The Effect of Pulmonary Hypertension on Renal Function Dynamics in Left-Heart Failure Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Hemodynamic Assessment
2.3. Echocardiography
2.4. Assessment of Renal Function
2.5. Statistics
3. Results
3.1. Predictive Model for Renal Function Deterioration
3.2. Propensity Score Analysis
3.3. Subgroup Analysis
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef] [PubMed]
- Abramson, S.V. Pulmonary Hypertension Predicts Mortality and Morbidity in Patients with Dilated Cardiomyopathy. Ann. Intern. Med. 1992, 116, 888. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.P.; Roger, V.L.; Rodeheffer, R.J.; Borlaug, B.A.; Enders, F.T.; Redfield, M.M. Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2009, 53, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Enriquez-Sarano, M.; Rossi, A.; Seward, J.B.; Bailey, K.R.; Tajik, A.J. Determinants of Pulmonary Hypertension in Left Ventricular Dysfunction. J. Am. Coll. Cardiol. 1997, 29, 153–159. [Google Scholar] [CrossRef]
- Mutlak, D.; Lessick, J.; Carasso, S.; Kapeliovich, M.; Dragu, R.; Hammerman, H.; Agmon, Y.; Aronson, D. Utility of Pulmonary Hypertension for the Prediction of Heart Failure Following Acute Myocardial Infarction. Am. J. Cardiol. 2012, 109, 1254–1259. [Google Scholar] [CrossRef]
- Guo, J.; Wang, J.; Wang, L.; Li, Y.; Xu, Y.; Li, W.; Chen, C.; He, J.; Yin, L.; Pu, S.; et al. Left Ventricular Underfilling in PAH: A Potential Indicator for Adaptive-to-maladaptive Transition. Pulm. Circ. 2023, 13, e12309. [Google Scholar] [CrossRef]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal Syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef]
- Ronco, C.; McCullough, P.; Anker, S.D.; Anand, I.; Aspromonte, N.; Bagshaw, S.M.; Bellomo, R.; Berl, T.; Bobek, I.; Cruz, D.N.; et al. Cardio-Renal Syndromes: Report from the Consensus Conference of the Acute Dialysis Quality Initiative. Eur. Heart J. 2010, 31, 703–711. [Google Scholar] [CrossRef]
- Lazzeri, C.; Valente, S.; Tarquini, R.; Gensini, G.F. Cardiorenal Syndrome Caused by Heart Failure with Preserved Ejection Fraction. Int. J. Nephrol. 2011, 2011, 634903. [Google Scholar] [CrossRef]
- Shah, S.J.; Thenappan, T.; Rich, S.; Tian, L.; Archer, S.L.; Gomberg-Maitland, M. Association of Serum Creatinine with Abnormal Hemodynamics and Mortality in Pulmonary Arterial Hypertension. Circulation 2008, 117, 2475–2483. [Google Scholar] [CrossRef]
- Damman, K.; Navis, G.; Smilde, T.D.J.; Voors, A.A.; van der Bij, W.; van Veldhuisen, D.J.; Hillege, H.L. Decreased Cardiac Output, Venous Congestion and the Association with Renal Impairment in Patients with Cardiac Dysfunction. Eur. J. Heart Fail. 2007, 9, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; van Deursen, V.M.; Navis, G.; Voors, A.A.; van Veldhuisen, D.J.; Hillege, H.L. Increased Central Venous Pressure Is Associated With Impaired Renal Function and Mortality in a Broad Spectrum of Patients With Cardiovascular Disease. J. Am. Coll. Cardiol. 2009, 53, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Brosius, F.C.; Hostetter, T.H.; Kelepouris, E.; Mitsnefes, M.M.; Moe, S.M.; Moore, M.A.; Pennathur, S.; Smith, G.L.; Wilson, P.W.F. Detection of Chronic Kidney Disease in Patients with or at Increased Risk of Cardiovascular Disease: A Science Advisory From the American Heart Association Kidney and Cardiovascular Disease Council; the Councils on High Blood Pressure Research, Cardiovascular Disease in the Young, and Epidemiology and Prevention; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: Developed in Collaboration with the National Kidney Foundation. Circulation 2006, 114, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Coresh, J.; Turin, T.C.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Appel, L.J.; Arima, H.; Chadban, S.J.; Cirillo, M.; Djurdjev, O.; et al. Decline in Estimated Glomerular Filtration Rate and Subsequent Risk of End-Stage Renal Disease and Mortality. JAMA 2014, 311, 2518–2531. [Google Scholar] [CrossRef]
- Harrell, F.E. (Ed.) Regression Modeling Strategies—With Applications to Linear Models, Logistic Regression, and Survival Analysis; Springer: New York, NY, USA, 2001; Available online: https://www.springer.com/gp/book/9781441929181 (accessed on 29 July 2019).
- Norton, E.C.; Dowd, B.E.; Maciejewski, M.L. Marginal Effects—Quantifying the Effect of Changes in Risk Factors in Logistic Regression Models. JAMA 2019, 321, 1304. [Google Scholar] [CrossRef]
- Damman, K.; Navis, G.; Voors, A.A.; Asselbergs, F.W.; Smilde, T.D.J.; Cleland, J.G.F.; van Veldhuisen, D.J.; Hillege, H.L. Worsening Renal Function and Prognosis in Heart Failure: Systematic Review and Meta-Analysis. J. Card. Fail. 2007, 13, 599–608. [Google Scholar] [CrossRef]
- George, L.K.; Koshy, S.K.G.; Molnar, M.Z.; Thomas, F.; Lu, J.L.; Kalantar-Zadeh, K.; Kovesdy, C.P. Heart Failure Increases the Risk of Adverse Renal Outcomes in Patients With Normal Kidney Function. Circ. Heart Fail. 2017, 10, e003825. [Google Scholar] [CrossRef]
- Lawson, C.A.; Testani, J.M.; Mamas, M.; Damman, K.; Jones, P.W.; Teece, L.; Kadam, U.T. Chronic Kidney Disease, Worsening Renal Function and Outcomes in a Heart Failure Community Setting: A UK National Study. Int. J. Cardiol. 2018, 267, 120–127. [Google Scholar] [CrossRef]
- McAlister, F.A.; Ezekowitz, J.; Tonelli, M.; Armstrong, P.W. Renal Insufficiency and Heart Failure. Circulation 2004, 109, 1004–1009. [Google Scholar] [CrossRef]
- Rahman, M.; Xie, D.; Feldman, H.I.; Go, A.S.; He, J.; Kusek, J.W.; Lash, J.; Iii, E.R.M.; Ojo, A.; Pan, Q.; et al. Association Between Chronic Kidney Disease Progression and Cardiovascular Disease: Results from the CRIC Study. Am. J. Nephrol. 2014, 40, 399–407. [Google Scholar] [CrossRef]
- Tuegel, C.; Bansal, N. Heart Failure in Patients with Kidney Disease. Heart 2017, 103, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Katz, R.; Dalrymple, L.; de Boer, I.; DeFilippi, C.; Kestenbaum, B.; Park, M.; Sarnak, M.; Seliger, S.; Shlipak, M. NT-ProBNP and Troponin T and Risk of Rapid Kidney Function Decline and Incident CKD in Elderly Adults. Clin. J. Am. Soc. Nephrol. 2015, 10, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Dries, D.L.; Exner, D.V.; Domanski, M.J.; Greenberg, B.; Stevenson, L.W. The Prognostic Implications of Renal Insufficiency in Asymptomatic and Symptomatic Patients with Left Ventricular Systolic Dysfunction. J. Am. Coll. Cardiol. 2000, 35, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Mahon, N.G.; Blackstone, E.H.; Francis, G.S.; Starling, R.C.; Young, J.B.; Lauer, M.S. The Prognostic Value of Estimated Creatinine Clearance alongside Functional Capacity in Ambulatory Patients with Chronic Congestive Heart Failure. J. Am. Coll. Cardiol. 2002, 40, 1106–1113. [Google Scholar] [CrossRef]
- Waldum, B.; Westheim, A.S.; Sandvik, L.; Flønæs, B.; Grundtvig, M.; Gullestad, L.; Hole, T.; Os, I. Renal Function in Outpatients With Chronic Heart Failure. J. Card. Fail. 2010, 16, 374–380. [Google Scholar] [CrossRef]
- Matsumoto, S.; Henderson, A.D.; Shen, L.; Yang, M.; Swedberg, K.; Vaduganathan, M.; Van Veldhuisen, D.J.; Solomon, S.D.; Pitt, B.; Zannad, F.; et al. Mineralocorticoid Receptor Antagonists in Patients With Heart Failure and Impaired Renal Function. J. Am. Coll. Cardiol. 2024, 83, 2426–2436. [Google Scholar] [CrossRef]
- Ghio, S.; Gavazzi, A.; Campana, C.; Inserra, C.; Klersy, C.; Sebastiani, R.; Arbustini, E.; Recusani, F.; Tavazzi, L. Independent and Additive Prognostic Value of Right Ventricular Systolic Function and Pulmonary Artery Pressure in Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 2001, 37, 183–188. [Google Scholar] [CrossRef]
- Guazzi, M.; Bandera, F.; Pelissero, G.; Castelvecchio, S.; Menicanti, L.; Ghio, S.; Temporelli, P.L.; Arena, R. Tricuspid Annular Plane Systolic Excursion and Pulmonary Arterial Systolic Pressure Relationship in Heart Failure: An Index of Right Ventricular Contractile Function and Prognosis. Am. J. Physiol.-Heart Circ. Physiol. 2013, 305, H1373–H1381. [Google Scholar] [CrossRef]
- Guazzi, M.; Dixon, D.; Labate, V.; Beussink-Nelson, L.; Bandera, F.; Cuttica, M.J.; Shah, S.J. RV Contractile Function and Its Coupling to Pulmonary Circulation in Heart Failure With Preserved Ejection Fraction. JACC Cardiovasc. Imaging 2017, 10, 1211–1221. [Google Scholar] [CrossRef]
- Greene, S.J.; Gheorghiade, M.; Vaduganathan, M.; Ambrosy, A.P.; Mentz, R.J.; Subacius, H.; Maggioni, A.P.; Nodari, S.; Konstam, M.A.; Butler, J.; et al. Haemoconcentration, Renal Function, and Post-Discharge Outcomes among Patients Hospitalized for Heart Failure with Reduced Ejection Fraction: Insights from the EVEREST Trial. Eur. J. Heart Fail. 2013, 15, 1401–1411. [Google Scholar] [CrossRef]
- Testani, J.M.; Chen, J.; McCauley, B.D.; Kimmel, S.E.; Shannon, R.P. Potential Effects of Aggressive Decongestion during the Treatment of Decompensated Heart Failure on Renal Function and Survival. Circulation 2010, 122, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Blake, W.D.; Wégria, R.; Keating, R.P.; Ward, H.P. Effect of Increased Renal Venous Pressure on Renal Function. Am. J. Physiol.-Leg. Content 1949, 157, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Iacoviello, M.; Puzzovivo, A.; Monitillo, F.; Saulle, D.; Lattarulo, M.S.; Guida, P.; Forleo, C.; Gesualdo, L.; Favale, S. Independent Role of High Central Venous Pressure in Predicting Worsening of Renal Function in Chronic Heart Failure Outpatients. Int. J. Cardiol. 2013, 162, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.H.W. Importance of Venous Congestion for Worsening of Renal Function in Advanced Decompensated Heart Failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef]
- Joles, J.A.; Bongartz, L.G.; Gaillard, C.A.; Braam, B. Renal Venous Congestion and Renal Function in Congestive Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 1632. [Google Scholar] [CrossRef]
- Cupples, W.A.; Braam, B. Assessment of Renal Autoregulation. Am. J. Physiol.-Ren. Physiol. 2007, 292, F1105–F1123. [Google Scholar] [CrossRef]
- Bidani, A.K.; Polichnowski, A.J.; Loutzenhiser, R.; Griffin, K.A. Renal Microvascular Dysfunction, Hypertension and CKD Progression. Curr. Opin. Nephrol. Hypertens 2013, 22, 1–9. [Google Scholar] [CrossRef]
Characteristics | No PH | PH | p-Value |
---|---|---|---|
n (33) | n (75) | ||
Age (years) | 72.0 ± 9.1 | 68.7 ± 13.2 | 0.19 |
Female (%) | 18 (54.5) | 56 (74.6) | 0.88 |
Diabetes Mellitus (%) | 19 (57.5) | 37 (49.3) | 0.92 |
Hypertension (%) | 25 (75.7) | 51 (68.0) | 0.65 |
eGFR (mL/min/1.73 m2) | 64 ± 21 | 63 ± 23 | 0.11 |
Hb (g/dL) | 11.8 ± 1.9 | 11.6 ± 2.4 | 0.76 |
LVEF < 45% | 2 (6.7) | 8 (10.6) | 0.38 |
RV dysfunction | 2 (6.7) | 22 (29.3) | 0.005 |
Hemodynamic variables | |||
PCWP (mmHg) | 11.0 ± 4.3 | 18.9 ± 6.9 | <0.0001 |
mPAP (mmHg) | 16.4 ± 3.3 | 37.8 ± 10.9 | <0.0001 |
SV (mL) | 56.7 ± 13.7 | 59.6 ± 22.1 | 0.51 |
CO (L/min) | 4.2 ± 1.0 | 4.5 ± 1.5 | 0.23 |
Aortic mean pressure (mmHg) | 95.9 ± 14.2 | 97.4 ± 14.8 | 0.61 |
RAP (mmHg) | 7.3 ± 4.9 | 13.5 ± 5.4 | <0.0001 |
Medical therapy | |||
Beta blockers | 24 (72.7) | 52 (69.3) | 0.45 |
ACEI/ARB | 23 (69.7) | 36 (48.0) | 0.03 |
MRA | 6 (18.1) | 36 (48.0) | 0.003 |
Loop diuretics | 21 (63.6) | 63 (84.0) | 0.20 |
Baseline Parameter | Regression Coefficient (SE) | t Value | p-Value |
---|---|---|---|
Creatinine | −35.74 (4.41) | −8.09 | <0.0001 |
Age (per 10 years) | −7.63 (1.44) | −5.28 | <0.0001 |
Diabetes Mellitus | −8.15 (4.03) | −2.02 | 0.04 |
EF < 45% | −18.94 (8.20) | −2.31 | 0.024 |
MRA | −10.62 (3.78) | −2.81 | 0.007 |
Baseline Parameter | Regression Coefficient (SE) | t Value | p-Value |
---|---|---|---|
Creatinine | −36.92 (5.11) | −7.22 | <0.0001 |
Age (per 10 years) | −6.97 (1.53) | −4.55 | <0.0001 |
Diabetes Mellitus | −8.89 (4.66) | −1.91 | 0.062 |
EF < 45% | −17.86 (8.69) | −2.05 | 0.045 |
MRA | −10.80 (4.29) | −2.52 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragu, R.; Abramovici, A.; Abu Zeid, K. The Effect of Pulmonary Hypertension on Renal Function Dynamics in Left-Heart Failure Patients. Biomedicines 2025, 13, 684. https://doi.org/10.3390/biomedicines13030684
Dragu R, Abramovici A, Abu Zeid K. The Effect of Pulmonary Hypertension on Renal Function Dynamics in Left-Heart Failure Patients. Biomedicines. 2025; 13(3):684. https://doi.org/10.3390/biomedicines13030684
Chicago/Turabian StyleDragu, Robert, Adrian Abramovici, and Kasem Abu Zeid. 2025. "The Effect of Pulmonary Hypertension on Renal Function Dynamics in Left-Heart Failure Patients" Biomedicines 13, no. 3: 684. https://doi.org/10.3390/biomedicines13030684
APA StyleDragu, R., Abramovici, A., & Abu Zeid, K. (2025). The Effect of Pulmonary Hypertension on Renal Function Dynamics in Left-Heart Failure Patients. Biomedicines, 13(3), 684. https://doi.org/10.3390/biomedicines13030684