Urinary and Serum Amino Acids May Be Associated with Podocyte, Proximal Tubule, and Renal Endothelial Injury in Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Compliance with Ethical Standards
2.2. The Preparation of Samples
2.3. Analytical Methods
2.3.1. UHPLC-QTOF-ESI+-MS Analysis
2.3.2. ELISA Technique
2.4. The Integration of the Results and Statistical Analysis
3. Results
3.1. Clinical Features and Biological Results
3.2. Correlation of Serum Metabolites with Markers of Endothelial Damage
3.2.1. Univariable Linear Regression Analysis
3.2.2. Multivariable Linear Regression Analysis
3.3. The Impact of Tubular, Endothelial, and Podocyte Damage Biomarkers in DKD
3.3.1. Kidney Injury Molecule-1
3.3.2. N-Acetyl-β-D-glucosaminidase
3.3.3. Nephrin
3.3.4. P-Selectin
3.3.5. Podocalixin
3.3.6. VCAM1
3.4. Interpretation of Data Subsequent to Statistical Evaluation
- Serum Glycine
- Serum TRP and kinurenic acid
- Urinary Glycine
- Urinary TRP
- Urinary Tiglylglycine
4. Discussion
4.1. Serum Indicators of Endothelial Injury in Initial Stages of DKD
4.1.1. Serum Glycine May Be a Marker of Endothelial Dysfunction in Early DKD
4.1.2. Serum TRP and Serum KA as Possible Biomarkers Indicating Renal Endothelial Injury in the Initial Stages of DKD
4.2. Biomarkers Indicating Podocyte Injury and Proximal Tubule Dysfunction Evaluated Through Urine Analysis
4.2.1. The Role of Urinary Glycine in Podocyte Injury and Proximal Tubule Dysfunction
4.2.2. Urinary Tiglylglycine
4.3. A Concise Summary of the Clinical Significance of Metabolites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rustiasari, U.J.; Roelofs, J.J. The role of platelets in diabetic kidney disease. Int. J. Mol. Sci. 2022, 23, 8270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- International Diabetes Federation. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Hoogeveen, E. The epidemiology of diabetic kidney disease. Kidney Dial. 2022, 2, 433–442. [Google Scholar] [CrossRef]
- Hirata, K.; Shikata, K.; Matsuda, M.; Akiyama, K.; Sugimoto, H.; Kushiro, M.; Makino, H. Increased expression of selectins in kidneys of patients with diabetic nephropathy. Diabetologia 1998, 41, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Kravets, I.; Mallipattu, S.K. The role of podocytes and podocyte-associated biomarkers in diagnosis and treatment of diabetic kidney disease. J. Endocr. Soc. 2020, 4, bvaa029. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mogos, M.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Metabolomic Investigation of Blood and Urinary Amino Acids and Derivatives in Patients with Type 2 Diabetes Mellitus and Early Diabetic Kidney Disease. Biomedicines 2023, 11, 1527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mogos, M.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Biomarker Profiling with Targeted Metabolomic Analysis of Plasma and Urine Samples in Patients with Type 2 Diabetes Mellitus and Early Diabetic Kidney Disease. J. Clin. Med. 2024, 13, 4703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Timmeren, M.M.; van den Heuvel, M.C.; Bailly, V.; Bakker, S.J.; van Goor, H.; Stegeman, C.A. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J. Pathol. 2007, 212, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Nauta, F.L.; Boertien, W.E.; Bakker, S.J.; van Goor, H.; van Oeveren, W.; de Jong, P.E.; Bilo, H.; Gansevoort, R.T. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care 2011, 34, 975–981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaudhary, K.; Phadke, G.; Nistala, R.; Weidmeyer, C.E.; McFarlane, S.I.; Whaley-Connell, A. The emerging role of biomarkers in diabetic and hypertensive chronic kidney disease. Curr. Diab Rep. 2010, 10, 37–42. [Google Scholar] [CrossRef]
- Rossing, P. Promotion, prediction and prevention of progression of nephropathy in type 1 diabetes mellitus. Diabet. Med. 1998, 15, 900–919. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.; Al-Malki, B.; George, T.P.; Nawaz, S.S.; Rubeaan, K.A. Urinary N-acetyl-beta-d-glucosaminidase (NAG) with neutrophil gelatinase-associated lipocalin (NGAL) improves the diagnostic value for proximal tubule damage in diabetic kidney disease. 3 Biotech 2019, 9, 66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Novak, R.; Salai, G.; Hrkac, S.; Vojtusek, I.K.; Grgurevic, L. Revisiting the role of NAG across the continuum of kidney disease. Bioengineering 2023, 10, 444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Q.; Fei, X.; Zhan, H.; Gong, J.; Zhou, J.; Zhang, Y.; Ye, X.; Song, Y.; Ma, J.; Wu, X. Urinary N-acetyl-β-d-glucosaminidase-creatine ratio is a valuable predictor for advanced diabetic kidney disease. J. Clin. Lab. Anal. 2023, 37, e24769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohammadi-Karakani, A.; Asgharzadeh-Haghighi, S.; Ghazi-Khansari, M.; Hosseini, R. Determination of urinary enzymes as a marker of early renal damage in diabetic patients. J. Clin. Lab. Anal. 2007, 21, 413–417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miyauchi, E.; Hosojima, H.; Morimoto, S. Urinary angiotensin-converting enzyme activity in type 2 diabetes mellitus: Its relationship to diabetic nephropathy. Acta Diabetol. 1995, 32, 193–197. [Google Scholar] [CrossRef]
- Skrha, J.; Haas, T.; Sperl, M.; Stibor, V.; Stolba, P. A six-year follow-up of the relationship between N-acetyl-beta-glucosaminidase and albuminuria in relation to retinopathy. Diabet. Med. 1991, 8, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Veluri, G.; Mannangatti, M. Urinary nephrin is a sensitive marker to predict early onset of nephropathy in type 2 diabetes mellitus. J. Lab. Physicians 2022, 14, 497–504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kandasamy, Y.; Smith, R.; Lumbers, E.R.; Rudd, D. Nephrin—A biomarker of early glomerular injury. Biomark. Res. 2014, 2, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, J.H.; Paik, S.Y.; Mao, L.; Eisner, W.; Flannery, P.J.; Wang, L.; Tang, Y.; Mattocks, N.; Hadjadj, S.; Goujon, J.-M.; et al. Diabetic kidney disease in FVB/NJ Akita mice: Temporal pattern of kidney injury and urinary nephrin excretion. PLoS ONE 2012, 7, e33942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kostovska, I.; Tosheska-Trajkovska, K.; Topuzovska, S.; Cekovska, S.; Spasovski, G.; Kostovski, O.; Labudovic, D. Urinary nephrin is earlier, more sensitive and specific marker of diabetic nephropathy than microalbuminuria. J. Med. Biochem. 2020, 39, 83–90. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, F.; Xing, T.; Wang, N.; Liu, L. Clinical significance of plasma CD146 and P-selectin in patients with type 2 diabetic nephropathy. Cytokine 2012, 57, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Al-Rubeaan, K.; Nawaz, S.S.; Youssef, A.M.; Al Ghonaim, M.; Siddiqui, K. IL-18, VCAM-1 and P-selectin as early biomarkers in normoalbuminuric type 2 diabetes patients. Biomark. Med. 2019, 13, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Jin, D.; Qiu, H.; Lin, L.; Sun, S.; Li, D.; Sha, F.; Zhou, W.; Jia, M. Assessment of urinary podocalyxin as an alternative marker for urinary albumin creatinine ratio in early stage of diabetic kidney disease in older patients. Nefrologia 2022, 42, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Bai, X.; Gao, H.; Li, L.; Wu, C.; Sun, X.; Zhang, C.; Shen, Y.; Zhang, J.; Lu, Z. Urinary podocalyxin positive-element occurs in the early stage of diabetic nephropathy and is correlated with a clinical diagnosis of diabetic nephropathy. J. Diabetes Complicat. 2014, 28, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Yamagata, K.; Tomino, Y.; Saito, A.; Hirayama, Y.; Ogasawara, S.; Kurosawa, H.; Sekine, S.; Yan, K. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: Establishment of a highly sensitive ELISA to detect urinary podocalyxin. Diabetologia 2012, 55, 2913–2919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dalla Vestra, M.; Masiero, A.; Roiter, A.M.; Saller, A.; Crepaldi, G.; Fioretto, P. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 2003, 52, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Weil, E.J.; Lemley, K.V.; Mason, C.C.; Yee, B.; Jones, L.I.; Blouch, K.; Lovato, T.; Richardson, M.; Myers, B.D.; Nelson, R.G. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int. 2012, 82, 1010–1017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, A.K.H.; Tesch, G.H. Inflammation in diabetic nephropathy. Diabetes 2012, 65, 2311–2321. [Google Scholar] [CrossRef]
- Liu, J.J.; Yeoh, L.Y.; Sum, C.F.; Tavintharan, S.; Ng, X.W.; Liu, S.; Lee, S.B.; Tang, W.E.; Lim, S.C. Vascular cell adhesion molecule-1, but not intercellular adhesion molecule-1, is associated with diabetic kidney disease in Asians with type 2 diabetes. J. Diabetes Complicat. 2015, 29, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.; Nargis, S.; Gonzalez, M.; Pradhan, S.; Terreros, D.; Chattopadhyay, M. Role of glycyrrhizin in the reduction of inflammation in diabetic kidney disease. Nephron 2017, 137, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Yan-Do, R.; Duong, E.; Manning Fox, J.E.; Dai, X.; Suzuki, K.; Khan, S.; Bautista, A.; Ferdaoussi, M.; Lyon, J.; Wu, X.; et al. A glycine-insulin autocrine feedback loop enhances insulin secretion from human β-cells and is impaired in type 2 diabetes. Diabetes 2016, 65, 2311–2321. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Ching, J.; Wee, H.N.; Liu, S.; Gurung, R.L.; Lee, J.; Zheng, H.; Lee, L.S.; Ang, K.; Shao, Y.M.; et al. Plasma tryptophan-kynurenine pathway metabolites and risk for progression to end-stage kidney disease in patients with type 2 diabetes. Diabetes Care 2023, 46, 2223–2231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alves, A.; Bassot, A.; Bulteau, A.-L.; Pirola, L.; Morio, B. Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J.; Powell, S.; Swartling, D.J.; Gibson, K.M. Tiglylglycine excreted in urine in disorders of isoleucine metabolism and the respiratory chain measured by stable isotope dilution GC-MS. Clin. Chem. 1994, 40, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.M.; Twigg, S.M.; Wu, T.; Tabet, E.; McGill, M.J.; Constantino, M.; Mallawaarachchi, A.; Luo, C.; Thillainadesan, S.; Rahman, Y.; et al. Diabetic ketoacidosis in an adult with beta-ketothiolase deficiency (BKD) involving a novel ACAT1 variant: First report of established diabetes in BKD and a review of the literature. Clin. Diabetes Endocrinol. 2024, 10, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Imenshahidi, M.; Hossenzadeh, H. Effects of glycine on metabolic syndrome components: A review. J. Endocrinol. Investig. 2022, 45, 927–939. [Google Scholar] [CrossRef]
- Gannon, M.C.; Nuttall, J.A.; Nuttall, F.Q. The metabolic response to ingested glycine. Am. J. Clin. Nutr. 2002, 76, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- González-Ortiz, M.; Medina-Santillán, R.; Martínez-Abundis, E.; von Drateln, C.R. Effect of glycine on insulin secretion and action in healthy first-degree relatives of type 2 diabetes mellitus patients. Horm. Metab. Res. 2001, 33, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Inubushi, T.; Kamemura, N.; Oda, M.; Sakurai, J.; Nakaya, Y.; Harada, N.; Suenaga, M.; Matsunaga, Y.; Ishidoh, K.; Katunuma, N. L-tryptophan suppresses rise in blood glucose and preserves insulin secretion in type-2 diabetes mellitus rats. J. Nutr. Sci. Vitaminol. 2012, 58, 415–422. [Google Scholar] [CrossRef] [PubMed]
Healthy Subjects (C = 20) | Normoalbuminuria (P1 = 30) | Microalbuminuria (P2 = 30) | Macroalbuminuria (P3 = 30) | |
---|---|---|---|---|
clinical parameters | ||||
Age (years) | 68.0 ± 3.9 | 68.5 ± 4.9 | 69.6 ± 5.0 | 69.4 ± 3.9 |
Sex (%) M F | 14 (70.0%) 6 (30.0%) | 16 (53.3%) 14 (46.7%) | 17 (56.7%) 13 (43.3%) | 21 (70.0%) 9 (30.0%) |
Duration of DM (years) | 0 (0–0) # ▲ | 12 (10–17) | 16 (14–22) ‡ | 22 (18–26) |
BMI (kg/m2) | 24.8 ± 4.4 # ▲ | 30.0 ± 4.5 | 31.5 ± 4.0 | 31.0 ± 5.3 |
Retinopathy (%) | 0 (0.0%) ◊ ▲ | 5 (16.7%) | 10 (33.3%) ¶ | 24 (80.0%) |
Neuropathy (%) | 0 (0.0%) # ▲ | 13 (43.3%) | 15 (50.0%) | 16 (53.3%) |
biological parameters | ||||
Cholesterol (mg/dL) | 132.5 ± 24.6 ▲ | 164.1 ± 53.5 | 166.8 ± 57.7 ‡ | 199.5 ± 48.1 |
HDLc (mg/dL) | 45 (35–48) | 46 (41–52) | 44 (34–52) | 45 (36–52) |
LDLc (mg/dL) | 68 (65–88) ∆ | 87 (65–114) | 95 (62–120) | 97 (70–137) |
Triglycerides | 98 (92–101) ◊ ▲ | 142 (105–172) | 146 (112–203) ‡ | 188 (160–281) |
HbA1c (%) | 5.0 ± 0.2 # ▲ | 7.2 ± 0.9 * | 8.2 ± 1.4 | 8.4 ± 1.1 |
eGFR (mL/min/1.73 m2) | 84 (81–88) # ▲ | 78 (73–83) □ | 67 (64–73) ¶ | 48 (42–56) |
UA | 11 (9–14) ◊ ▲ | 15 (11–22) □ | 69 (51–167) ¶ | 483 (263–1572) |
UCr | 93 (77–131) | 89 (53–116) | 100 (66–115) | 70 (52–90) |
uACR (mg/g) | 11 (10–14) # ▲ | 20 (13–26) □ | 98 (61–155) ¶ | 925 (416–1391) |
markers of proximal tubular dysfunction | ||||
KIM-1 (pg/g) | 43 (26–46) # ▲ | 80 (67–94) □ | 140 (125–152) ¶ | 408 (321–458) |
NAG (ng/g) | 3 (2–3) ◊ ▲ | 3 (2–5) □ | 11 (11–18) ‡ | 17 (17–18) |
markers of endothelial damage | ||||
U P-selectin | 0 (0–0) # ▲ | 1 (1–1) □ | 3 (3–4) ¶ | 7 (5–7) |
S P-selectin | 1 (0–1) # ▲ | 1 (1–1) □ | 4 (4–5) ¶ | 8 (7–9) |
U VCAM1 (pg/g) | 2 (2–3) # ▲ | 5 (4–9) □ | 11 (9–12) ¶ | 16 (13–18) |
S VCAM1 (pg/g) | 10 (9–11) ◊ ▲ | 11 (11–12) □ | 15 (14–16) ¶ | 21 (19–24) |
markers of podocyte damage | ||||
Podocalixin (mg/g) | 0 (0–0) # ▲ | 1 (1–1) □ | 4 (3–4) ¶ | 8 (7–9) |
Nephrin (ng/g) | 0 (0–0) ▲ | 0 (0–0) □ | 0 (0–0) ¶ | 0 (0–0) |
METABOLITES | ||||
s Glycine | 217 (200–229) ▲ | 199 (169–204) | 185 (169–199) | 184 (170–187) |
s Taurine | 87 (83–93) | 85 (82–90) | 87 (76–91) | 83 (78–87) |
s KA | 6 (4–6) ◊ ▲ | 4 (3–6) | 4 (3–5) | 4 (3–5) |
s AC | 5 (4–7) | 6 (4–7) | 5 (4–6) | 5 (4–6) |
s TRP | 57 (48–67) ◊ | 51 (41–59) | 52 (33–62) | 48 (37–62) |
u Glycine | 12 (9–14) ∆ | 10 (7–14) | 8 (6–12) | 7 (5–13) |
u Tiglylglycine | 5 (4–6) ▲ | 4 (3–6) | 4 (3–5) ¶ | 2 (1–3) |
u Taurine | 8 (6–10) | 9 (7–10) | 8 (6–11) | 9 (8–14) |
u KA | 0 (0–0) ∆ | 0 (0–1) | 0 (0–0) | 0 (0–1) |
u AC | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–1) |
u TRP | 7 (4–10) ◊ ▲ | 4 (3–6) □ | 12 (6–16) | 16 (10–21) |
Dependent Variable | Independent Variable | R2 | Coef β | p Value |
---|---|---|---|---|
s Glyc | p-selectin | 0.067 | −3.14 | 0.006 |
VCAM1 | 0.069 | −2.01 | 0.005 | |
s Taurine | p-selectin | 0.020 | −0.80 | 0.138 |
VCAM1 | 0.010 | −0.35 | 0.296 | |
s KA | p-selectin | 0.099 | −0.12 | 0.000 |
VCAM1 | 0.061 | −0.06 | 0.008 | |
s AC | p-selectin | 0.000 | −0.005 | 0.928 |
VCAM1 | 0.003 | −0.02 | 0.553 | |
s TRP | p-selectin | 0.003 | −0.29 | 0.548 |
VCAM1 | 0.007 | −0.27 | 0.372 | |
u Glyc | Nephrin | 0.039 | −0.68 | 0.037 |
Podocalixin | 0.025 | −0.36 | 0.097 | |
KIM1 | 0.054 | −0.01 | 0.014 | |
NAG | 0.027 | −0.16 | 0.081 | |
u Tiglyglycine | Nephrin | 0.156 | −0.57 | 0.000 |
Podocalixin | 0.120 | −0.33 | 0.000 | |
KIM1 | 0.178 | −0.00 | 0.000 | |
NAG | 0.051 | −0.09 | 0.017 | |
u Taurine | Nephrin | 0.005 | 0.19 | 0.428 |
Podocalixin | 0.031 | 0.30 | 0.065 | |
KIM1 | 0.040 | 0.00 | 0.034 | |
NAG | 0.032 | 0.13 | 0.059 | |
u KA | Nephrin | 0.001 | 0.00 | 0.681 |
Podocalixin | 0.032 | 0.01 | 0.057 | |
KIM1 | 0.023 | 0.00 | 0.111 | |
NAG | 0.027 | 0.00 | 0.084 | |
u AC | Nephrin | 0.039 | 0.03 | 0.036 |
Podocalixin | 0.052 | 0.02 | 0.015 | |
KIM1 | 0.036 | 0.01 | 0.045 | |
NAG | 0.098 | 0.01 | 0.000 | |
u TRP | Nephrin | 0.019 | 0.72 | 0.148 |
Podocalixin | 0.044 | 0.72 | 0.027 | |
KIM1 | 0.052 | 0.01 | 0.015 | |
NAG | 0.035 | 0.28 | 0.047 |
Dependent Variable | R2 | Coef β | p Value | |
---|---|---|---|---|
U Tiglylglycine | P-selectin | 0.2143 | −1.49 | 0.0000 |
Podocalixin | 0.2143 | 1.47 | 0.0000 | |
KIM1 | 0.2143 | −0.01 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogos, M.; Milas, O.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Urinary and Serum Amino Acids May Be Associated with Podocyte, Proximal Tubule, and Renal Endothelial Injury in Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Biomedicines 2025, 13, 675. https://doi.org/10.3390/biomedicines13030675
Mogos M, Milas O, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Cretu OM, Suteanu-Simulescu A, Glavan M, et al. Urinary and Serum Amino Acids May Be Associated with Podocyte, Proximal Tubule, and Renal Endothelial Injury in Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Biomedicines. 2025; 13(3):675. https://doi.org/10.3390/biomedicines13030675
Chicago/Turabian StyleMogos, Maria, Oana Milas, Carmen Socaciu, Andreea Iulia Socaciu, Adrian Vlad, Florica Gadalean, Flaviu Bob, Octavian Marius Cretu, Anca Suteanu-Simulescu, Mihaela Glavan, and et al. 2025. "Urinary and Serum Amino Acids May Be Associated with Podocyte, Proximal Tubule, and Renal Endothelial Injury in Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients" Biomedicines 13, no. 3: 675. https://doi.org/10.3390/biomedicines13030675
APA StyleMogos, M., Milas, O., Socaciu, C., Socaciu, A. I., Vlad, A., Gadalean, F., Bob, F., Cretu, O. M., Suteanu-Simulescu, A., Glavan, M., Balint, L., Ienciu, S., Iancu, I.-L., Jianu, D. C., Ursoniu, S., & Petrica, L. (2025). Urinary and Serum Amino Acids May Be Associated with Podocyte, Proximal Tubule, and Renal Endothelial Injury in Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Biomedicines, 13(3), 675. https://doi.org/10.3390/biomedicines13030675