Structured Cardiac Assessment and Treatment Following Exacerbations of COPD (SCATECOPD): A Pilot Randomised Controlled Trial
Abstract
:1. Introduction
- (1)
- To quantify the disease burden in the population studied and compare the diagnostic yield of structured cardiac assessment (SCA) and usual care (UC);
- (2)
- To quantify the scale of undertreatment of heart disease;
- (3)
- To assess the effect of SCA versus UC on patient outcomes in order to identify optimal outcome measures for future interventional trials.
2. Materials and Methods
2.1. Study Design and Participants
- (1)
- Age > 35 years;
- (2)
- More than 10 pack-year history of tobacco smoking;
- (3)
- Clinical diagnosis of COPD;
- (4)
- Previous obstructive spirometry (FEV1/FVC < 0.7);
- (5)
- Hospitalisation with primary cause being ECOPD.
- (1)
- Inability to provide informed consent;
- (2)
- Any non-COPD condition likely to limit survival to <12 months;
- (3)
- Contra-indication to cardiac CT, including inability to lie flat;
- (4)
- Pregnancy or breastfeeding.
2.2. Randomisation
2.3. Structured Cardiac Assessment
2.4. Outcomes
2.5. Statistical Analysis
2.5.1. Sample Size
2.5.2. Outcome Analysis
3. Results
3.1. Baseline Demographics
3.2. Heart Disease Diagnosis and Treatment
3.2.1. Heart Failure
3.2.2. Other Cardiovascular Disease
3.3. Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
ARB | Angiotensin II receptor blocker |
BMI | Body mass index |
CACS | Coronary artery calcium score |
CAD | Coronary artery disease |
CFS | Clinical frailty score |
COPD | Chronic obstructive pulmonary disease |
CI | Confidence interval |
CT | Computed tomography |
CVD | Cardiovascular disease |
DAOH | Days alive outside hospital |
ECG | Electrocardiogram |
ECOPD | Exacerbation of chronic obstructive pulmonary disease |
ESC | European Society of Cardiology |
eMRCD | Extended MRC dyspnoea score |
FEV1 | Forced expiratory volume in 1 s |
FVC | Forced vital capacity |
HbA1C | Haemoglobin A1C |
HF | Heart failure |
HR | Hazard ratio |
ICS | Inhaled corticosteroid |
IQR | Interquartile range |
IRR | Incident rate ratio |
LABA | Long-acting beta-agonist |
LAMA | Long-acting muscarinic antagonist |
LTOT | Long term oxygen therapy |
LV | Left ventricle |
LVEF | Left ventricular ejection fraction |
LVSD | Left ventricular systolic dysfunction |
MACE | Major adverse cardiovascular event |
MI | Myocardial infarction |
MRA | Mineralocorticoid receptor antagonist |
NIV | Non-invasive ventilation |
NT-pro-BNP | N-terminal pro-B-type natriuretic peptide |
PEARL | PEARL prognostic score |
PYH | Pack-year history |
RCT | Randomised controlled trial |
RR | Relative risk |
SCA | Structured cardiac assessment |
SD | Standard deviation |
SGLT2 | Sodium-glucose co-transporter 2 |
SGRQ-C | St. George’s Respiratory Questionnaire for COPD |
UC | Usual care |
Appendix A
Calculations of Sample Sizes Required to Achieve 80% Power in Future Trials
Appendix B
References
- Soriano, J.B.; Abajobir, A.A.; Abate, K.H.; Abera, S.F.; Agrawal, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alam, K.; et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Suissa, S.; Dell’Aniello, S.; Ernst, P. Long-term natural history of chronic obstructive pulmonary disease: Severe exacerbations and mortality. Thorax 2012, 67, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.R.; Quint, J.K.; Stone, R.A.; Silove, Y.; Youde, J.; Roberts, C.M. National clinical audit for hospitalised exacerbations of COPD. ERJ Open Res. 2020, 6, 00208–02020. [Google Scholar] [CrossRef] [PubMed]
- Price, L.C.; Lowe, D.; Hosker, H.S.; Anstey, K.; Pearson, M.G.; Roberts, C.M. UK National COPD Audit 2003: Impact of hospital resources and organisation of care on patient outcome following admission for acute COPD exacerbation. Thorax 2006, 61, 837–842. [Google Scholar] [CrossRef] [PubMed]
- National Asthma and COPD Audit Programme (NACAP). Outcomes of Patients Included in the 2017/18 COPD Clinical Audit; RCP: London, UK, 2020. [Google Scholar]
- Burke, H.; Wilkinson, T.M.A. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur. Respir. Rev. 2021, 30, 210041. [Google Scholar] [CrossRef]
- Carmona-Pírez, J.; Poblador-Plou, B.; Ioakeim-Skoufa, I.; González-Rubio, F.; Gimeno-Feliú, L.A.; Díez-Manglano, J.; Laguna-Berna, C.; Marin, J.M.; Gimeno-Miguel, A.; Prados-Torres, A. Multimorbidity clusters in patients with chronic obstructive airway diseases in the EpiChron Cohort. Sci. Rep. 2021, 11, 4784. [Google Scholar] [CrossRef] [PubMed]
- Müllerova, H.; Agusti, A.; Erqou, S.; Mapel, D.W. Cardiovascular Comorbidity in COPD: Systematic Literature Review. Chest 2013, 144, 1163–1178. [Google Scholar] [CrossRef]
- Mapel, D.W.; Dedrick, D.; Davis, K. Trends and Cardiovascular Co-morbidities of COPD Patients in the Veterans Administration Medical System, 1991–1999. COPD J. Chronic Obstr. Pulm. Dis. 2005, 2, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Axson, E.L.; Ragutheeswaran, K.; Sundaram, V.; Bloom, C.I.; Bottle, A.; Cowie, M.R.; Quint, J.K. Hospitalisation and mortality in patients with comorbid COPD and heart failure: A systematic review and meta-analysis. Respir. Res. 2020, 21, 54. [Google Scholar] [CrossRef]
- Swart, K.M.A.; Baak, B.N.; Lemmens, L.; Penning-van Beest, F.J.A.; Bengtsson, C.; Lobier, M.; Hoti, F.; Vojinovic, D.; van Burk, L.; Rhodes, K.; et al. Risk of cardiovascular events after an exacerbation of chronic obstructive pulmonary disease: Results from the EXACOS-CV cohort study using the PHARMO Data Network in the Netherlands. Respir Res 2023, 24, 293. [Google Scholar] [CrossRef]
- Rothnie, K.J.; Connell, O.; Müllerová, H.; Smeeth, L.; Pearce, N.; Douglas, I.; Quint, J.K. Myocardial Infarction and Ischemic Stroke after Exacerbations of Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2018, 15, 935–946. [Google Scholar] [CrossRef]
- NICE. Chronic Obstructive Pulmonary Disease in over 16s: Diagnosis and Management; NICE guideline NG115; NICE: London, UK, 2018. [Google Scholar]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for Prevention, Diagnosis and Management of COPD: 2023 Report; Global Initiative for Chronic Obstructive Lung Disease: Fontana, WI, USA, 2023. [Google Scholar]
- GOLD. Global Strategy for Prevention, Diagnosis and Management of COPD: 2025 Report; GOLD: Fontana, WI, USA, 2025. [Google Scholar]
- Kerr, M.; Tarabichi, Y.; Evans, A.; Mapel, D.; Pace, W.; Carter, V.; Couper, A.; Drummond, M.B.; Feigler, N.; Federman, A.; et al. Patterns of care in the management of high-risk COPD in the US (2011–2019): An observational study for the CONQUEST quality improvement program. Lancet Reg. Health—Am. 2023, 24, 100546. [Google Scholar] [CrossRef]
- Rutten, F.H.; Cramer, M.-J.M.; Grobbee, D.E.; Sachs, A.P.E.; Kirkels, J.H.; Lammers, J.-W.J.; Hoes, A.W. Unrecognized heart failure in elderly patients with stable chronic obstructive pulmonary disease. Eur. Heart J. 2005, 26, 1887–1894. [Google Scholar] [CrossRef]
- Leong, P.; Macdonald, M.I.; King, P.T.; Osadnik, C.R.; Ko, B.S.; Landry, S.A.; Hamza, K.; Kugenasan, A.; Troupis, J.M.; Bardin, P.G. Treatable cardiac disease in hospitalised copd exacerbations. ERJ Open Res. 2021, 7, 00756–02020. [Google Scholar] [CrossRef]
- Rasmussen, D.B.; Bodtger, U.; Lamberts, M.; Nicolaisen, S.K.; Sessa, M.; Capuano, A.; Torp-Pedersen, C.; Gislason, G.; Lange, P.; Jensen, M.T. Beta-blocker, aspirin, and statin usage after first-time myocardial infarction in patients with chronic obstructive pulmonary disease: A nationwide analysis from 1995 to 2015 in Denmark. Eur. Heart J.—Qual. Care Clin. Outcomes 2019, 6, 23–31. [Google Scholar] [CrossRef]
- Dransfield, M.T.; Rowe, S.M.; Johnson, J.E.; Bailey, W.C.; Gerald, L.B. Use of beta blockers and the risk of death in hospitalised patients with acute exacerbations of COPD. Thorax 2008, 63, 301–305. [Google Scholar] [CrossRef]
- Dransfield, M.T.; Voelker, H.; Bhatt, S.P.; Brenner, K.; Casaburi, R.; Come, C.E.; Cooper, J.D.A.; Criner, G.J.; Curtis, J.L.; Han, M.K.; et al. Metoprolol for the prevention of acute exacerbations of COPD. New Engl. J. Med. 2019, 381, 2304–2314. [Google Scholar] [CrossRef]
- Criner, G.J.; Connett, J.E.; Aaron, S.D.; Albert, R.K.; Bailey, W.C.; Casaburi, R.; Cooper, J.A.D.; Curtis, J.L.; Dransfield, M.T.; Han, M.K.; et al. Simvastatin for the Prevention of Exacerbations in Moderate-to-Severe COPD. New Engl. J. Med. 2014, 370, 2201–2210. [Google Scholar] [CrossRef]
- Echevarria, C.; Steer, J.; Heslop-Marshall, K.; Stenton, S.C.; Hickey, P.M.; Hughes, R.; Wijesinghe, M.; Harrison, R.N.; Steen, N.; Simpson, A.J.; et al. The PEARL score predicts 90-day readmission or death after hospitalisation for acute exacerbation of COPD. Thorax 2017, 72, 686–693. [Google Scholar] [CrossRef]
- Steer, J.; Norman, E.M.; Afolabi, O.A.; Gibson, G.J.; Bourke, S.C. Dyspnoea severity and pneumonia as predictors of in-hospital mortality and early readmission in acute exacerbations of COPD. Thorax 2012, 67, 117–121. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Kohn, M.A.; Senyak, J. Sample Size Calculators. Available online: https://www.sample-size.net/ (accessed on 18 January 2024).
- Rockwood, K.; Theou, O. Using the Clinical Frailty Scale in Allocating Scarce Health Care Resources. Can. Geriatr. J. 2020, 23, 210–215. [Google Scholar] [CrossRef]
- Steer, J.; Gibson, J.; Bourke, S.C. The DECAF Score: Predicting hospital mortality in exacerbations of chronic obstructive pulmonary disease. Thorax 2012, 67, 970–976. [Google Scholar] [CrossRef]
- National Asthma and COPD Audit Programme (NACAP). COPD Clinical Audit 2019/20; RCP: London, UK, 2021. [Google Scholar]
- Cardoso, R.; Graffunder, F.P.; Ternes, C.M.P.; Fernandes, A.; Rocha, A.V.; Fernandes, G.; Bhatt, D.L. SGLT2 inhibitors decrease cardiovascular death and heart failure hospitalizations in patients with heart failure: A systematic review and meta-analysis. eClinicalMedicine 2021, 36, 100933. [Google Scholar] [CrossRef]
- MacDonald, M.I.; Shafuddin, E.; King, P.T.; Chang, C.L.; Bardin, P.G.; Hancox, R.J. Cardiac dysfunction during exacerbations of chronic obstructive pulmonary disease. Lancet Respir. Med. 2016, 4, 138–148. [Google Scholar] [CrossRef]
- Donaldson, G.C.; Hurst, J.R.; Smith, C.J.; Hubbard, R.B.; Wedzicha, J.A. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest 2010, 137, 1091–1097. [Google Scholar] [CrossRef]
- Atsushi, H.; Tadahiro, G.; Shimada Yuichi, J.; Kamal, F.M.; Camargo Carlos, A.; Kohei, H. Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Subsequent Risk of Emergency Department Visits and Hospitalizations for Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2018, 11, e006322. [Google Scholar]
- Freixa, X.; Portillo, K.; Paré, C.; Garcia-Aymerich, J.; Gomez, F.P.; Benet, M.; Roca, J.; Farrero, E.; Ferrer, J.; Fernandez-Palomeque, C.; et al. Echocardiographic abnormalities in patients with COPD at their first hospital admission. Eur. Respir. J. 2013, 41, 784–791. [Google Scholar] [CrossRef]
- Houben-Wilke, S.; Spruit, M.A.; Uszko-Lencer, N.H.M.K.; Otkinska, G.; Vanfleteren, L.E.G.W.; Jones, P.W.; Wouters, E.F.M.; Franssen, F.M.E. Echocardiographic abnormalities and their impact on health status in patients with COPD referred for pulmonary rehabilitation. Respirology 2017, 22, 928–934. [Google Scholar] [CrossRef]
- Marcun, R.; Sustic, A.; Brguljan, P.M.; Kadivec, S.; Farkas, J.; Kosnik, M.; Coats, A.J.S.; Anker, S.D.; Lainscak, M. Cardiac biomarkers predict outcome after hospitalisation for an acute exacerbation of chronic obstructive pulmonary disease. Int. J. Cardiol. 2012, 161, 156–159. [Google Scholar] [CrossRef]
- Marcun, R.; Stankovic, I.; Vidakovic, R.; Farkas, J.; Kadivec, S.; Putnikovic, B.; Ilic, I.; Neskovic, A.N. Prognostic implications of heart failure with preserved ejection fraction in patients with an exacerbation of chronic obstructive pulmonary disease. Intern. Emerg. Med. 2016, 11, 519–527. [Google Scholar] [CrossRef]
- Stankovic, I.; Marcun, R.; Janicijevic, A.; Farkas, J.; Kadivec, S.; Ilic, I.; Neskovic, A.N.; Lainscak, M. Echocardiographic predictors of outcome in patients with chronic obstructive pulmonary disease. J. Clin. Ultrasound. 2017, 45, 211–221. [Google Scholar] [CrossRef]
- Echevarria, C.; Steer, J.; Heslop-Marshall, K.; Stenton, S.; Hickey, P.; Hughes, R.; Wijesinghe, M.; Harrison, R.N.; Steen, N.; Simpson, A.; et al. Validation of the DECAF score to predict hospital mortality in acute exacerbations of COPD. Thorax 2016, 71, 133–140. [Google Scholar] [CrossRef]
- Terzano, C.; Romani, S.; Conti, V.; Paone, G.; Oriolo, F.; Vitarelli, A. Atrial fibrillation in the acute, hypercapnic exacerbations of COPD. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2908–2917. [Google Scholar]
- Lipworth, B.; Skinner, D.; Devereux, G.; Thomas, V.; Jie, J.L.Z.; Martin, J.; Carter, V.; Price, D.B. Underuse of β-blockers in heart failure and chronic obstructive pulmonary disease. Heart Br. Card. Soc. 2016, 102, 1909–1914. [Google Scholar] [CrossRef]
- Mentz, R.J.; Schmidt, P.H.; Kwasny, M.J.; Ambrosy, A.P.; O’Connor, C.M.; Konstam, M.A.; Zannad, F.; Maggioni, A.P.; Swedberg, K.; Gheorghiade, M. The Impact of Chronic Obstructive Pulmonary Disease in Patients Hospitalized for Worsening Heart Failure With Reduced Ejection Fraction: An Analysis of the EVEREST Trial. J. Card. Fail. 2012, 18, 515–523. [Google Scholar] [CrossRef]
- Egred, M.; Shaw, S.; Mohammad, B.; Waitt, P.; Rodrigues, E. Under-use of beta-blockers in patients with ischaemic heart disease and concomitant chronic obstructive pulmonary disease. QJM Int. J. Med. 2005, 98, 493–497. [Google Scholar] [CrossRef]
- Krahnke, J.S.; Abraham, W.T.; Adamson, P.B.; Bourge, R.C.; Bauman, J.; Ginn, G.; Martinez, F.J.; Criner, G.J. Heart Failure and Respiratory Hospitalizations Are Reduced in Patients With Heart Failure and Chronic Obstructive Pulmonary Disease With the Use of an Implantable Pulmonary Artery Pressure Monitoring Device. J. Card. Fail. 2015, 21, 240–249. [Google Scholar] [CrossRef]
- Matamis, D.; Tsagourias, M.; Papathanasiou, A.; Sineffaki, H.; Lepida, D.; Galiatsou, E.; Nakos, G. Targeting occult heart failure in intensive care unit patients with acute chronic obstructive pulmonary disease exacerbation: Effect on outcome and quality of life. J. Crit. Care 2014, 29, e7–e315. [Google Scholar] [CrossRef]
- Wells, J.M.; Washko, G.R.; Han, M.K.; Abbas, N.; Nath, H.; Mamary, A.J.; Regan, E.; Bailey, W.C.; Martinez, F.J.; Westfall, E.; et al. Pulmonary Arterial Enlargement and Acute Exacerbations of COPD. N. Engl. J. Med. 2012, 367, 913–921. [Google Scholar] [CrossRef]
- Ozben, B.; Eryuksel, E.; Tanrikulu, A.M.; Al, E. Acute Exacerbation Impairs Right Ventricular Function in COPD Patients. Hellenic J. Cardiol. 2015, 56, 324–331. [Google Scholar]
- Fanaroff Alexander, C.; Cyr Derek Neely Megan, L.; Bakal Jeffery White Harvey, D.; Fox Keith, A.A.; Armstrong, P.W.; Lopes, R.D.; Ohman, E.M.; Roe, M.T. Days Alive and Out of Hospital: Exploring a Patient-Centered, Pragmatic Outcome in a Clinical Trial of Patients with Acute Coronary Syndromes. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004755. [Google Scholar] [CrossRef]
- Hurst, J.; Stone, R.; McMillan, V.; Mortier, K.; Shanahan, L.; Moussaif, M.; Adamson, A.; Quint, J.; Roberts, C.M.; National Asthma and Chronic Obstructive Pulmonary Disease Audit Programme (NACAP); et al. Outcomes of Patients Included in the 2017 COPD Clinical Audit (Patients with COPD Exacerbations Discharged from Acute Hospitals in England and Wales between February and September 2017); RCP: London, UK, 2019. [Google Scholar]
- Department for Health and Social Care (DHSC). National Cost Collection for the NHS [Internet]; DHSC: London, UK, 2019; Available online: https://www.england.nhs.uk/national-cost-collection/#ncc1819 (accessed on 27 January 2025).
- Curtis, L.B.A. Unit Costs of Health and Social Care 2019 [Internet]. Cantebury: PSSRU; University of Kent; 2019 [Cited 2020 August 27]. Available online: https://www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2019/ (accessed on 27 January 2025).
SCA n = 57 | Usual Care n = 58 | p Value | |
---|---|---|---|
Age, y | 71.6 (6.34) | 72.6 (6.54) | 0.403 |
Sex, % female | 59.6 | 56.9 | 0.851 |
Current smoking, % (n) | 36.8 (21) | 39.7 (23) | 0.848 |
PYH, median (IQR) | 45 (20) | 50 (23) | 0.441 |
BMI, kg/m2 | 25.9 (7.9) | 24.8 (5.9) | 0.431 |
Pre-admission FEV1 (% predicted) | 50.2 (19.5) | 48.0 (17.1) | 0.532 |
eMRCD, median (IQR) | 4 (4–5a) | 4 (4–5a) | 0.230 |
PEARL score, [23] median (IQR) | 4 (1–5) | 4 (1–5) | 0.291 |
Patient reported ECOPD in past year, median (IQR) | 3 (1–5) | 3 (1.75–5) | 0.941 |
ECOPD admissions in past year, median (IQR) | 0 (0–1) | 0 (0–1) | 0.690 |
LTOT, % | 10.5 | 15.5 | 0.581 |
Rockwood CFS, median (IQR) | 5 (5–6) | 5 (5–6) | 0.657 |
Cardiovascular comorbidities, % (n) | |||
Moderate–severe LVSD | 1.7 (1) | 5.3 (3) | 0.364 |
HF without moderate–severe LVSD | 7.0 (4) | 8.6 (5) | 0.743 |
Right-sided HF | 3.5 (2) | 6.9 (4) | 0.679 |
Myocardial infarction | 14.0 (8) | 13.8 (8) | 1.000 |
Atrial fibrillation | 7.0 (4) | 8.6 (5) | 1.000 |
Angina | 17.5 (10) | 8.6 (5) | 0.177 |
Hypertension | 50.9 (29) | 43.1 (25) | 0.457 |
High cholesterol | 8.8 (5) | 12.1 (7) | 0.762 |
Stroke/transient ischaemic attack | 19.3 (11) | 19.0 (11) | 1.000 |
Peripheral vascular disease | 14.0 (8) | 8.6 (5) | 0.393 |
Diabetes | 31.6 (18) | 27.6 (16) | 0.686 |
Chronic kidney disease | 22.8 (13) | 17.2 (10) | 0.492 |
Age-adjusted Charlson comorbidity index, median (IQR) | 5 (4–7) | 5 (4–6) | 0.181 |
COPD therapy, % (n) | |||
LABA + LAMA + ICS | 87.8 (50) | 75.9 (44) | 0.181 * |
LABA + LAMA | 12.2 (7) | 17.2 (10) | |
LABA + ICS | 0.0 (0) | 3.4 (2) | |
None | 0.0 (0) | 3.4 (2) | |
Theophylline | 8.8 (5) | 3.4 (2) | 0.272 |
Macrolide | 28.1 (16) | 22.4 (13) | 0.525 |
Oral corticosteroid | 7.0 (4) | 12.1 (7) | 0.528 |
Cardiovascular disease therapy, % (n) | |||
Aspirin | 35.1 (20) | 29.3 (17) | 0.553 |
Dual antiplatelet therapy | 3.5 (2) | 1.7 (1) | 0.618 |
Anticoagulation | 7.0 (4) | 12.0 (7) | 0.528 |
Beta-blocker | 19.3 (11) | 22.4 (13) | 0.819 |
ACE inhibitor/ARB | 38.6 (22) | 25.9 (15) | 0.166 |
Statin | 64.9 (37) | 60.3 (35) | 0.701 |
Other antihypertensive drug | 29.8 (17) | 24.1 (14) | 0.534 |
Antidiabetic drug (inc. insulin) | 15.8 (9) | 15.5 (9) | 1.000 |
MRA | 1.8 (1) | 1.7 (1) | 1.000 |
Sacubitril–valsartan | 0 (0) | 0 (0) | - |
SGLT2 inhibitor | 1.8 (1) | 0 (0) | 0.496 |
NIV, % (n) | 21.1 (12) | 22.4 (13) | 1.000 |
DECAF score, median (IQR) | 2 (1–2) | 2 (0–2) | 0.880 |
Length of stay (days), median (IQR) | 6 (3–8) | 4 (3–9) | 0.559 |
Died during admission, n | 0 | 2 | 0.496 |
SCA n = 57 | UC n = 58 | |
---|---|---|
Heart failure | ||
Moderate–severe LVSD | 5 | 2 |
HF without moderate–severe LVSD | 13 | 4 |
Right-sided HF § | 8 | 2 |
Myocardial infarction | 2 | 2 |
Atrial fibrillation | 1 | 2 |
Mild coronary artery disease (CACS 1–100) * | 11 | 0 |
Moderate–severe coronary artery disease (CACS > 100) * | 34 | 0 |
Uncontrolled hypertension † | 14 | 0 |
Uncontrolled diabetes ‡ | 8 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibbler, J.; Pakpahan, E.; McCarthy, S.; Webb-Mitchell, R.; Prasad, A.; Ripley, D.P.; Gray, J.; Bourke, S.C.; Steer, J. Structured Cardiac Assessment and Treatment Following Exacerbations of COPD (SCATECOPD): A Pilot Randomised Controlled Trial. Biomedicines 2025, 13, 658. https://doi.org/10.3390/biomedicines13030658
Kibbler J, Pakpahan E, McCarthy S, Webb-Mitchell R, Prasad A, Ripley DP, Gray J, Bourke SC, Steer J. Structured Cardiac Assessment and Treatment Following Exacerbations of COPD (SCATECOPD): A Pilot Randomised Controlled Trial. Biomedicines. 2025; 13(3):658. https://doi.org/10.3390/biomedicines13030658
Chicago/Turabian StyleKibbler, Joseph, Eduwin Pakpahan, Stephen McCarthy, Rebecca Webb-Mitchell, Arun Prasad, David P. Ripley, Joanne Gray, Stephen C. Bourke, and John Steer. 2025. "Structured Cardiac Assessment and Treatment Following Exacerbations of COPD (SCATECOPD): A Pilot Randomised Controlled Trial" Biomedicines 13, no. 3: 658. https://doi.org/10.3390/biomedicines13030658
APA StyleKibbler, J., Pakpahan, E., McCarthy, S., Webb-Mitchell, R., Prasad, A., Ripley, D. P., Gray, J., Bourke, S. C., & Steer, J. (2025). Structured Cardiac Assessment and Treatment Following Exacerbations of COPD (SCATECOPD): A Pilot Randomised Controlled Trial. Biomedicines, 13(3), 658. https://doi.org/10.3390/biomedicines13030658