Can Right Heart Catheterization Improve the Prediction of Positive Response to Resynchronization Therapy?
Abstract
:1. Introduction
2. Study Group and Methods
2.1. Study Population
2.2. Baseline Assessment
2.2.1. Echocardiography
2.2.2. Right Heart Catheterization
2.2.3. CRT Device Implantation and Optimization
2.3. Follow-Up
2.4. End of Study
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef] [PubMed]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. Corrigendum to: 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: Developed by the Task Force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC): With the special contribution of the European Heart Rhythm Association (EHRA). Europace 2022, 24, 699, Erratum in Europace 2022, 24, 71–164. [Google Scholar] [CrossRef] [PubMed]
- Georgiopoulou, V.V.; Kalogeropoulos, A.P.; Borlaug, B.A.; Gheorghiade, M.; Butler, J. Left ventricular dysfunction with pulmonary hypertension: Part 1: Epidemiology, pathophysiology, and definitions. Circ. Heart Fail. 2013, 6, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Borlaug, B.A.; Gheorghiade, M.; Butler, J. Left ventricular dysfunction with pulmonary hypertension: Part 2: Prognosis, noninvasive evaluation, treatment, and future research. Circ. Heart Fail. 2013, 6, 584–593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shalaby, A.; Voigt, A.; El-Saed, A.; Saba, S. Usefulness of pulmonary artery pressure by echocardiography to predict outcome in patients receiving cardiac resynchronization therapy heart failure. Am. J. Cardiol. 2008, 101, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Han, Y.; Zang, H.; Yu, H.; Wang, S.; Wang, Z.; Jing, Q. Prognostic effects of pulmonary hypertension in patients undergoing cardiac resynchronization therapy. J. Thorac. Dis. 2010, 2, 71–75. [Google Scholar] [PubMed] [PubMed Central]
- Stern, J.; Heist, E.K.; Murray, L.; Alabiad, C.; Chung, J.; Picard, M.H.; Semigran, M.J.; Ruskin, J.N.; Singh, J.P. Elevated estimated pulmonary artery systolic pressure is associated with an adverse clinical outcome in patients receiving cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 2007, 30, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Stassen, J.; Khidir, M.; Galloo, X.; Hirasawa, K.; Knuuti, J.; Marsan, N.A.; Delgado, V.; van der Bijl, P.; Bax, J.J. Prognostic implications of staging cardiac remodeling in patients undergoing cardiac resynchronization therapy. Int. J. Cardiol. 2022, 355, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bax, J.J.; Vallakati, A.; Goel, S.; Lavie, C.J.; Kassotis, J.; Mukherjee, D.; Einstein, A.; Warrier, N.; Lazar, J.M. Meta-Analysis of the Relation of Baseline Right Ventricular Function to Response to Cardiac Resynchronization Therapy. Am. J. Cardiol. 2016, 117, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Fabiani, I.; Vergaro, G.; Arzilli, C.; Chubuchny, V.; Pasanisi, E.M.; Petersen, C.; Poggianti, E.; Taddei, C.; Pugliese, N.R.; et al. Prognostic value of reverse remodelling criteria in heart failure with reduced or mid-range ejection fraction. ESC Heart Fail. 2021, 8, 3014–3025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Callan, P.; Clark, A.L. Right heart catheterisation: Indications and interpretation. Heart 2016, 102, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, N.; Borlaug, B.A.; Bailey, A.L.; Eckman, P.M.; Guglin, M.; Hall, S.; Montgomery, M.; Ramani, G.; Khazanie, P. Practical Guidance for Hemodynamic Assessment by Right Heart Catheterization in Management of Heart Failure. JACC Heart Fail. 2024, 12, 1141–1156. [Google Scholar] [CrossRef] [PubMed]
- Gorcsan, J., 3rd; Abraham, T.; Agler, D.A.; Bax, J.J.; Derumeaux, G.; Grimm, R.A.; Martin, R.; Steinberg, J.S.; Sutton, M.S.; Yu, C.M.; et al. Echocardiography for cardiac resynchronization therapy: Recommendations for performance and reporting--a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J. Am. Soc. Echocardiogr. 2008, 21, 191–213. [Google Scholar] [CrossRef] [PubMed]
- Zakliczynski, M.; Zebik, T.; Maruszewski, M.; Swierad, M.; Zembala, M. Usefulness of pulmonary hypertension reversibility test with sodium nitroprusside in stratification of early death risk after orthotopic heart transplantation. Transplant. Proc. 2005, 37, 1346–1348. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, A.P.; Vega, J.D.; Smith, A.L.; Georgiopoulou, V.V. Pulmonary hypertension and right ventricular function in advanced heart failure. Congest. Heart Fail. 2011, 17, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Naeije, R.; Vachiery, J.L.; Yerly, P.; Vanderpool, R. The transpulmonary pressure gradient for the diagnosis of pulmonary vascular disease. Eur. Respir. J. 2013, 41, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.A.; Upadhyay, G.A.; Singal, G.; Parks, K.A.; Dec, G.W.; Singh, J.P.; Lewis, G.D. Pre-capillary pulmonary hypertension and right ventricular dilation predict clinical outcome in cardiac resynchronization therapy. JACC Heart Fail. 2014, 2, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qian, Z.; Qiu, H.; Jiang, Z.; Wang, Y.; Zhao, H.; Zhang, H.; Zhou, Y.; Hou, X.; Li, X.; et al. Correlation between cardiac resynchronization response and pulmonary artery hemodynamic parameters. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2020, 45, 715–721, (In English, In Chinese). [Google Scholar] [CrossRef] [PubMed]
- Schmeisser, A.; Rauwolf, T.; Ghanem, A.; Groscheck, T.; Adolf, D.; Grothues, F.; Fischbach, K.; Kosiek, O.; Huth, C.; Kropf, S.; et al. Right heart function interacts with left ventricular remodeling after CRT: A pressure volume loop study. Int. J. Cardiol. 2018, 268, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.; Verbrugge, F.H.; Bertrand, P.B.; Verhaert, D.; Vandervoort, P.; Dupont, M.; Tang, W.H.W.; Janssens, S.; Mullens, W. Effect of Cardiac Resynchronization Therapy on Exercise-Induced Pulmonary Hypertension and Right Ventricular-Arterial Coupling. Circ. Cardiovasc. Imaging 2018, 11, e007813. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.T.; Thenappan, T.; Benditt, D.G.; Weir, E.K.; Pritzker, M.R. Is cardiac resynchronization therapy for right ventricular failure in pulmonary arterial hypertension of benefit? Pulm. Circ. 2014, 4, 552–559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oktay, A.A.; Mandras, S.A.; Shah, S.; Kancharla, K.; Shams, O.F.; Pascual, M.I.; Morin, D.P. First in human: The effects of biventricular pacing on cardiac output in severe pulmonary arterial hypertension. Heart Vessel. 2020, 35, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Varma, N.; Bourge, R.C.; Stevenson, L.W.; Costanzo, M.R.; Shavelle, D.; Adamson, P.B.; Ginn, G.; Henderson, J.; Abraham, W.T.; CHAMPION Investigator Group. Remote Hemodynamic-Guided Therapy of Patients with Recurrent Heart Failure Following Cardiac Resynchronization Therapy. J. Am. Heart Assoc. 2021, 10, e017619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Evaluated Parameters | Median (Q1–Q3) n (%) |
---|---|
General characteristics | |
Population size | 39 (100%) |
Female—n (%) | 8 (20.50%) |
Age at HF onset [years] | 52.46 (43.16; 55.75) |
NYHA II | 17 (43.59%) |
NYHA III | 21 (53.85%) |
NYHA IV | 1 (2.56%) |
NT-proBNP [pg/mL] | 1041 (275.0; 1863) |
6MWT [m] | 465.0 (409.0; 547.0) |
Hypertension | 14 (35.89%) |
Diabetes mellitus | 6 (15.38%) |
Electrocardiographic and echocardiographic data | |
PQ interval duration [ms] | 200.0 (180.0; 220.0) |
QRS complex duration [ms] | 160.0 (160.0; 180.0) |
DFT/RR [%] | 44.00 (38.00; 47.00) |
IVMD [ms] | 67.00 (45.00; 75.00) |
LVEDD [mm] | 69.00 (64.00; 78.00) |
LVESD [mm] | 61.00 (55.00; 70.00) |
LVEDV [mL] | 230.0 (189.0; 280.0) |
LVESV [mL] | 170.0 (140.0; 220.0) |
LVEF [%] | 22.00 (17.00; 25.00) |
Hemodynamic data | |
sPAP [mmHg] | 39.00 (32.00; 54.75) |
dPAP [mmHg] | 23.33 (16.00; 31.60) |
mPAP [mmHg] | 28.60 (20.33; 40.00) |
sAP [mmHg] | 125.0 (112.0; 135.0) |
dAP [mmHg] | 78.00 (71.67; 90.0) |
mAP [mmHg] | 92.00 (85.50; 103.3) |
HR [min] | 78.00 (70.00; 8.00) |
SV [mL] | 60.88 (42.47; 80.40) |
PAWP [mmHg] | 20.00 (14.00; 28.50) |
RVs [mmHg] | 40.00 (33.00; 56.00) |
RVd [mmHg] | 8.00 (5.00; 10.00) |
PVR [WU] | 1.92 (1.18; 3.46) |
TPG [WU] | 9.33 (6.00; 12.61) |
TPR [WU] | 6.20 (3.75; 10.68) |
SVR [WU] | 19.45 (13.97; 22.42) |
RAP [mmHg] | 8.00 (5.00; 12.00) |
CO [L/min] | 4.51 (3.40; 5.40) |
Baseline Median (Q1–Q3) n% | Follow-Up Median (Q1–Q3) n% | Wilcoxon Test Chi-Square Test p | |
---|---|---|---|
NYHA I/II | 17 (43.59%) | 34 (87.18%) | <0.001 |
NYHA III/IV | 22 (56.41%) | 5 (12.82%) | <0.001 |
6MWT [m] | 465.0 (409.0–547.0) | 515.5 (462.0–567.5) | <0.001 |
NT-proBNP [pg/mL] | 1041 (275.0–1863) | 587 (104–1420) | 0.018 |
QRS complex [ms] | 160.0 (160.0–180.0) | 160.0 (140.0–160.0) | <0.001 |
PQ (baseline) AVD (follow-up) [ms] | 200.0 (180.0–220.0) | 95.00 (70.00–120.0) | <0.001 |
DFT/RR [%] | 44.00 (38.00–47.00) | 48.00 (44.00–51.00) | 0.002 |
IVMD [ms] | 67.00 (45.00–75.00) | 15.00 (8.00–35.00) | <0.001 |
LVEDV [mL] | 230.0 (189.0–280.0) | 170.0 (137.0–240.0) | <0.001 |
LVESV [mL] | 170.0 (140.0–220.0) | 117.0 (80.00–170.0) | <0.001 |
LVEDD [mm] | 69.00 (64.00–78.00) | 63.00 (57.00–74.00) | 0.004 |
LVESD [mm] | 61.00 (55.00–70.00) | 53.00 (46.00–67.00) | <0.001 |
LVEF [%] | 22.00 (17.00–25.00) | 30.00 (21.00–38.00) | <0.001 |
Responder | Non-responder | |
---|---|---|
6MWT ↑ ≥10% | 10 (25.64%) | 29 (74.36%) |
NT-proBNP ↓ ≥30% | 16 (41.03%) | 23 (58.97) |
NYHA ↓ by I | 13 (33.33%) | 26 (66.67%) |
LVEDV↓ ≥15% | 19 (48.72%) | 20 (51.28%) |
LVESV↓ ≥10% | 23 (58.97%) | 16 (41.03%) |
LVESV↓ ≥15% | 21 (53.85%) | 18 (46.15%) |
LVESV ↓ ≥ 30% | 16 (41.03%) | 23 (58.97%) |
LVEF ↑ ≥5% | 27 (69.23%) | 12 (30.77%) |
LVEF ↑ ≥10% | 25 (64.10%) | 14 (35.90%) |
LVEF ↑ ≥15% | 25 (64.10%) | 14 (35.90%) |
6MWT ↑ ≥10% OR, 95% CI, p | NT-proBNP ↓ ≥30% OR, 95% CI, p | NYHA ↓ by I OR, 95% CI, p | LVEDV ↓ ≥15% OR, 95% CI, p | LVESV ↓ ≥10% OR, 95% CI, p | LVESV ↓ ≥15% OR, 95% CI, p | LVESV ↓ ≥30% OR, 95% CI, p | LVEF ↑ ≥5% OR, 95% CI, p | LVEF ↑ ≥10% OR, 95% CI, p | LVEF ↑ ≥15% OR, 95% CI, p | |
---|---|---|---|---|---|---|---|---|---|---|
Female | 0.786 0.126–4.885 p = 0.789 | 0.438 0.087–2.196 p = 0.299 | 1.000 0.195–5.125 p = 1.000 | 0.218 0.037–1.306 p = 0.085 | 0.250 0.049–1.281 p = 0.086 | 0.333 0.066–1.684 p = 0.169 | 0.327 0.055–1.948 p = 0.204 | 0.857 0.166–4.438 p = 0.849 | 1.158 0.228–5.882 p = 0.855 | 1.158 0.228–5.883 p = 0.855 |
Age [years] | 0.989 0.902–1.085 p = 0.812 | 0.930 0.851–1.016 p = 0.098 | 0.999 0.917–1.088 p = 0.973 | 0.981 0.904–1.064 p = 0.626 | 0.952 0.873–1.039 p = 0.256 | 0.956 0.879–1.041 p = 0.284 | 0.921 0.841–1.008 p = 0.064 | 0.942 0.854–1.038 p = 0.212 | 0.952 0.869–1.042 p = 0.267 | 0.943 0.860–1.035 p = 0.202 |
NYHA | 1.342 0.294–6.136 p = 0.695 | 0.788 0.201–3.099 p = 0.725 | 1.784 0.427–7.456 p = 0.412 | 0.491 0.117–2.052 p = 0.313 | 0.326 0.074–1.446 p = 0.127 | 0.311 0.069–1.402 p = 0.116 | 0.565 0.132–2.416 p = 0.426 | 0.435 0.099–1.899 p = 0.252 | 0.251 0.053–1.193 p = 0.072 | 0.556 0.135–2.289 p = 0.400 |
6MWT [m] | 0.882 0.785–0.991 p = 0.028 | 1.061 0.981–1.146 p = 0.124 | 1.057 0.977–1.143 p = 0.156 | 1.103 1.008–1.207 p = 0.028 | 1.102 1.004–1.211 p = 0.035 | 1.123 1.017–1.239 p = 0.018 | 1.094 1.003–1.193 p = 0.035 | 1.045 0.962–1.134 p = 0.282 | 1.079 0.988–1.179 p = 0.078 | 1.047 0.967–1.133 p = 0.243 |
NT-proBNP [pg/mL] | 1.005 0.938–1.077 p = 0.890 | 0.962 0.903–1.025 p = 0.218 | 0.976 0.914–1.043 p = 0.461 | 0.938 0.873–1.009 p = 0.074 | 0.946 0.884–1.012 p = 0.093 | 0.951 0.890–1.017 p = 0.126 | 0.949 0.884–1.020 p = 0.141 | 0.951 0.891–1.015 p = 0.118 | 0.943 0.881–1.009 p = 0.078 | 0.974 0.917–1.035 p = 0.378 |
QRS complex [ms] | 0.998 0.961–1.036 p = 0.907 | 1.002 0.970–1.036 p = 0.888 | 0.982 0.947–1.019 p = 0.320 | 1.009 0.976–1.043 p = 0.592 | 0.992 0.958–1.026 p = 0.623 | 1.006 0.973–1.040 p = 0.722 | 1.008 0.975–1.043 p = 0.623 | 1.014 0.978–1.051 p = 0.448 | 1.026 0.988–1.065 p = 0.165 | 1.016 0.981–1.053 p = 0.360 |
PQ [ms] | 1.005 0.977–1.033 p = 0.741 | 0.965 0.932–0.998 p = 0.029 | 0.993 0.967–1.020 p = 0.590 | 0.980 0.952–1.008 p = 0.134 | 0.992 0.966–1.019 p = 0.526 | 0.994 0.970–1.020 p = 0.654 | 0.981 0.955–1.008 p = 0.152 | 0.980 0.950–1.011 p = 0.179 | 0.988 0.962–1.015 p = 0.369 | 0.988 0.962–1.015 p = 0.369 |
DFT/RR [%] | 0.959 0.859–1.071 p = 0.444 | 0.946 0.859–1.043 p = 0.249 | 0.984 0.890–1.087 p = 0.738 | 0.998 0.915–1.090 p = 0.971 | 0.989 0.902–1.084 p = 0.803 | 0.963 0.877–1.057 p = 0.410 | 1.009 0.921–1.107 p = 0.838 | 1.003 0.910–1.104 p = 0.955 | 0.985 0.898–1.082 p = 0.750 | 0.977 0.890–1.073 p = 0.617 |
IVMD [ms] | 0.993 0.962–1.026 p = 0.677 | 1.005 0.977–1.033 p = 0.732 | 0.997 0.968–1.026 p = 0.821 | 1.016 0.987–1.046 p = 0.270 | 1.037 1.001–1.074 p = 0.038 | 1.039 1.002–1.077 p = 0.031 | 1.017 0.987–1.049 p = 0.248 | 1.024 0.991–1.057 p = 0.136 | 1.031 0.997–1.066 p = 0.061 | 1.015 0.985–1.045 p = 0.310 |
LVEDD [mm] | 1.012 0.938–1.092 p = 0.752 | 0.956 0.891–1.026 p = 0.199 | 0.980 0.912–1.053 p = 0.571 | 0.963 0.899–1.032 p = 0.273 | 0.942 0.875–1.014 p = 0.101 | 0.946 0.880–1.017 p = 0.122 | 0.946 0.878–1.018 p = 0.127 | 0.918 0.844–0.999 p = 0.039 | 0.893 0.816–0.978 p = 0.012 | 0.963 0.897–1.035 p = 0.290 |
LVEF [%] | 1.051 0.924–1.197 p = 0.433 | 1.048 0.934–1.177 p = 0.409 | 1.146 0.993–1.322 p = 0.054 | 1.016 0.907–1.137 p = 0.781 | 1.057 0.938–1.191 p = 0.349 | 1.048 0.933–1.178 p = 0.411 | 1.088 0.961–1.231 p = 0.169 | 1.024 0.905–1.159 p = 0.692 | 1.023 0.909–1.152 p = 0.698 | 1.019 0.906–1.147 p = 0.742 |
sPAP [mmHg] | 0.966 0.914–1.021 p = 0.207 | 0.956 0.910–1.004 p = 0.060 | 0.951 0.900–1.005 p = 0.063 | 0.970 0.926–1.016 p = 0.182 | 0.954 0.909–1.002 p = 0.053 | 0.952 0.906–1.000 p = 0.044 | 0.913 0.854–0.975 p = 0.005 | 0.944 0.894–0.996 p = 0.029 | 0.951 0.904–1.000 p = 0.044 | 0.962 0.916–1.009 p = 0.100 |
dPAP [mmHg] | 0.936 0.851–1.028 p = 0.154 | 0.924 0.851–1.003 p = 0.050 | 0.926 0.847–1.013 p = 0.081 | 0.970 0.903–1.043 p = 0.399 | 0.955 0.886–1.028 p = 0.207 | 0.955 0.887–1.028 p = 0.208 | 0.875 0.789–0.971 p = 0.009 | 0.901 0.823–0.986 p = 0.019 | 0.901 0.825–0.984 p = 0.017 | 0.938 0.867–1.014 p = 0.097 |
mPAP [mmHg] | 0.946 0.874–1.024 p = 0.156 | 0.935 0.873–1.002 p = 0.048 | 0.933 0.865–1.007 p = 0.067 | 0.968 0.910–1.030 p = 0.294 | 0.950 0.891–1.014 p = 0.113 | 0.949 0.890–1.013 p = 0.106 | 0.887 0.811–0.970 p = 0.007 | 0.917 0.850–0.989 p = 0.020 | 0.922 0.857–0.991 p = 0.023 | 0.946 0.885–1.012 p = 0.093 |
SV [mL] | 1.022 0.989–1.056 p = 0.173 | 1.022 0.992–1.053 p = 0.136 | 1.010 0.981–1.040 p = 0.469 | 0.984 0.957–1.013 p = 0.267 | 1.010 0.982–1.039 p = 0.469 | 1.006 0.979–1.035 p = 0.641 | 1.021 0.991–1.052 p = 0.150 | 1.029 0.994–1.065 p = 0.091 | 1.021 0.989–1.053 p = 0.184 | 0.946 0.885–1.012 p = 0.093 |
PAWP [mmHg] | 0.954 0.872–1.043 p = 0.284 | 0.959 0.888–1.035 p = 0.269 | 0.961 0.886–1.043 p = 0.329 | 1.022 0.949–1.101 p = 0.546 | 0.983 0.913–1.060 p = 0.648 | 0.991 0.921–1.066 p = 0.800 | 0.939 0.865–1.020 p = 0.124 | 0.934 0.857–1.019 p = 0.112 | 0.947 0.874–1.027 p = 0.176 | 1.016 0.986–1.047 p = 0.295 |
PVR [WU] | 0.597 0.314–1.132 p = 0.102 | 0.534 0.308–0.924 p = 0.020 | 0.561 0.307–1.025 p = 0.052 | 0.689 0.437–1.088 p = 0.098 | 0.657 0.417–1.034 p = 0.060 | 0.625 0.388–1.007 p = 0.046 | 0.329 0.146–0.741 p = 0.006 | 0.537 0.320–0.902 p = 0.015 | 0.543 0.324–0.908 p = 0.016 | 0.587 0.361–0.955 p = 0.026 |
TPG [mmHg] | 0.924 0.788–1.084 p = 0.314 | 0.860 0.738–1.001 p = 0.044 | 0.840 0.704–1.002 p = 0.046 | 0.769 0.632–0.936 p = 0.007 | 0.844 0.723–0.985 p = 0.026 | 0.802 0.673–0.956 p = 0.011 | 0.688 0.532–0.890 p = 0.003 | 0.830 0.706–0.976 p = 0.020 | 0.805 0.678–0.956 p = 0.011 | 0.838 0.716–0.981 p = 0.023 |
RAP [mmHg] | 0.812 0.659–1.000 p = 0.043 | 0.863 0.726–1.025 p = 0.083 | 0.754 0.603–0.943 p = 0.010 | 0.817 0.676–0.986 p = 0.030 | 0.934 0.797–1.094 p = 0.381 | 0.907 0.771–1.067 p = 0.224 | 0.863 0.725–1.027 p = 0.087 | 0.939 0.795–1.110 p = 0.447 | 0.964 0.822–1.130 p = 0.638 | 0.943 0.801–1.110 p = 0.466 |
CO [L/min] | 1.486 0.925–2.385 p = 0.090 | 1.520 0.946–2.445 p = 0.074 | 1.216 0.792–1.867 p = 0.354 | 0.923 0.613–1.390 p = 0.692 | 1.365 0.860–2.167 p = 0.172 | 1.360 0.864–2.143 p = 0.169 | 1.502 0.947–2.382 p = 0.074 | 1.637 0.923–2.903 p = 0.081 | 1.383 0.853–2.244 p = 0.174 | 1.515 0.894–2.567 p = 0.110 |
Cut-Off Value | Specificity/Sensitivity [%] | AUC | 95% CI | |
---|---|---|---|---|
PVR [WU] | ||||
6MWT ↑ ≥10% | 1.42 | 70.0 | 0.703 ± 0.098 | (0.511–0.896) |
NT-proBNP ↓ ≥30% | 1.80 | 68.4 | 0.734 ± 0.08 | (0.577–0.892) |
NYHA ↓ by I | 1.81 | 61.5 | 0.683 ± 0.086 | (0.514–0.853) |
LVEDV↓ ≥15% | 1.81 | 66.7 | 0.692 ± 0.088 | (0.520–0.864) |
LVESV↓ ≥10% | 2.12 | 69.2 | 0.709 ± 0.086 | (0.541–0.877) |
LVESV↓ ≥15% | 1.92 | 71.8 | 0.73 ± 0.082 | (0.569–0.891) |
LVESV ↓ ≥ 30% | 1.80 | 75.0 | 0.823 ± 0.069 | (0.688–0.959) |
LVEF ↑ ≥5% | 2.16 | 66.7 | 0.765 ± 0.081 | (0.606–0.925) |
LVEF ↑ ≥10% | 2.16 | 68.0 | 0.757 ± 0.081 | (0.599–0.915) |
LVEF ↑ ≥15% | 2.12 | 64.2 | 0.737 ± 0.08 | (0.580–0.894) |
TPG [mmHg] | ||||
6MWT ↑ ≥10% | 7.93 | 61.0 | 0.619 ± 0.11 | (0.404–0.834) |
NT-proBNP ↓ ≥30% | 8.0 | 69.2 | 0.717 ± 0.084 | (0.552–0.882) |
NYHA ↓ by I | 7.93 | 69.2 | 0.701 ± 0.086 | (0.533–0.869) |
LVEDV↓ ≥15% | 8.0 | 79.5 | 0.821 ± 0.074 | (0.676–0.966) |
LVESV↓ ≥10% | 9.5 | 79.7 | 0.749 ± 0.086 | (0.58–0.918) |
LVESV↓ ≥15% | 9.33 | 77.0 | 0.784 ± 0.08 | (0.628–0.941) |
LVESV ↓ ≥ 30% | 7.93 | 81.9 | 0.856 ± 0.065 | (0.729–0.983) |
LVEF ↑ ≥5% | 10.0 | 74.5 | 0.765 ± 0.083 | (0.603–0.928) |
LVEF ↑ ≥10% | 9.8 | 72.0 | 0.783 ± 0.077 | (0.632–0.933) |
LVEF ↑ ≥15% | 9.78 | 70.0 | 0.753 ± 0.08 | (0.597–0.909) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barańska-Pawełczak, K.; Jacheć, W.; Tomasik, A.; Ziaja, B.; Mazurkiewicz, M.; Kukulski, T.; Wojciechowska, C. Can Right Heart Catheterization Improve the Prediction of Positive Response to Resynchronization Therapy? Biomedicines 2025, 13, 467. https://doi.org/10.3390/biomedicines13020467
Barańska-Pawełczak K, Jacheć W, Tomasik A, Ziaja B, Mazurkiewicz M, Kukulski T, Wojciechowska C. Can Right Heart Catheterization Improve the Prediction of Positive Response to Resynchronization Therapy? Biomedicines. 2025; 13(2):467. https://doi.org/10.3390/biomedicines13020467
Chicago/Turabian StyleBarańska-Pawełczak, Karolina, Wojciech Jacheć, Andrzej Tomasik, Bettina Ziaja, Michalina Mazurkiewicz, Tomasz Kukulski, and Celina Wojciechowska. 2025. "Can Right Heart Catheterization Improve the Prediction of Positive Response to Resynchronization Therapy?" Biomedicines 13, no. 2: 467. https://doi.org/10.3390/biomedicines13020467
APA StyleBarańska-Pawełczak, K., Jacheć, W., Tomasik, A., Ziaja, B., Mazurkiewicz, M., Kukulski, T., & Wojciechowska, C. (2025). Can Right Heart Catheterization Improve the Prediction of Positive Response to Resynchronization Therapy? Biomedicines, 13(2), 467. https://doi.org/10.3390/biomedicines13020467