputation in Patients with below-Knee Peripheral Arterial Disease. BMC Cardiovasc. Disord. 2022, 22, 337. [Google Scholar] [CrossRef]
- Mitteregger, M. Hämatologische Parameter und der Zusammenhang Mit Einer Stenose der Beckenarterien in Patient:Innen Mit Peripherer Arterieller Verschlusskrankheit Eine Explorative Retrospektive Datenanalyse. Diploma Thesis, Medical University of Vienna, Vienna, Austria, 2024. [Google Scholar]
- Irawan, C.; Rachman, A.; Rahman, P.; Mansjoer, A. Role of Pretreatment Hemoglobin-to-Platelet Ratio in Predicting Survival Outcome of Locally Advanced Nasopharyngeal Carcinoma Patients. J. Cancer Epidemiol. 2021, 2021, 1103631. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, S.; Chen, S.; Qin, S.; Chen, H.; Qin, S.; Huang, Z.; Zhou, F.; Qin, X. Diagnostic Value of Hematological Parameters Platelet to Lymphocyte Ratio and Hemoglobin to Platelet Ratio in Patients with Colon Cancer. Clin. Chim. Acta 2019, 501, 48–52. [Google Scholar] [CrossRef]
- Albisinni, S.; Moussa, I.; Aoun, F.; Quackels, T.; Assenmacher, G.; Peltier, A.; Roumeguère, T. The Impact of Postoperative Inflammatory Biomarkers on Oncologic Outcomes of Bladder Cancer. Prog. Urol. 2019, 29, 270–281. [Google Scholar] [CrossRef]
- Turak, O.; Ozcan, F.; Isleyen, A.; Tok, D.; Sokmen, E.; Buyukkaya, E.; Aydogdu, S.; Akpek, M.; Kaya, M.G. Usefulness of the Neutrophil-to-Lymphocyte Ratio to Predict Bare-Metal Stent Restenosis. Am. J. Cardiol. 2012, 110, 1405–1410. [Google Scholar] [CrossRef]
- Spark, J.I.; Sarveswaran, J.; Blest, N.; Charalabidis, P.; Asthana, S. An Elevated Neutrophil-Lymphocyte Ratio Independently Predicts Mortality in Chronic Critical Limb Ischemia. J. Vasc. Surg. 2010, 52, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, K.; Otsuka, F.; Sakakura, K.; Sanchez, O.D.; Kutys, R.; Ladich, E.; Kolodgie, F.D.; Virmani, R.; Joner, M. Pathophysiology of Superficial Femoral Artery In-Stent Restenosis. J. Cardiovasc. Surg. 2014, 55, 307–323. [Google Scholar]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory Mechanisms in Obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. Am. J. Physiol. Cell Physiol. 2020, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Ha, Z.Y.; Mathew, S.; Yeong, K.Y. Butyrylcholinesterase: A Multifaceted Pharmacological Target and Tool. Curr. Protein Pept. Sci. 2020, 21, 99–109. [Google Scholar] [CrossRef]
- Satapathy, S.K.; Ochani, M.; Dancho, M.; Hudson, L.K.; Rosas-Ballina, M.; Valdes-Ferrer, S.I.; Olofsson, P.S.; Harris, Y.T.; Roth, J.; Chavan, S.; et al. Galantamine Alleviates Inflammation and Other Obesity-Associated Complications in High-Fat Diet-Fed Mice. Mol. Med. 2011, 17, 599–606. [Google Scholar] [CrossRef]
- Schetz, M.; De Jong, A.; Deane, A.M.; Druml, W.; Hemelaar, P.; Pelosi, P.; Pickkers, P.; Reintam-Blaser, A.; Roberts, J.; Sakr, Y.; et al. Obesity in the Critically Ill: A Narrative Review. Intensive Care Med. 2019, 45, 757–769. [Google Scholar] [CrossRef]
- Tvarijonaviciute, A.; Tecles, F.; Ceron, J.J. Relationship between Serum Butyrylcholinesterase and Obesity in Dogs: A Preliminary Report. Vet. J. 2009, 186, 197–200. [Google Scholar] [CrossRef]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [CrossRef]
- Tobe, K.; Ogura, T.; Tsukamoto, C.; Imai, A.; Matsuura, K.; Iwasaki, Y.; Shimomura, H.; Higashi, T.; Tsuji, T. Relationship between Serum Leptin and Fatty Liver in Japanese Male Adolescent University Students. Am. J. Gastroenterol. 1999, 94, 3328–3335. [Google Scholar] [CrossRef]
- Markuskova, L.; Javorova Rihova, Z.; Fazekas, T.; Martinkovicova, A.; Havrisko, M.; Dingova, D.; Solavova, M.; Rabarova, D.; Hrabovska, A. Serum Butyrylcholinesterase as a Marker of COVID-19 Mortality: Results of the Monocentric Prospective Observational Study. Chem. Biol. Interact. 2023, 381, 110557. [Google Scholar] [CrossRef] [PubMed]
- Wadowski, P.P.; Piechota-Polańczyk, A.; Andreas, M.; Kopp, C.W. Cardiovascular Disease Management in the Context of Global Crisis. Int. J. Environ. Res. Public Health 2022, 20, 689. [Google Scholar] [CrossRef] [PubMed]
- Wadowski, P.P.; Panzer, B.; Józkowicz, A.; Kopp, C.W.; Gremmel, T.; Panzer, S.; Koppensteiner, R. Microvascular Thrombosis as a Critical Factor in Severe COVID-19. Int. J. Mol. Sci. 2023, 24, 2492. [Google Scholar] [CrossRef]
- Panzer, B.; Kopp, C.W.; Neumayer, C.; Koppensteiner, R.; Jozkowicz, A.; Poledniczek, M.; Gremmel, T.; Jilma, B.; Wadowski, P.P. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023, 12, 1865. [Google Scholar] [CrossRef] [PubMed]
- Panagiotides, N.G.; Poledniczek, M.; Andreas, M.; Hülsmann, M.; Kocher, A.A.; Kopp, C.W.; Piechota-Polanczyk, A.; Weidenhammer, A.; Pavo, N.; Wadowski, P.P. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Panagiotides, N.G.; Zimprich, F.; Machold, K.; Schlager, O.; Müller, M.; Ertl, S.; Löffler-Stastka, H.; Koppensteiner, R.; Wadowski, P.P. A Case of Autoimmune Small Fiber Neuropathy as Possible Post COVID Sequelae. Int. J. Environ. Res. Public Health 2023, 20, 4918. [Google Scholar] [CrossRef]
- Hileman, C.O.; Malakooti, S.K.; Patil, N.; Singer, N.G.; McComsey, G.A. New-Onset Autoimmune Disease after COVID-19. Front. Immunol. 2024, 15, 1337406. [Google Scholar] [CrossRef]
- Gremmel, T.; Mueller, M.; Koppensteiner, R.; Panzer, S. Liver Function Is Associated with Response to Clopidogrel Therapy in Patients Undergoing Angioplasty and Stenting. Angiology 2015, 67, 835–839. [Google Scholar] [CrossRef]
- Kato, T. Cholinesterase: Conflicting Aspects of Two Cardiovascular Diseases. Intern. Med. 2020, 60, 1143–1144. [Google Scholar] [CrossRef]
- Santarpia, L.; Grandone, I.; Contaldo, F.; Pasanisi, F. Butyrylcholinesterase as a Prognostic Marker: A Review of the Literature. J. Cachexia Sarcopenia Muscle 2012, 4, 31–39. [Google Scholar] [CrossRef]
- Areekul, S.; Srichairat, S.; Churdchu, K.; Yamarat, P.; Viravan, C. Serum Cholinesterase Activity in Patients with Malaria Infection. Southeast Asian J. Trop. Med. Public Health 1980, 11, 498–501. [Google Scholar] [PubMed]
- Djojodibroto, R.D.; Santoso, B.; Ngatidjan; Soetrisno, U. Serum Cholinesterase Activity in Patients with Dengue Haemorrhagic Fever. Trop. Geogr. Med. 1978, 30, 351–353. [Google Scholar]
- Poojary, T.L.; Sudha, K.; Sowndarya, k.; Kumarachandra, R.; Durgarao, Y. Biochemical Role of Zinc in Dengue Fever. J. Nat. Sci. Biol. Med. 2021, 12, 131. [Google Scholar]
- Vaknine, S.; Soreq, H. Central and Peripheral Anti-Inflammatory Effects of Acetylcholinesterase Inhibitors. Neuropharmacology 2020, 168, 108020. [Google Scholar] [CrossRef] [PubMed]
- Soreq, H.; Seidman, S. Acetylcholinesterase—New Roles for an Old Actor. Nat. Rev. Neurosci. 2001, 2, 294–302. [Google Scholar] [CrossRef]
- Gersh, F.; O’Keefe, J.H.; Elagizi, A.; Lavie, C.J.; Laukkanen, J.A. Estrogen and Cardiovascular Disease. Prog. Cardiovasc. Dis. 2024, 84, 60–67. [Google Scholar] [CrossRef]
- Iorga, A.; Cunningham, C.M.; Moazeni, S.; Ruffenach, G.; Umar, S.; Eghbali, M. The Protective Role of Estrogen and Estrogen Receptors in Cardiovascular Disease and the Controversial Use of Estrogen Therapy. Biol. Sex. Differ. 2017, 8, 33. [Google Scholar] [CrossRef]
Clinical Characteristics and Comorbidities | Claudication (Fontaine II) | Critical Ischemia (Fontaine III & IV) | p-Value |
---|---|---|---|
Female/male gender [n] | 46/77 | 12/13 | 0.372 |
Age [yrs; m (IQR)] | 65 (59–70) | 73 (67–81) | <0.001 |
BMI [kg/m2,m (IQR)] | 26.96 (23.44–29.32) | 23.11 (20.8–28.63) | 0.042 |
Smoking [n] | 116 | 24 | 1 |
Hyperlipidemia [n] | 113 | 25 | 0.213 |
Type I Diabetes Mellitus [n] | 1 | 2 | 0.074 |
Type II Diabetes Mellitus [n] | 44 | 10 | 0.820 |
Hypertension [n] | 111 | 20 | 0.168 |
Obesity [n] | 24 | 3 | 0.570 |
CAD [n] | 36 | 15 | 0.005 |
Carotid artery disease [n] | 41 | 9 | 0.819 |
CKD [n] | 12 | 8 | 0.007 |
COPD [n] | 23 | 4 | 1 |
Atrial fibrillation und flutter [n] | 14 | 4 | 0.509 |
Hypothyroidism [n] | 11 | 1 | 0.691 |
Previous restenosis of the common or external iliac artery [n] | 26 | 6 | 0.791 |
Previous Stroke [n] | 4 | 3 | 0.094 |
Previous TIA [n] | 1 | 0 | 1 |
Previous venous thrombo-embolic event [n] | 4 | 1 | 1 |
Previous Myocardial infarction [n] | 15 | 7 | 0.061 |
Acetylsalicylic acid [n] | 99 | 20 | 1 |
Clopidogrel [n] | 45 | 14 | 0.078 |
Direct oral anticoagulants [n] | 8 | 3 | 0.397 |
Cumarine [n] | 4 | 2 | 0.267 |
Low molecular weight heparin [n] | 10 | 3 | 0.461 |
ACE inhibitor or ARB [n] | 85 | 15 | 0.482 |
Ca2+ channel blocker [n] | 47 | 9 | 1 |
Alpha-blocker [n] | 14 | 3 | 1 |
Beta-blocker [n] | 60 | 13 | 0.828 |
Protone pump inhibitor [n] | 72 | 17 | 0.502 |
Lipid lowering agent [n] | 106 | 17 | 0.039 |
Diuretics [n] | 51 | 17 | 0.026 |
Oral antidiabetics [n] | 31 | 7 | 0.804 |
GLP-1 receptor agonist [n] | 4 | 1 | 1 |
Insulin [n] | 16 | 5 | 0.355 |
Fontaine Stages | II | III | IV | III and IV | p (Between Fontaine Stages II and IV) | p (Between Fontaine Stages II and III + IV) |
---|---|---|---|---|---|---|
PLR | 130.59 (93.68–169.29) | 121.88 (72.07–157.32) | 172.4 (123.76–251.78) | 152.31 (118.21–216.96) | 0.013 | 0.053 |
NLR | 2.7 (2.06–3.64) | 2.63 (1.33–3.53) | 3.58 (2.7–6.14) | 3.43 (2.51–5.45) | 0.014 | 0.08 |
HPR | 0.06 (0.05–0.07) | 0.07 (0.04–0.08) | 0.05 (0.03–0.06) | 0.05 (0.03–0.07) | 0.01 | 0.039 |
ChE (mg/dL) | 7.76 (6.55–8.7) | 7.17 (6.81–8.28) | 6.33 (5.51–7.25) | 6.77 (5.85–7.48) | 0.001 | 0.004 |
Correlations | ChE | δPSV |
---|---|---|
NLR | ||
Correlation coefficient (r) | −0.303 | −0.35 |
p-value | <0.001 | 0.668 |
PLR | ||
Correlation coefficient (r) | −0.162 | −0.26 |
p-value | 0.049 | 0.750 |
HPR | ||
Correlation coefficient (r) | 0.122 | 0.081 |
p-value | 0.140 | 0.325 |
Correlations | ChE |
---|---|
δPSV | |
Correlation coefficient (r) | −0.028 |
p-value | 0.737 |
Age | |
Correlation coefficient (r) | −0.122 |
p-value | 0.137 |
BMI | |
Correlation coefficient (r) | 0.298 |
p-value | <0.001 |
Thrombocytes | |
Correlation coefficient (r) | 0.062 |
p-value | 0.450 |
Leucocytes | |
Correlation coefficient (r) | 0.011 |
p-value | 0.889 |
CRP | |
Correlation coefficient (r) | −0.140 |
p-value | 0.089 |
Fibrinogen | |
Correlation coefficient (r) | 0.069 |
p-value | 0.404 |
Clinical Characteristics and Laboratory Measures | Women (n = 58) | Men (n = 92) | p-Value |
---|---|---|---|
δPSV (m/s) | 2.9 (2.02–3.5) | 3.1 (2.21–4.18) | 0.155 |
Age (yrs) | 70 (64–77) | 64 (59–70) | <0.001 |
BMI (kg/m2) | 24.28 (21.43–29.21) | 27.27 (23.83–29.18) | 0.024 |
PLR | 148.92 (104.65–191) | 124.63 (94.3–161.56) | 0.076 |
NLR | 2.91 (2.26–4.06) | 2.73 (2.06–4.16) | 0.628 |
HPR | 0.05 (0.04–0.06) | 0.06 (0.05–0.07) | <0.001 |
ChE (mg/dL) | 7.54 (6.53–8.44) | 7.54 (6.36–8.68) | 0.963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitteregger, M.; Steiner, S.; Willfort-Ehringer, A.; Gremmel, T.; Koppensteiner, R.; Gschwandtner, M.; Ritter-Hobl, E.-L.; Kopp, C.W.; Wadowski, P.P. Cholinesterase and Inflammation: Exploring Its Role and Associations with Inflammatory Markers in Patients with Lower Extremity Artery Disease. Biomedicines 2025, 13, 823. https://doi.org/10.3390/biomedicines13040823
Mitteregger M, Steiner S, Willfort-Ehringer A, Gremmel T, Koppensteiner R, Gschwandtner M, Ritter-Hobl E-L, Kopp CW, Wadowski PP. Cholinesterase and Inflammation: Exploring Its Role and Associations with Inflammatory Markers in Patients with Lower Extremity Artery Disease. Biomedicines. 2025; 13(4):823. https://doi.org/10.3390/biomedicines13040823
Chicago/Turabian StyleMitteregger, Maximilian, Sabine Steiner, Andrea Willfort-Ehringer, Thomas Gremmel, Renate Koppensteiner, Michael Gschwandtner, Eva-Luise Ritter-Hobl, Christoph W. Kopp, and Patricia P. Wadowski. 2025. "Cholinesterase and Inflammation: Exploring Its Role and Associations with Inflammatory Markers in Patients with Lower Extremity Artery Disease" Biomedicines 13, no. 4: 823. https://doi.org/10.3390/biomedicines13040823
APA StyleMitteregger, M., Steiner, S., Willfort-Ehringer, A., Gremmel, T., Koppensteiner, R., Gschwandtner, M., Ritter-Hobl, E.-L., Kopp, C. W., & Wadowski, P. P. (2025). Cholinesterase and Inflammation: Exploring Its Role and Associations with Inflammatory Markers in Patients with Lower Extremity Artery Disease. Biomedicines, 13(4), 823. https://doi.org/10.3390/biomedicines13040823