Non-Invasive Assessment of Vascular Damage Through Pulse Wave Velocity and Superb Microvascular Imaging in Pre-Dialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Participants
2.3. Vascular Outcomes
2.4. Statistical Analysis
3. Results
3.1. Anthropometric, Clinical, and Biochemical Features
3.2. Vascular Damage in CKD and Its Association with Serum CKD-MBD Markers
3.2.1. Pulse Wave Velocity: Aortic Stiffness
3.2.2. Kauppila Index
3.2.3. Superb Microvascular Image Ultrasound: Atherosclerosis, Carotid Intima–Media Thickness, and Adventitial Neovascularization
Atherosclerosis by SMI Ultrasound
Carotid Intima–Media Thickness by SMI Ultrasound
Adventitial Neovascularization by SMI Ultrasound
Vascular Damage and Age
4. Discussion
Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CKD | Chronic Kidney Disease |
CKD-MBD | Chronic Kidney Disease–Mineral Bone Disorder |
PTH | Parathyroid hormone |
FGF23 | Fibroblast Growth Factor 23 |
sKlotho | Soluble Klotho |
KI | Kauppila index |
cIMT | Carotid intima–media thickness |
CEUS | Contrast enhanced ultrasound |
PWV | Pulse wave velocity |
SMI | Superb Microvascular Imaging |
BMI | Body mass index |
eGFR | Estimated glomerular filtration rate |
References
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Cannata-Andia, J.B.; Martin-Carro, B.; Martin-Virgala, J.; Rodriguez-Carrio, J.; Bande-Fernandez, J.J.; Alonso-Montes, C.; Carrillo-Lopez, N. Chronic Kidney Disease-Mineral and Bone Disorders: Pathogenesis and Management. Calcif. Tissue Int. 2021, 108, 410–422. [Google Scholar] [CrossRef]
- Kauppila, L.I.; Polak, J.F.; Cupples, L.A.; Hannan, M.T.; Kiel, D.P.; Wilson, P.W. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: A 25-year follow-up study. Atherosclerosis 1997, 132, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Ota, K.; Nakanishi, R.; Hashimoto, H.; Okamura, Y.; Watanabe, I.; Yabe, T.; Okubo, R.; Ikeda, T. Association between coronary artery calcium score on non-contrast chest computed tomography and all-cause mortality among patients with congestive heart failure. Heart Vessels 2022, 37, 262–272. [Google Scholar] [CrossRef]
- Valdivielso, J.M.; Rodriguez-Puyol, D.; Pascual, J.; Barrios, C.; Bermudez-Lopez, M.; Sanchez-Nino, M.D.; Perez-Fernandez, M.; Ortiz, A. Atherosclerosis in Chronic Kidney Disease: More, Less, or Just Different? Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1938–1966. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgozoglu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Martín-Vírgala, J.; Miranda-Prieto, D.; Fernández-Villabrille, S.; Martín-Carro, B.; González-García, N.; Bande-Fernández, J.; Díaz-Corte, C.; Fernández-Martín, J.L.; Alonso-Montes, C.; Suárez, A.; et al. Novel T-cell subsets as non-invasive biomarkers of vascular damage along the predialysis stages of chronic kidney disease. Front. Med. 2024, 11, 1460021. [Google Scholar] [CrossRef]
- Shi, X.; Gao, J.; Lv, Q.; Cai, H.; Wang, F.; Ye, R.; Liu, X. Calcification in Atherosclerotic Plaque Vulnerability: Friend or Foe? Front. Physiol. 2020, 11, 56. [Google Scholar] [CrossRef]
- Zhang, H.; Du, J.; Wang, H.; Wang, H.; Jiang, J.; Zhao, J.; Lu, H. Comparison of diagnostic values of ultrasound micro-flow imaging and contrast-enhanced ultrasound for neovascularization in carotid plaques. Exp. Ther. Med. 2017, 14, 680–688. [Google Scholar] [CrossRef]
- Arcidiacono, M.V.; Rubinat, E.; Borras, M.; Betriu, A.; Trujillano, J.; Vidal, T.; Mauricio, D.; Fernandez, E. Left carotid adventitial vasa vasorum signal correlates directly with age and with left carotid intima-media thickness in individuals without atheromatous risk factors. Cardiovasc. Ultrasound 2015, 13, 20. [Google Scholar] [CrossRef]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Park, A.Y.; Seo, B.K. Up-to-date Doppler techniques for breast tumor vascularity: Superb microvascular imaging and contrast-enhanced ultrasound. Ultrasonography 2018, 37, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Seskute, G.; Jasionyte, G.; Rugiene, R.; Butrimiene, I. The Use of Superb Microvascular Imaging in Evaluating Rheumatic Diseases: A Systematic Review. Medicina 2023, 59, 1641. [Google Scholar] [CrossRef]
- Meng, Q.; Xie, X.; Li, L.; Jiang, C.; Zhao, K.; Bai, Z.; Zheng, Z.; Yang, Y.; Yu, Y.; Zhang, H.; et al. Assessment of neovascularization of carotid artery atherosclerotic plaques using superb microvascular imaging: A comparison with contrast-enhanced ultrasound imaging and histology. Quant. Imaging Med. Surg. 2021, 11, 1958–1969. [Google Scholar] [CrossRef]
- Rodríguez-Carrio, J.; Carrillo-López, N.; Ulloa, C.; Martín-Carro, B.; Rodríguez-Suárez, C.; Naves-Díaz, M.; Sánchez-Álvarez, E.; Rodríguez-García, M.; Arcidiacono, M.V.; Fernández-Mariño, B.; et al. Novel Immune Cell Subsets Exhibit Different Associations With Vascular Outcomes in Chronic Kidney Disease Patients-Identifying Potential Biomarkers. Front. Med. 2021, 8, 618286. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes, C.K.D.M.B.D.U.W.G. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [Google Scholar] [CrossRef]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef]
- London, G.M. Arterial Stiffness in Chronic Kidney Disease and End-Stage Renal Disease. Blood Purif. 2018, 45, 154–158. [Google Scholar] [CrossRef]
- Temmar, M.; Liabeuf, S.; Renard, C.; Czernichow, S.; Esper, N.E.; Shahapuni, I.; Presne, C.; Makdassi, R.; Andrejak, M.; Tribouilloy, C.; et al. Pulse wave velocity and vascular calcification at different stages of chronic kidney disease. J. Hypertens. 2010, 28, 163–169. [Google Scholar] [CrossRef]
- Townsend, R.R.; Anderson, A.H.; Chirinos, J.A.; Feldman, H.I.; Grunwald, J.E.; Nessel, L.; Roy, J.; Weir, M.R.; Wright, J.T., Jr.; Bansal, N.; et al. Association of Pulse Wave Velocity With Chronic Kidney Disease Progression and Mortality: Findings From the CRIC Study (Chronic Renal Insufficiency Cohort). Hypertension 2018, 71, 1101–1107. [Google Scholar] [CrossRef]
- Baumann, M.; Wassertheurer, S.; Suttmann, Y.; Burkhardt, K.; Heemann, U. Aortic pulse wave velocity predicts mortality in chronic kidney disease stages 2-4. J. Hypertens. 2014, 32, 899–903. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhu, Z.; Wang, H.; Ma, X.; Liu, W.; Wu, Y.; Zou, C.; Wang, Y.; Shen, B.; Ge, W.; et al. Quantifying carotid stiffness in chronic kidney disease using ultrafast ultrasound imaging. Quant. Imaging Med. Surg. 2024, 14, 75–85. [Google Scholar] [CrossRef]
- Milan, A.; Zocaro, G.; Leone, D.; Tosello, F.; Buraioli, I.; Schiavone, D.; Veglio, F. Current assessment of pulse wave velocity: Comprehensive review of validation studies. J. Hypertens. 2019, 37, 1547–1557. [Google Scholar] [CrossRef]
- Krishnasamy, R.; Tan, S.J.; Hawley, C.M.; Johnson, D.W.; Stanton, T.; Lee, K.; Mudge, D.W.; Campbell, S.; Elder, G.J.; Toussaint, N.D.; et al. Progression of arterial stiffness is associated with changes in bone mineral markers in advanced CKD. BMC Nephrol. 2017, 18, 281. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Hsieh, Y.J.; Lin, Y.L.; Wang, C.H.; Hsu, B.G.; Tsai, J.P. Correlation between Serum 25-Hydroxyvitamin D Level and Peripheral Arterial Stiffness in Chronic Kidney Disease Stage 3-5 Patients. Nutrients 2022, 14, 2429. [Google Scholar] [CrossRef]
- Savvoulidis, P.; Kalogeropoulos, A.P.; Raptis, V.; Rafailidis, V.; Georgianos, P.I.; Balaskas, E.V.; Kouskouras, K.; Karvounis, H.; Hadjimiltiades, S. Calcification of coronary arteries and aortic valve and circulating a-klotho levels in patients with chronic kidney disease. J. Thorac. Dis. 2020, 12, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S.; Rogacev, K.S.; Roth, H.J.; Shafein, P.; Emrich, I.; Neuhaus, S.; Floege, J.; Fliser, D.; Heine, G.H. Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin. J. Am. Soc. Nephrol. 2014, 9, 1049–1058. [Google Scholar] [CrossRef]
- Arroyo, D.; Betriu, A.; Martinez-Alonso, M.; Vidal, T.; Valdivielso, J.M.; Fernandez, E.; Investigators from the NEFRONA Study. Observational multicenter study to evaluate the prevalence and prognosis of subclinical atheromatosis in a Spanish chronic kidney disease cohort: Baseline data from the NEFRONA study. BMC Nephrol. 2014, 15, 168. [Google Scholar] [CrossRef]
- Martin, M.; Valls, J.; Betriu, A.; Fernandez, E.; Valdivielso, J.M. Association of serum phosphorus with subclinical atherosclerosis in chronic kidney disease. Sex makes a difference. Atherosclerosis 2015, 241, 264–270. [Google Scholar] [CrossRef]
- Demirci, R.; Sevinc, C. The Relationship Between Carotid Intima Media Thickness, Inflammation and GLA Rich Protein Levels in Chronic Kidney Disease. Int. J. Gen. Med. 2021, 14, 5119–5126. [Google Scholar] [CrossRef]
- Figurek, A.; Spasovski, G.; Popovic-Pejicic, S. FGF23 Level and Intima-Media Thickness Are Elevated From Early Stages of Chronic Kidney Disease. Ther. Apher. Dial. 2018, 22, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Abajo, M.; Betriu, A.; Arroyo, D.; Gracia, M.; Del Pino, M.D.; Martinez, I.; Valdivielso, J.M.; Fernandez, E.; Investigators from the NEFRONA Study. Mineral metabolism factors predict accelerated progression of common carotid intima-media thickness in chronic kidney disease: The NEFRONA study. Nephrol. Dial. Transplant. 2017, 32, 1882–1891. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Lopez, N.; Martinez-Arias, L.; Alonso-Montes, C.; Martin-Carro, B.; Martin-Virgala, J.; Ruiz-Ortega, M.; Fernandez-Martin, J.L.; Dusso, A.S.; Rodriguez-Garcia, M.; Naves-Diaz, M.; et al. The receptor activator of nuclear factor kappaBeta ligand receptor leucine-rich repeat-containing G-protein-coupled receptor 4 contributes to parathyroid hormone-induced vascular calcification. Nephrol. Dial. Transplant. 2021, 36, 618–631. [Google Scholar] [CrossRef]
- Rodriguez-Ortiz, M.E.; Alcala-Diaz, J.F.; Canalejo, A.; Torres-Pena, J.D.; Gomez-Delgado, F.; Munoz-Castaneda, J.R.; Delgado-Lista, J.; Rodriguez, M.; Lopez-Miranda, J.; Almaden, Y. Fibroblast growth factor 23 predicts carotid atherosclerosis in individuals without kidney disease. The CORDIOPREV study. Eur. J. Intern. Med. 2020, 74, 79–85. [Google Scholar] [CrossRef]
- Donate-Correa, J.; Ferri, C.M.; Martin-Nunez, E.; Perez-Delgado, N.; Gonzalez-Luis, A.; Mora-Fernandez, C.; Navarro-Gonzalez, J.F. Klotho as a biomarker of subclinical atherosclerosis in patients with moderate to severe chronic kidney disease. Sci. Rep. 2021, 11, 15877. [Google Scholar] [CrossRef]
- Yu, L.; Kang, L.; Ren, X.Z.; Diao, Z.L.; Liu, W.H. Circulating alpha-Klotho Levels in Hemodialysis Patients and Their Relationship to Atherosclerosis. Kidney Blood Press. Res. 2018, 43, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.F.; Sebti, S.; Wei, Y.; Zou, Z.; Shi, M.; McMillan, K.L.; He, C.; Ting, T.; Liu, Y.; Chiang, W.C.; et al. Author Correction: Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 2018, 561, E30. [Google Scholar] [CrossRef]
- Xie, J.; Yoon, J.; An, S.W.; Kuro-o, M.; Huang, C.L. Soluble Klotho Protects against Uremic Cardiomyopathy Independently of Fibroblast Growth Factor 23 and Phosphate. J. Am. Soc. Nephrol. 2015, 26, 1150–1160. [Google Scholar] [CrossRef]
- Martin-Virgala, J.; Fernandez-Villabrille, S.; Martin-Carro, B.; Tamargo-Gomez, I.; Navarro-Gonzalez, J.F.; Mora-Fernandez, C.; Calleros, L.; Astudillo-Cortes, E.; Avello-Llano, N.; Marino, G.; et al. Serum and Urinary Soluble alpha-Klotho as Markers of Kidney and Vascular Impairment. Nutrients 2023, 15, 1470. [Google Scholar] [CrossRef]
- Ikushima, M.; Rakugi, H.; Ishikawa, K.; Maekawa, Y.; Yamamoto, K.; Ohta, J.; Chihara, Y.; Kida, I.; Ogihara, T. Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem. Biophys. Res. Commun. 2006, 339, 827–832. [Google Scholar] [CrossRef]
- Espuch-Oliver, A.; Vazquez-Lorente, H.; Jurado-Fasoli, L.; de Haro-Munoz, T.; Diaz-Alberola, I.; Lopez-Velez, M.D.S.; de Haro-Romero, T.; Castillo, M.J.; Amaro-Gahete, F.J. References Values of Soluble alpha-Klotho Serum Levels Using an Enzyme-Linked Immunosorbent Assay in Healthy Adults Aged 18-85 Years. J. Clin. Med. 2022, 11, 2415. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Stein, L.R.; Kim, D.; Ho, K.; Yu, G.Q.; Zhan, L.; Larsson, T.E.; Mucke, L. Klotho controls the brain-immune system interface in the choroid plexus. Proc. Natl. Acad. Sci. USA 2018, 115, E11388–E11396. [Google Scholar] [CrossRef]
- Han, S.; Zhang, X.; Wang, X.; Wang, Y.; Xu, Y.; Shang, L. Association Between Serum Klotho and All-Cause Mortality in Chronic Kidney Disease: Evidence From a Prospective Cohort Study. Am. J. Nephrol. 2024, 55, 273–283. [Google Scholar] [CrossRef]
- Wendelhag, I.; Wiklund, O.; Wikstrand, J. On quantifying plaque size and intima-media thickness in carotid and femoral arteries. Comments on results from a prospective ultrasound study in patients with familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhao, Z.; Liu, P.; Liu, X.; Wang, X.; Ren, Q.; Chang, B. Adventitial Vasa Vasorum Neovascularization in Femoral Artery of Type 2 Diabetic Patients with Macroangiopathy Is Associated with Macrophages and Lymphocytes as well as the Occurrence of Cardiovascular Events. Thromb. Haemost. 2023, 123, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, L.; Shishkova, D.; Mukhamadiyarov, R.; Velikanova, E.; Tsepokina, A.; Terekhov, A.; Koshelev, V.; Kanonykina, A.; Shabaev, A.; Frolov, A.; et al. Excessive Adventitial and Perivascular Vascularisation Correlates with Vascular Inflammation and Intimal Hyperplasia. Int. J. Mol. Sci. 2022, 23, 12156. [Google Scholar] [CrossRef] [PubMed]
- Arcidiacono, M.V.; Traveset, A.; Rubinat, E.; Ortega, E.; Betriu, A.; Hernandez, M.; Fernandez, E.; Mauricio, D. Microangiopathy of large artery wall: A neglected complication of diabetes mellitus. Atherosclerosis 2013, 228, 142–147. [Google Scholar] [CrossRef]
- Winocour, P.H. Diabetes and chronic kidney disease: An increasingly common multi-morbid disease in need of a paradigm shift in care. Diabet. Med. 2018, 35, 300–305. [Google Scholar] [CrossRef]
- Leong, J.Y.; Wessner, C.E.; Kramer, M.R.; Forsberg, F.; Halpern, E.J.; Lyshchik, A.; Torkzaban, M.; Morris, A.; Byrne, K.; VanMeter, M.; et al. Superb Microvascular Imaging Improves Detection of Vascularity in Indeterminate Renal Masses. J. Ultrasound Med. 2020, 39, 1947–1955. [Google Scholar] [CrossRef]
- Armaly, Z.; Abu-Rahme, M.; Kinaneh, S.; Hijazi, B.; Habbasshi, N.; Artul, S. An Innovative Ultrasound Technique for Early Detection of Kidney Dysfunction: Superb Microvascular Imaging as a Reference Standard. J. Clin. Med. 2022, 11, 925. [Google Scholar] [CrossRef]
- Farhat, M.Y.; Lavigne, M.C.; Ramwell, P.W. The vascular protective effects of estrogen. FASEB J. 1996, 10, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Weldegiorgis, M.; Woodward, M. The impact of hypertension on chronic kidney disease and end-stage renal disease is greater in men than women: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 506. [Google Scholar] [CrossRef]
- Gracia, M.; Betriu, A.; Martinez-Alonso, M.; Arroyo, D.; Abajo, M.; Fernandez, E.; Valdivielso, J.M.; Investigators, N. Predictors of Subclinical Atheromatosis Progression over 2 Years in Patients with Different Stages of CKD. Clin. J. Am. Soc. Nephrol. CJASN 2016, 11, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Tholen, S.; Klofat, K.; Pan, C.R.; Schmaderer, C.; Lutz, J.; Heemann, U.; Baumann, M. Progression of aortic pulse wave velocity in patients with chronic kidney disease. J. Clin. Hypertens. 2013, 15, 833–838. [Google Scholar] [CrossRef]
- Du, R.; Cai, J.; Cui, B.; Wu, H.; Zhao, X.Q.; Ye, P. Rapid improvement in carotid adventitial angiogenesis and plaque neovascularization after rosuvastatin therapy in statin treatment-naive subjects. J. Clin. Lipidol. 2019, 13, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Moody, W.E.; Edwards, N.C.; Chue, C.D.; Ferro, C.J.; Townend, J.N. Arterial disease in chronic kidney disease. Heart 2013, 99, 365–372. [Google Scholar] [CrossRef]
- Tonelli, M.; Muntner, P.; Lloyd, A.; Manns, B.J.; Klarenbach, S.; Pannu, N.; James, M.T.; Hemmelgarn, B.R.; Alberta Kidney Disease, N. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: A population-level cohort study. Lancet 2012, 380, 807–814. [Google Scholar] [CrossRef]
- Zannad, F.; De Backer, G.; Graham, I.; Lorenz, M.; Mancia, G.; Morrow, D.A.; Reiner, Z.; Koenig, W.; Dallongeville, J.; Macfadyen, R.J.; et al. Risk stratification in cardiovascular disease primary prevention—Scoring systems, novel markers, and imaging techniques. Fundam. Clin. Pharmacol. 2012, 26, 163–174. [Google Scholar] [CrossRef]
- Talha, I.; Elkhoudri, N.; Hilali, A. Major Limitations of Cardiovascular Risk Scores. Cardiovasc. Ther. 2024, 2024, 4133365. [Google Scholar] [CrossRef]
- Jiang, Z.Z.; Huang, Y.H.; Shen, H.L.; Liu, X.T. Clinical Applications of Superb Microvascular Imaging in the Liver, Breast, Thyroid, Skeletal Muscle, and Carotid Plaques. J. Ultrasound Med. 2019, 38, 2811–2820. [Google Scholar] [CrossRef]
Control (n = 38) | CKD-2/3a (n = 11) | CKD-3b (n = 12) | CKD-4 (n = 11) | CKD-5 (n = 9) | |
---|---|---|---|---|---|
Anthropometric and clinical features | |||||
Age (years) | 67 ± 5 | 62 ± 10 | 67 ± 7 | 69 ± 9 | 69 ± 6 |
Sex (%) | H: 47 M: 53 | H: 55 M: 45 | H: 75 M: 25 | H: 73 M: 27 | H: 22 M: 78 |
BMI (kg/m2) | 27 ± 5 | 31 ± 5 | 27 ± 3 | 31 ± 7 | 27 ± 4 |
Systolic blood pressure (mm Hg) | 132 [121–143] | 140 [136–142] | 135 [128–141] | 163 [142–176] aaa,c | 138 [126–172] |
Dyastolic blood pressure (mm Hg) | 75 ± 10 | 84 ± 13 | 76 ± 13 | 82 ± 15 | 74 ± 12 |
Biochemical parameters | |||||
eGFR (mL/min/1.73 m2) | 82 [75–88] | 49 [47–53] aaa | 39 [34–40] aaa | 23 [21–25] aaa,b | 12 [12,13] aaa,bbb,c |
Creatinine (mg/dL) | 0.8 [0.7–1.0] | 1.2 [1.2–1.5] aaa | 1.8 [1.6–1.8] aaa | 2.7 [2.3–3.0]aaa,b | 3.7 [3.4–4.5] aaa,bbb,c |
Total protein (g/L) | 70.7 ± 3.5 | 71.2 ± 3.1 | 69.5 ± 2.9 | 69.1 ± 3.6 | 68.5 ± 6.0 |
Calcium (mg/dL) | 9.5 ± 0.3 | 9.5 ± 0.3 | 9.6 ± 0.4 | 9.7 ± 0.6 | 9.4 ± 0.5 |
Phosphorus (mg/dL) | 3.6 [3.5–4.0] | 3.2 [3.5–3.5] a | 3.3 [2.7–3.5] aaa | 3.4 [3.1–3.9] | 4.1 [3.8–4.9] a,bbb,ccc,ddd |
PTH (pg/mL) | 52 [42–61] | 56 [43–75] | 87 [72–118] aaa | 114 [72–199] aaa,bb | 176 [155–212] aaa,bbb,c |
Calcitriol (pg/mL) | 46 ± 12 | 39 ± 12 | 29 ± 10 aaa | 35 ± 14 | 24 ± 12 aaa, b |
Calcidiol (ng/mL) | 29 ± 13 | 31 ± 15 | 25 ± 10 | 27± 7 | 23 ± 12 |
FGF23 (pg/mL) | 55 [46–65] | 57 [52–63] | 135 [81–166] aaa,b | 144 [101–241] aaa,bb | 176 [141–1689] aaa,bbb |
sKlotho (pg/mL) | 809 [680–1042] | 671 [604–746] a | 632 [600–713] aa | 591 [517–707] aaa | 586 [469–674] aaa |
Urinary creatinine (mg/dL) | 106 [75–151] | 45 [35–101] a | 96 [58–114] | 83 [57–96] | 47 [47–71] aaa |
Proteinuria/urinary creatinine (mg/dL) | 0.06 [0.05–0.08] | 0.09 [0.05–0.15] | 0.40 [0.12–0.84] aaa,b | 0.41 [0.15–1.20] aaa | 0.81 [0.43–2.12] aaa,bbb |
Treatments (% of individuals) | |||||
Statins | 13 | 14 | 26 | 26 | 17 |
Antihypertensives | 18 | 12 | 21 | 26 | 17 |
Vitamin D Supplementation | 21 | 7 | 9 | 14 | 7 |
Paricalcitol | 0 | 0 | 0 | 12 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Vírgala, J.; Martín-Carro, B.; Fernández-Villabrille, S.; Fernández-Mariño, B.; Astudillo-Cortés, E.; Rodríguez-García, M.; Díaz-Corte, C.; Fernández-Martín, J.L.; Gómez-Alonso, C.; Dusso, A.S.; et al. Non-Invasive Assessment of Vascular Damage Through Pulse Wave Velocity and Superb Microvascular Imaging in Pre-Dialysis Patients. Biomedicines 2025, 13, 621. https://doi.org/10.3390/biomedicines13030621
Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, Fernández-Mariño B, Astudillo-Cortés E, Rodríguez-García M, Díaz-Corte C, Fernández-Martín JL, Gómez-Alonso C, Dusso AS, et al. Non-Invasive Assessment of Vascular Damage Through Pulse Wave Velocity and Superb Microvascular Imaging in Pre-Dialysis Patients. Biomedicines. 2025; 13(3):621. https://doi.org/10.3390/biomedicines13030621
Chicago/Turabian StyleMartín-Vírgala, Julia, Beatriz Martín-Carro, Sara Fernández-Villabrille, Belinda Fernández-Mariño, Elena Astudillo-Cortés, Minerva Rodríguez-García, Carmen Díaz-Corte, José Luis Fernández-Martín, Carlos Gómez-Alonso, Adriana S. Dusso, and et al. 2025. "Non-Invasive Assessment of Vascular Damage Through Pulse Wave Velocity and Superb Microvascular Imaging in Pre-Dialysis Patients" Biomedicines 13, no. 3: 621. https://doi.org/10.3390/biomedicines13030621
APA StyleMartín-Vírgala, J., Martín-Carro, B., Fernández-Villabrille, S., Fernández-Mariño, B., Astudillo-Cortés, E., Rodríguez-García, M., Díaz-Corte, C., Fernández-Martín, J. L., Gómez-Alonso, C., Dusso, A. S., Alonso-Montes, C., Naves-Díaz, M., Panizo, S., & Carrillo-López, N. (2025). Non-Invasive Assessment of Vascular Damage Through Pulse Wave Velocity and Superb Microvascular Imaging in Pre-Dialysis Patients. Biomedicines, 13(3), 621. https://doi.org/10.3390/biomedicines13030621