Protective Effects of Physalis angulata on Podocythopathies Through B-Cell-Activating Factor Inhibition in Doxorubicin-Induced Nephrotic Syndrome Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Physalis angulata Extraction
2.3. Animal Model
2.4. Measurement of Proteinuria and Biochemical Markers
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Immunoflourescence
2.7. Data Analysis
3. Results
3.1. Serum and Kidney BAFF Levels
3.2. IL-4 and IgG Anti-Nephrin
3.3. Reduction in Proteinuria
3.4. Podocytopathy Markers
3.4.1. Nephrin
3.4.2. Podocalyxin
3.4.3. GLEPP-1
4. Discussion
4.1. Role of BAFF Inhibition
4.2. Effects of Physalis angulata in IL-4 and Anti-Nephrin IgG
4.3. Proteinuria
4.4. Protective Effects of Physalis angulata
4.4.1. Nephrin in Renal Tissue and Urine
4.4.2. Podocalyxin in Renal Tissue and Urine
4.4.3. GLEPP-1 in Renal Tissue
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAFF | B-cell-activating factor |
BCMA | Protein Maturation of B Cells |
DAMPs | danger-associated molecular patterns |
IL-4 | Interleukin-4 |
GLEPP-1 | glomerular epithelial protein 1 |
ELISA | Enzyme-Linked Immunosorbent Assay |
FSGS | Focal Segmental Glomerulosclerosis |
PAMPs | pathogen-associated molecular patterns |
TACI | Transmembrane Activator and CAML Interactor |
References
- Tapia, C.; Bashir, K. Nephrotic Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://pubmed.ncbi.nlm.nih.gov/29262216/ (accessed on 9 August 2024).
- Maulana, M.G.; Fitriana, E.I.; Liana, P.; Lestari, H.I.; Dalilah. Risk Factors for Progressive Chronic Kidney Disease in Children with Idiopathic Nephrotic Syndrome at Dr. Mohammad Hoesin General Hospital Palembang. Open Access Indones. J. Med. Rev. 2023, 3, 350–355. [Google Scholar] [CrossRef]
- Forero-Delgadillo, J.; Ochoa, V.; Restrepo, J.M.; Torres-Canchala, L.; Nieto-Aristizábal, I.; Ruiz-Ordoñez, I.; Sánchez, A.; Barrera, M.C.; Jimenez, C.A.; Tobón, G.J. B-cell activating factor (BAFF) and its receptors’ expression in pediatric nephrotic syndrome is associated with worse prognosis. PLoS ONE 2022, 17, e0277800. [Google Scholar] [CrossRef] [PubMed]
- Uwaezuoke, S.N. Childhood Idiopathic Nephrotic Syndrome as a Podocytopathy. In Glomerulonephritis and Nephrotic Syndrome; Intechopen: London, UK, 2019; pp. 1–11. [Google Scholar]
- Kopp, J.B.; Anders, H.J.; Susztak, K.; Podestà, M.A.; Remuzzi, G.; Hildebrandt, F.; Romagnani, P. Podocytopathies. Nat. Rev. Dis. Primers 2020, 6, 68. [Google Scholar] [CrossRef]
- Sharma, S.; Smyth, B. From proteinuria to fibrosis: An update on pathophysiology and treatment options. Kidney Blood Press. Res. 2021, 46, 411–420. [Google Scholar] [CrossRef]
- Mesfine, B.B.; Vojisavljevic, D.; Kapoor, R.; Watson, D.; Kandasamy, Y.; Rudd, D. Urinary nephrin—A potential marker of early glomerular injury: A systematic review and meta-analysis. J. Nephrol. 2023, 37, 39–51. [Google Scholar] [CrossRef]
- Mallipattu, S.K.; Kravets, I. The Role of Podocytes and Podocyte-Associated Biomarkers in Diagnosis and Treatment of Diabetic Kidney Disease. J. Endocr. Soc. 2020, 4, bvaa029. [Google Scholar]
- Kostovska, I.; Trajkovska, T.; Topuzovska, S.; Cekovska, S.; Spasovski, G.; Kostovski, O.; Labudovic, D. Urinary nephrin is earlier, more sensitive and specific marker of diabetic nephropathy than microalbuminuria Urinarni nefrin je raniji, osetljiviji i specifičniji marker dijabetesne nefropatije nego mikroalbuminurija. J. Med. Biochem. 2019, 39, 83–90. [Google Scholar]
- Imaizumi, T.; Nakatochi, M.; Akiyama, S.; Yamaguchi, M.; Kurosawa, H.; Hirayama, Y.; Katsuno, T.; Tsuboi, N.; Hara, M.; Maruyama, S. Urinary podocalyxin as a biomarker to diagnose membranous nephropathy. PLoS ONE 2016, 11, e0163507. [Google Scholar] [CrossRef]
- Jackson, S.W.; Davidson, A. BAFF inhibition in SLE—Is tolerance restored? Immunol. Rev. 2019, 292, 102–119. [Google Scholar] [CrossRef]
- Vivarelli, M.; Colucci, M.; Gargiulo, A.; Bettini, C.; Lo Russo, A.; Emma, F. Belimumab for the treatment of children with frequently relapsing nephrotic syndrome: The BELNEPH study. Pediatr. Nephrol. 2022, 37, 377–383. [Google Scholar] [CrossRef]
- Sheba, S.H.; Setiani, N.A.; Sutjiatmo, A.B.; Vikasari, S.N.; Sukandar, E.Y. Combination Effect of Cecendet (Physalisangulata L.) Extract and Methylprednisolone in Reducing Inflammation and Improving Renal Functions in Pristane-induced Lupus Rat Models. Maj. Kedokt. Bdg. 2019, 51, 17–24. [Google Scholar] [CrossRef]
- Meira, C.S.; Soares, J.W.C.; dos Reis, B.P.Z.C.; Pacheco, L.V.; Santos, I.P.; Silva, D.K.C.; de Lacerda, J.C.; Daltro, S.R.; Guimarães, E.T.; Soares, M.B. Therapeutic Applications of Physalins: Powerful Natural Weapons. Front. Pharmacol. 2022, 13, 864714. [Google Scholar] [CrossRef] [PubMed]
- Mastuti, R.; Rosyidah, M. In Vitro Environmental Stresses for Enhancing Withanolides Production in Physalis angulata L. IOP Conf. Ser. Earth Environ. Sci. 2019, 239, 012011. [Google Scholar] [CrossRef]
- Nugrahenny, D.; Permatasari, N.; Saifur Rohman, M. Physalis minima Leaves Extract Induces Re-Endothelialization in Deoxycorticosterone Acetate-Salt-Induced Endothelial Dysfunction in Rats. Res. J. Life Sci. 2017, 4, 199–208. [Google Scholar] [CrossRef]
- Nugrahenny, D.; Permatasari, N.; Soeharto, S.; Rahayu, I.D.; Widodo, E.; Mintaroem, K.; Sujuti, H.; Ratnawati, R.; Mayangsari, E.; Irnandi, D.F.; et al. Physalis angulata Leaf Ethanol Extract Reduces Oxidative Stress and Improves Endothelial Progenitor Cells in L-NAME-Induced Hypertensive Rats. HAYATI J. Biosci. 2023, 30, 81–87. [Google Scholar] [CrossRef]
- Nugrahenny, D.; Rudijanto, A.; Permatasari, N.; Wiyasa, I.W.A.; Widodo, M.A.; Mintaroem, K.; Widjajanto, E.; Mustofa, M. Physalis angulata leaf extract ameliorates L-N G-nitroarginine methyl ester (L-NAME)-induced preeclampsia symptoms in rats through improved endothelial progenitor cells and endothelial cells due to reduced antiangiogenic factor and oxidative stress. F1000Research 2022, 11, 780. [Google Scholar] [CrossRef]
- Wang, J.; Asanuma, K.; Hidaka, T.; Sasaki, Y.; Tanaka, E.; Takagi-Akiba, M.; Trejo, J.A.O.; Tomino, Y. Newly Identified Molecules Related to Podocyte Injury Induced by Adriamycin. Juntendo Med. J. 2015, 61, 34–40. [Google Scholar] [CrossRef]
- Sutariya, B.; Saraf, M. α-asarone reduce proteinuria by restoring antioxidant enzymes activities and regulating necrosis factor κB signaling pathway in doxorubicin-induced nephrotic syndrome. Biomed. Pharmacother. 2018, 98, 318–324. [Google Scholar] [CrossRef]
- Pescovitz, M.D.; Greenbaum, C.J.; Krause-Steinrauf, H.; Becker, D.J.; Gitelman, S.E.; Goland, R.; Gottlieb, P.A.; Marks, J.B.; McGee, P.F.; Moran, A.M.; et al. Rituximab, B-Lymphocyte Depletion, and Preservation of Beta-Cell Function. Physiol. Behav. 2009, 361, 678–687. [Google Scholar] [CrossRef]
- Ravani, P.; Bonanni, A.; Rossi, R.; Caridi, G.; Ghiggeri, G.M. Anti-CD20 antibodies for idiopathic nephrotic syndrome in children. Clin. J. Am. Soc. Nephrol. 2016, 11, 710–720. [Google Scholar] [CrossRef]
- Colucci, M.; Oniszczuk, J.; Vivarelli, M.; Audard, V. B-Cell Dysregulation in Idiopathic Nephrotic Syndrome: What We Know and What We Need to Discover. Front. Immunol. 2022, 13, 823204. [Google Scholar] [CrossRef] [PubMed]
- Kardani, A.K.; Subandiyah, K. Peran B Cell Activating Factor (BAFF) pada Penatalaksanaan Sindrom Nefrotik: Sebuah Paradigma Baru. J. Klin. Ris. Kesehat. 2023, 3, 33–44. [Google Scholar]
- Dossier, C.; Jamin, A.; Deschênes, G. Idiopathic nephrotic syndrome: The EBV hypothesis. Pediatr. Res. 2017, 81, 233–239. [Google Scholar] [CrossRef]
- Angeletti, A.; Lugani, F.; La Porta, E.; Verrina, E.; Caridi, G.; Ghiggeri, G.M. Vaccines and nephrotic syndrome: Efficacy and safety. Pediatr. Nephrol. 2022, 38, 2915–2928. [Google Scholar] [CrossRef]
- Carrillo-Ballesteros, F.J.; Oregon-Romero, E.; Franco-Topete, R.A.; Govea-Camacho, L.H.; Cruz, A.; Munoz-Valle, J.F.; Bustos-Rodríguez, F.J.; Pereira-Suárez, A.L.; Palafox-Sánchez, C.A. B-cell activating factor receptor expression is associated with germinal center B-cell maintenance. Exp. Ther. Med. 2019, 17, 2053–2060. [Google Scholar] [CrossRef]
- Kumric, M.; Zivkovic, P.M.; Kurir, T.T.; Vrdoljak, J.; Vilovic, M.; Martinovic, D.; Bratanic, A.; Lizatovic, I.K.; Bozic, J. Role of b-cell activating factor (Baff) in inflammatory bowel disease. Diagnostics 2022, 12, 45. [Google Scholar] [CrossRef]
- Uzzan, M.; Colombel, J.F.; Cerutti, A.; Treton, X.; Mehandru, S. B Cell-Activating Factor (BAFF)-Targeted B Cell Therapies in Inflammatory Bowel Diseases. Dig. Dis. Sci. 2016, 61, 3407–3424. [Google Scholar] [CrossRef]
- Jamaly, S.; Rakaee, M.; Abdi, R.; Tsokos, G.C.; Fenton, K.A. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun. Rev. 2021, 20, 102980. [Google Scholar] [CrossRef]
- Beltagy, A.; Taleb, R.S.Z.; Allam, M.; Abd El-Kader, R.; Al-Girby, A.; Abdelati, A. Expression of B-cell activating factor (BAFF) in proliferative lupus nephritis, revisited. Alex. J. Med. 2024, 60, 147–156. [Google Scholar] [CrossRef]
- Adnyana, I.K.; Yulinah, E.; Maeistuti, N.; Setiawan, F. Evaluation of Ethanolic Extracts of Mullaca (Physalis angulata L.) Herbs for Treatment of Lupus Disease in Mice Induced Pristane. Procedia Chem. 2014, 13, 186–193. [Google Scholar] [CrossRef]
- Angela, T.B.; Ekastuti, D.R.; Adnyane, I.K.M.; Satyaningtijas, A.S. The Potential of Ciplukan Leaf Extract (Physalis angulata L.) to Improve Kidney Function. Acta VETERINARIA Indones. 2023, 11, 9–16. [Google Scholar]
- Kardani, A.K.; Fitri, L.E.; Samsu, N.; Subandiyah, K.; Endharti, A.T.; Nugrahenny, D.; Wibowo, S. Inhibition of B-cell activating factor activity using active compounds from Physalis angulata in the mechanism of nephrotic syndrome improvement: A computational approach. Narra J. 2024, 4, e859. [Google Scholar] [CrossRef] [PubMed]
- Colucci, M.; Carsetti, R.; Cascioli, S.; Serafinelli, J.; Emma, F.; Vivarelli, M. B cell phenotype in pediatric idiopathic nephrotic syndrome. Pediatr. Nephrol. 2019, 34, 177–181. [Google Scholar] [CrossRef]
- Colucci, M.; Corpetti, G.; Emma, F.; Vivarelli, M. Immunology of idiopathic nephrotic syndrome. Pediatr. Nephrol. 2018, 33, 573–584. [Google Scholar] [CrossRef]
- Marín-Rosales, M.; Palafox-Sánchez, C.A.; Franco-Topete, R.A.; Carrillo-Ballesteros, F.J.; Cruz, A.; Salazar-Camarena, D.C.; Muñoz-Valle, J.F.; Ramos-Solano, F. Renal Tissue Expression of BAFF and BAFF Receptors Is Associated with Proliferative Lupus Nephritis. J. Clin. Med. 2023, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Shen, Y.; Chen, X.W.; Yan, Y.C.; Wu, F.X.; Dai, M.; Li, T.; Yang, C.-D. The characteristics and significance of locally infiltrating B Cells in lupus nephritis and their association with local BAFF expression. Int. J. Rheumatol. 2013, 2013, 954292. [Google Scholar] [CrossRef]
- Townsend, M.J.; Monroe, J.G.; Chan, A.C. B-cell targeted therapies in human autoimmune diseases: An updated perspective. Immunol. Rev. 2010, 237, 264–283. [Google Scholar] [CrossRef]
- Kim, A.H.J.; Chung, J.J.; Akilesh, S.; Koziell, A.; Jain, S.; Hodgin, J.B.; Miller, M.J.; Stappenbeck, T.S.; Miner, J.H.; Shaw, A.S. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight. 2017, 2, e81836. [Google Scholar] [CrossRef]
- Rengifo-Salgado, E.; Vargas-Arana, G. Physalis angulata L. (Bolsa mullaca): A review of its traditional uses, chemistry and pharmacology. Bol. Latinoam. Caribe Plantas Med. Aromat. 2013, 12, 431–445. [Google Scholar]
- Eddy, A.A.; Symons, J.M. Nephrotic syndrome in childhood. Lancet 2003, 362, 629–639. [Google Scholar] [CrossRef]
- Noone, D.G.; Iijima, K.; Parekh, R. Idiopathic nephrotic syndrome in children. Lancet 2018, 392, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Downie, M.L.; Gallibois, C.; Parekh, R.S.; Noone, D.G. Nephrotic syndrome in infants and children: Pathophysiology and management. Paediatr. Int. Child. Health 2017, 37, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Bökenkamp, A. Proteinuria—Take a closer look! Pediatr. Nephrol. 2020, 35, 533–541. [Google Scholar] [CrossRef]
- Davin, J.C. The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr. Nephrol. 2016, 31, 207–215. [Google Scholar] [CrossRef]
- de Gruijter, N.M.; Jebson, B.; Rosser, E.C. Cytokine production by human B cells: Role in health and autoimmune disease. Clin. Exp. Immunol. 2022, 210, 253–262. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, G.; Chen, X.; Chen, X.; Guo, N.; Li, W. BAFF is involved in the pathogenesis of IgA nephropathy by activating the TRAF6/NF-KB signaling pathway in glomerular mesangial cells. Mol. Med. Rep. 2020, 21, 795–805. [Google Scholar]
- Colucci, M.; Carsetti, R.; Cascioli, S.; Casiraghi, F.; Perna, A.; Ravà, L.; Ruggiero, B.; Emma, F.; Vivarelli, M. B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. 2016, 27, 1811–1822. [Google Scholar] [CrossRef]
- Verma, R.; Venkatareddy, M.; Kalinowski, A.; Li, T.; Kukla, J.; Mollin, A.; Cara-Fuentes, G.; Patel, S.R.; Garg, P. Nephrin is necessary for podocyte recovery following injury in an adult mature glomerulus. PLoS ONE 2018, 13, e0198013. [Google Scholar] [CrossRef]
- Watts, A.J.B.; Keller, K.H.; Lerner, G.; Rosales, I.; Collins, A.B.; Sekulic, M.; Waikar, S.S.; Chandraker, A.; Riella, L.V.; Alexander, M.P. Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology. J. Am. Soc. Nephrol. 2022, 33, 238–252. [Google Scholar] [CrossRef]
- Horinouchi, T. Anti-nephrin antibodies in idiopathic nephrotic syndrome in Japanese children. Res. Sq. 2023, 1–13. [Google Scholar] [CrossRef]
- Kostovska, I.; Trajkovska, K.T.; Topuzovska, S.; Cekovska, S.; Labudovic, D.; Kostovski, O.; Spasovski, G. Chapter One—Nephrinuria and podocytopathies. In Makowski GSBTA in CC; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–36. Available online: https://www.sciencedirect.com/science/article/pii/S0065242321000627 (accessed on 17 October 2024).
- Kostovska, I.; Trajkovska, K.T.; Cekovska, S.; Spasovski, G.; Labudovic, D. Nephrin and podocalyxin—New podocyte proteins for early detection of secondary nephropathies. BANTAO J. 2016, 14, 11–16. [Google Scholar] [CrossRef]
- Takeuchi, K.; Naito, S.; Kawashima, N.; Ishigaki, N.; Sano, T.; Kamata, K.; Takeuchi, Y. New Anti-Nephrin Antibody Mediated Podocyte Injury Model Using a C57BL/6 Mouse Strain. Nephron 2018, 138, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Wendt, R.; Sobhani, A.; Diefenhardt, P.; Trappe, M.; Völker, L.A. An Updated Comprehensive Review on Diseases Associated with Nephrotic Syndromes. Biomedicines 2024, 12, 2259. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, B.L.; Li, L. Clinical significance of determining urinary podocalyxin level in children with primary nephrotic syndrome. Zhongguo Dang Dai Er Ke Za Zhi 2012, 14, 332–335. [Google Scholar] [PubMed]
- Stone, H.; Magella, B.; Bennett, M.R. The Search for Biomarkers to Aid in Diagnosis, Differentiation, and Prognosis of Childhood Idiopathic Nephrotic Syndrome. Front. Pediatr. 2019, 7, 404. [Google Scholar] [CrossRef]
- MacHado, J.R.; Rocha, L.P.; Neves, P.D.M.D.M.; Cobô, E.D.C.; Silva, M.V.; Castellano, L.R.; Corrêa, R.R.M.; Reis, M.A. An overview of molecular mechanism of nephrotic syndrome. Int. J. Nephrol. 2012, 2012, 937623. [Google Scholar] [CrossRef]
- Kardani, A.K.; Fitri, L.E.; Samsu, N.; Subandiyah, K. Forging the Future: B Cell Activating Factor’s Impact on Nephrotic Syndrome. Malays. J. Med. Sci. 2024, 31, 57–64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kardani, A.K.; Fitri, L.E.; Samsu, N.; Subandiyah, K. Protective Effects of Physalis angulata on Podocythopathies Through B-Cell-Activating Factor Inhibition in Doxorubicin-Induced Nephrotic Syndrome Rat Model. Biomedicines 2025, 13, 719. https://doi.org/10.3390/biomedicines13030719
Kardani AK, Fitri LE, Samsu N, Subandiyah K. Protective Effects of Physalis angulata on Podocythopathies Through B-Cell-Activating Factor Inhibition in Doxorubicin-Induced Nephrotic Syndrome Rat Model. Biomedicines. 2025; 13(3):719. https://doi.org/10.3390/biomedicines13030719
Chicago/Turabian StyleKardani, Astrid K., Loeki E. Fitri, Nur Samsu, and Krisni Subandiyah. 2025. "Protective Effects of Physalis angulata on Podocythopathies Through B-Cell-Activating Factor Inhibition in Doxorubicin-Induced Nephrotic Syndrome Rat Model" Biomedicines 13, no. 3: 719. https://doi.org/10.3390/biomedicines13030719
APA StyleKardani, A. K., Fitri, L. E., Samsu, N., & Subandiyah, K. (2025). Protective Effects of Physalis angulata on Podocythopathies Through B-Cell-Activating Factor Inhibition in Doxorubicin-Induced Nephrotic Syndrome Rat Model. Biomedicines, 13(3), 719. https://doi.org/10.3390/biomedicines13030719