Age-Related Glucose Intolerance Is Associated with Impaired Insulin Secretion in Community-Dwelling Japanese Adults: The Kumamoto Koshi Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometrics and Biochemical Measurements
2.3. Calculation of Indices of Insulin Secretion and Insulin Sensitivity
2.4. Statistical Analysis
3. Results
3.1. Diabetes and Prediabetes Prevalence by Age Group
3.2. Relationship Between Age and Indices of Insulin Sensitivity
3.3. Relationship Between Age and Indices of Insulin Secretion
3.4. Effects of Aging in People with NGT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, A.M.; Holter, J.B. Aging and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E7–E12. [Google Scholar] [CrossRef]
- Scheen, A.J. Diabetes mellitus in the elderly: Insulin resistance and/or impaired insulin secretion? Diabetes Metab. 2005, 31, 5S27–5S34. [Google Scholar] [CrossRef]
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Chen, M.; Bergman, R.N.; Pacini, G.; Porte, D., Jr. Pathogenesis of age-related glucose intolerance in man: Insulin resistance and decreased b-cell function. J. Clin. Endocrinol. Metab. 1985, 60, 13–20. [Google Scholar] [CrossRef]
- DeFronzo, R.A. Glucose intolerance and aging: Evidence for tissue insensitivity to insulin. Diabetes 1979, 28, 1095–1101. [Google Scholar] [CrossRef]
- Coon, P.J.; Rogus, E.M.; Drinkwater, D.; Muller, D.C.; Goldberg, A.P. Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age. J. Clin. Endocrinol. Metab. 1992, 75, 1125–1132. [Google Scholar]
- Ahren, B.; Pacini, G. Age-related reduction in glucose elimination is accompanied by reduced glucose effectiveness and increased hepatic insulin extraction in man. J. Clin. Endocrinol. Metab. 1998, 83, 3350–3356. [Google Scholar] [CrossRef]
- Boden, G.; Chen, X.; DeSantis, R.A.; Kendrick, Z. Effects of age and body fat on insulin resistance in healthy men. Diabetes Care 1993, 16, 728–733. [Google Scholar] [CrossRef]
- Xiao, J.; Weng, J.; Ji, L.; Jia, W.; Lu, J.; Shan, Z.; Liu, J.; Tian, H.; Ji, Q.; Yang, Z.; et al. Worse pancreatic β-cell function and better insulin sensitivity in older Chinese without diabetes. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 463–470. [Google Scholar] [CrossRef]
- Guminer, B.; Polonsky, K.S.; Beltz, W.F.; Wallace, P.; Brechtel, G.; Fink, R.I. Effects of aging on insulin secretion. Diabetes 1989, 38, 1549–1556. [Google Scholar] [CrossRef]
- Basu, R.; Breda, E.; Oberg, A.L.; Powell, C.C.; Man, C.D.; Basu, A.; Vittone, J.L.; Klee, G.G.; Arora, P.; Jensen, M.D.; et al. Mechanisms of the age-associated deterioration in glucose tolerance. Diabetes 2003, 52, 1738–1748. [Google Scholar] [CrossRef]
- Chang, A.M.; Smith, M.J.; Galecki, A.T.; Bloem, C.J.; Halter, J.B. Impaired β-cell function in human aging: Response to nicotinic acid-induced insulin resistance. J. Clin. Endocrinol. Metab. 2006, 91, 3303–3309. [Google Scholar] [CrossRef]
- Ihm, S.H.; Matsumoto, I.; Sawada, T.; Nakano, M.; Zhang, H.; Ansite, J.D.; Sutherland, D.E.R.; Hering, B.L. Effect of donor age on function of isolated human islets. Diabetes 2006, 55, 1361–1368. [Google Scholar] [CrossRef]
- Broughton, D.L.; James, O.W.; Alberti, K.G.; Taylor, R. Peripheral and hepatic insulin sensitivity in healthy elderly human subjects. Eur. J. Clin. Invest. 1991, 21, 13–21. [Google Scholar] [CrossRef]
- Elahi, D.; Muller, D.C.; McAloon-Dyke, M.; Tobin, J.D.; Andres, R. The effect of age on insulin response and glucose utilization during four hyperglycemic plateaus. Exp. Gerontol. 1993, 28, 393–409. [Google Scholar] [CrossRef]
- Yabe, D.; Seino, Y.; Fukushima, M.; Sino, S. β cell dysfunction versus insulin resistance in the pathogenesis of type 2 diabetes in east Asians. Curr. Diab Rep. 2015, 15, 36. [Google Scholar] [CrossRef]
- Kodama, K.; Tojjar, D.; Yamada, S.; Toda, K.; Patel, C.J.; Butte, A.J. Ethnic differences in the relationship between insulin sensitivity and insulin response. Diabetes Care 2013, 36, 1789–1796. [Google Scholar] [CrossRef]
- Møller, J.B.; Pedersen, M.; Tanaka, H.; Ohsugi, M.; Overgaard, R.V.; Lynge, J.; Almind, K.; Vasconcelos, N.M.; Poulsen, P.; Keller, C.; et al. Body composition is the main determinant for the difference in type 2 diabetes pathophysiology between Japanese and Caucasians. Diabetes Care 2014, 37, 796–804. [Google Scholar] [CrossRef]
- Hirose, H.; Takayama, M.; Iwano, Y.; Kawabe, H. Effects of aging on visceral and subcutaneous fat areas and on homeostasis model assessment of insulin resistance and insulin secretion capacity in a comprehensive health checkup. J. Atheroscler. Thromb. 2016, 23, 207–215. [Google Scholar] [CrossRef]
- Naito, H.; Kaga, H.; Someya, Y.; Tabata, H.; Kakehi, S.; Tajima, T.; Ito, N.; Yamasaki, N.; Sato, M.; Kadowaki, S.; et al. Fat accumulation and elevated free fatty acid are associated with age-related glucose intolerance: Bunkyo health study. J. Endocrine Society 2024, 8, bvad164. [Google Scholar] [CrossRef]
- Shimizu, M.; Kawazu, S.; Tomono, S.; Ohno, T.; Utsugi, T.; Kato, N.; Ishi, C.; Ito, Y.; Murata, K. Age-related alteration of pancreatic β-cell function. Diabetes Care 1996, 19, 8–11. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Ferrannini, E.; Miyazaki, Y.; Matsuda, M.; DeFronzo, R.A.; San Antonio metabolism study. Beta-cell dysfunction and glucose intolerance: Results from the San Antonio metabolism (SAM) study. Diabetologia 2004, 47, 31–39. [Google Scholar] [CrossRef]
- Retnakaran, R.; Shen, S.; Hanley, A.J.; Vuksan, V.; Hamilton, J.K.; Zinman, B. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity 2008, 16, 1901–1907. [Google Scholar] [CrossRef]
- Komada, H.; Sakaguchi, K.; Takeda, K.; Hirota, Y.; Hashimoto, N.; Okuno, Y.; Seino, S.; Ogawa, W. Age-dependent decline in β-cell function assessed by an oral glucose tolerance test-based disposition index. J. Diabetes Investig. 2011, 2, 293–296. [Google Scholar] [CrossRef]
- Fukuda-Akita, E.; Okita, K.; Okauchi, Y.; Ryo, M.; Nakamura, T.; Funahashi, T.; Iwahashi, H.; Shimomura, I.; Miyagawa, J.; Yamagata, K. Impaired early insulin secretion in Japanese type 2 diabetes with metabolic syndrome. Diabetes Res. Clin. Pract. 2008, 79, 482–489. [Google Scholar] [CrossRef]
- Sakai, S.; Tanimoto, K.; Imbe, A.; Inaba, Y.; Shishikura, K.; Tanimoto, Y.; Ushiroyama, T.; Terasaki, J.; Hanafusa, T. Decreased β-cell function is associated with reduced skeletal muscle mass in Japanese subjects without diabetes. PLoS ONE 2016, 11, e0162603. [Google Scholar] [CrossRef]
- DECODE Study Group. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care 2003, 26, 61–69. [Google Scholar] [CrossRef]
- The DECODA Study Group. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care 2003, 26, 1770–1780. [Google Scholar] [CrossRef]
- Ferrannini, E.; Vichi, S.; Beck-Nielsen, H.; Laakso, M.; Paolisso, G.; Smith, U. Insulin action and age. European Group for the Study of Insulin Resistance (EGIR). Diabetes 1996, 45, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Youm, Y.; Lee, W.J.; Choi, W.; Chu, S.H.; Park, Y.R.; Kim, H.C. Addendicular skeletal muscle mass and insulin resistance in an elderly Korean population: The Korean social life, health and aging project-health examination cohort. Diabetes Metab. J. 2015, 39, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Barzilay, J.I.; Cotsonis, G.A.; Walston, J.; Schwartz, A.V.; Satterfield, S.; Miljkovic, I.; Harris, T.B.; Health ABC Study. Insulin resistance is associated with decreased quadriceps muscle strength in nondiabetic adults aged >70 years. Diabetes Care 2009, 32, 736–738. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Suzuki, T.; Imai, J.; Yamada, T.; Ishigaki, Y.; Kaneko, K.; Uno, K.; Hasegawa, Y.; Ishihara, H.; Oka, Y.; Katagiri, H. Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic beta-cells: Potential involvement of the PLC-IP3-dependent pathway. Diabetes 2011, 60, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kim, K.H. TNF-α inhibits glucose-induced insulin secretion in a pancreatic β-cell line (INS-1). FEBS Lett. 1995, 377, 237–239. [Google Scholar] [CrossRef]
- Okamoto, M.; Ohara-Imaizumi, M.; Kubota, N.; Hashimoto, S.; Eto, K.; Kanno, T.; Kubota, T.; Wakui, M.; Nagai, R.; Noda, M. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 2008, 51, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Mazzucato, C. Functional changes in beta cells during ageing and senescence. Diabetologia 2020, 63, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Mazzucato, C.; Andle, J.; Lee, T.B., Jr.; Midha, A.; Talemal, L.; Chipashvili, V.; Hollister-Lock, J.; van Deursen, J.; Weir, G.; Bonner-Weir, S. Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell Metab. 2019, 30, 129–142. [Google Scholar] [CrossRef]
- Yamagata, K.; Tsuyama, T.; Sato, Y. Roles of beta-cell hypoxia in the progression of type 2 diabetes. Int. J. Mol. Sci. 2024, 25, 4186. [Google Scholar] [CrossRef]
Groups | Group 1 (20–39) | Group 2 (40–59) | Group 3 (60–74) | Group 4 (75–) | p |
---|---|---|---|---|---|
n (M, F) | 25 (11, 14) | 49 (26, 23) | 58 (31, 27) | 28 (14, 14) | |
Age (years) | 32.6 ± 4.4 | 49.1 ± 6.2 | 67.6 ± 3.9 | 78.4 ± 3.4 | |
NGT, n (%) | 24 (96.0) | 40 (81.6) | 33 (56.9) | 9 (32.1) | |
IFG, n (%) | 0 (0) | 0 (0) | 1 (1.7) | 1 (3.6) | |
IGT, n (%) | 1 (4.0) | 8 (16.3) | 15(25.9) | 12(42.9) | |
DM, n (%) | 0 (0) | 1 (2.0) | 9 (15.5) | 6 (21.4) | |
BMI (kg/m2) | 23.7 ± 4.8 | 22.2 ± 2.8 | 23.0 ± 3.3 | 22.9 ± 2.7 | 0.343 |
FPG (mg/dL) | 88.6 ± 5.7 | 91.4 ± 8.5 | 99.4 ± 10.3 ***, ††† | 98.3 ± 12.2 **, † | <0.001 |
HbA1c (%) | 5.43 ± 0.24 | 5.45 ± 0.32 | 5.76 ± 0.33 ***, ††† | 5.79 ± 0.37 ***, ††† | <0.001 |
F-IRI (µU/mL) | 6.62 ± 6.5 | 4.83 ± 2.3 | 5.29 ± 3.2 | 5.39 ± 3.1 | 0.259 |
HOMA-IR (μU/mL·mg/dL) | 1.48 ± 1.53 | 1.11 ± 0.58 | 1.32 ± 0.84 | 1.35 ± 0.88 | 0.483 |
Matsuda Index ((mg/dL·μU/mL)−1) | 7.25 ± 3.7 | 7.65 ± 3.6 | 6.84 ± 3.4 | 6.40 ± 3.4 | 0.403 |
HOMA-β (μU/mL/mg/dL) | 90.6 ± 72 | 64.0 ± 29 | 54.2 ± 34 *** | 58.9 ± 38 * | 0.002 |
Insulinogenic Index (μU/mL/mg/dL) | 1.05 ± 0.9 | 0.82 ± 0.7 | 0.59 ± 0.5 * | 0.58 ± 0.7 * | 0.006 |
Disposition Index ((mg/dL)−2) | 2.40 ± 0.9 | 2.20 ± 0.8 | 1.64 ± 0.6 ***, ††† | 1.58 ± 0.7 ***, †† | <0.001 |
Body Fat Mass (kg) § | 21.1 ± 12.4 | 14.8 ± 5.7 * | 14.0 ± 3.9 ** | 13.0 ± 5.5 ** | 0.006 |
Body Fat Percentage (%) § | 29.5 ± 11.0 | 25.5 ± 7.9 | 24.9 ± 6.1 | 23.3 ± 7.4 | 0.181 |
Skeletal Muscle Mass (kg) § | 25.8 ± 5.9 | 23.6 ± 4.5 | 23.2 ± 5.0 | 22.4 ± 4.4 | 0.276 |
Skeletal Muscle Index (kg/m2) § | 7.21 ± 1.3 | 6.65 ± 0.9 | 6.58 ± 1.0 | 6.49 ± 1.0 | 0.206 |
Calf Circumference (cm) § | 37.7 ± 4.7 | 35.3 ± 2.1 * | 34.7 ± 2.5 ** | 33.5 ± 2.4 *** | 0.001 |
Grip Strength (kg) § | 33.5 ± 9.9 | 32.8 ± 9.7 | 30.5 ± 9.1 | 26.8 ± 7.3 | 0.150 |
Groups | Younger Group (20–59) | Older Group (60–) | p |
---|---|---|---|
n (M, F) | 64 (34, 30) | 42 (18, 24) | |
Age (years) | 42.6 ± 9.6 | 70.1 ± 5.5 | |
BMI (kg/m2) | 22.5 ± 3.5 | 22.4 ± 3.1 | 0.919 |
FPG (mg/dL) | 89.9 ± 7.7 | 94.2 ± 8.7 | 0.009 |
HbA1c (%) | 5.43 ± 0.29 | 5.59 ± 0.28 | 0.006 |
F-IRI (µU/mL) | 5.21 ± 4.3 | 4.28 ± 2.1 | 0.194 |
HOMA-IR (μU/mL·mg/dL) | 1.18 ± 1.03 | 1.00 ± 0.53 | 0.351 |
Matsuda Index ((mg/dL·μU/mL)−1) | 7.97 ± 3.6 | 8.38 ± 3.5 | 0.474 |
HOMA-β (μU/mL/mg/dL) | 71.4 ± 50 | 53.3 ± 33 | 0.006 |
Insulinogenic Index (μU/mL/mg/dL) | 0.94 ± 0.8 | 0.65 ± 0.5 | 0.043 |
Disposition Index ((mg/dL)−2) | 2.38 ± 0.8 | 2.03 ± 0.6 | 0.023 |
Body Fat Mass (kg) § | 15.6 ± 7.6 | 13.2 ± 4.4 | 0.158 |
Body Fat Percentage (%) § | 25.2 ± 8.2 | 23.2 ± 6.7 | 0.321 |
Skeletal Muscle Mass (kg) § | 24.6 ± 5.1 | 23.4 ± 4.7 | 0.343 |
Skeletal Muscle Index (kg/m2) § | 6.91 ± 1.0 | 6.49 ± 1.0 | 0.117 |
Calf Circumference (cm) § | 36.0 ± 3.3 | 34.6 ± 2.6 | 0.077 |
Grip Strength (kg) § | 34.4 ± 9.7 | 29.4 ± 8.6 | 0.042 |
HOMA-β | Insulinogenic Index | Disposition Index | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Age | −0.34 | 0.007 | −0.35 | 0.004 | −0.24 | 0.058 |
Sex | −0.17 | 0.187 | −0.09 | 0.502 | −0.21 | 0.096 |
BMI | 0.45 | 0.0002 | 0.25 | 0.049 | −0.23 | 0.073 |
Body Fat Mass | 0.36 | 0.004 | 0.35 | 0.005 | −0.08 | 0.518 |
Percent Body Fat | 0.32 | 0.012 | 0.34 | 0.006 | 0.03 | 0.808 |
Skeletal Muscle Mass | −0.08 | 0.527 | −0.06 | 0.656 | −0.17 | 0.182 |
Skeletal Muscle Index | 0.09 | 0.469 | 0.001 | 0.991 | −0.23 | 0.076 |
Calf Circumference | 0.32 | 0.010 | 0.15 | 0.256 | −0.20 | 0.109 |
Grip Strength | 0.03 | 0.818 | 0.001 | 0.992 | −0.17 | 0.190 |
HOMA-β | Insulinogenic Index | Disposition Index | ||||
---|---|---|---|---|---|---|
Std β | p | Std β | p | Std β | p | |
Age | −0.064 | 0.043 | −0.053 | 0.013 | −0.028 | 0.040 |
Sex | −0.144 | 0.238 | 0.049 | 0.547 | −0.015 | 0.771 |
BMI | 0.144 | 0.011 | 0.056 | 0.134 | −0.019 | 0.423 |
Percent Body Fat | −0.027 | 0.483 | 0.021 | 0.408 | 0.007 | 0.671 |
Skeletal Muscle Index | −0.064 | 0.433 | −0.055 | 0.315 | 0.004 | 0.905 |
Calf Circumference | 0.012 | 0.841 | −0.018 | 0.655 | −0.012 | 0.653 |
Grip Strength | 0.041 | 0.417 | 0.006 | 0.855 | −0.005 | 0.819 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuda, K.; Haneda, M.; Kubota, N.; Araki, E.; Yamagata, K. Age-Related Glucose Intolerance Is Associated with Impaired Insulin Secretion in Community-Dwelling Japanese Adults: The Kumamoto Koshi Study. Biomedicines 2025, 13, 380. https://doi.org/10.3390/biomedicines13020380
Fukuda K, Haneda M, Kubota N, Araki E, Yamagata K. Age-Related Glucose Intolerance Is Associated with Impaired Insulin Secretion in Community-Dwelling Japanese Adults: The Kumamoto Koshi Study. Biomedicines. 2025; 13(2):380. https://doi.org/10.3390/biomedicines13020380
Chicago/Turabian StyleFukuda, Kazuki, Masaki Haneda, Naoto Kubota, Eiichi Araki, and Kazuya Yamagata. 2025. "Age-Related Glucose Intolerance Is Associated with Impaired Insulin Secretion in Community-Dwelling Japanese Adults: The Kumamoto Koshi Study" Biomedicines 13, no. 2: 380. https://doi.org/10.3390/biomedicines13020380
APA StyleFukuda, K., Haneda, M., Kubota, N., Araki, E., & Yamagata, K. (2025). Age-Related Glucose Intolerance Is Associated with Impaired Insulin Secretion in Community-Dwelling Japanese Adults: The Kumamoto Koshi Study. Biomedicines, 13(2), 380. https://doi.org/10.3390/biomedicines13020380