Decoding Resistin Gene Polymorphisms: Implications for Lung Cancer Risk and Clinical Outcomes of Platinum-Based Chemotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DNA Extraction, and Genotyping
2.3. Immunohistochemical Staining and Image Analysis
2.4. Publication Search, Inclusion Criteria, and Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Association of RETN SNPs with Lung Cancer Susceptibility
3.2. Association of RETN SNPs with Platinum-Based Chemotherapy Response in Lung Cancer Patients
3.3. Association of RETN SNPs with Platinum-Based Chemotherapy Toxicity in Lung Cancer Patients
3.4. Association of Resistin Expression and SNPs with Overall Survival in Lung Cancer Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
- Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol. 2021, 157, 103194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Luo, X.; Li, Y.; Yan, L.; Lai, X.; Yang, Q.; Zhao, Z.; Huang, G.; Li, Z.; Wu, Q.; et al. Epigenetic changes driven by environmental pollutants in lung carcinogenesis: A comprehensive review. Front. Public Health 2024, 12, 1420933. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.; Teixeira, A.L.; Coelho, A.; Araújo, A.; Medeiros, R. The role of inflammation in lung cancer. Adv. Exp. Med. Biol. 2014, 816, 1–23. [Google Scholar] [CrossRef]
- Altorki, N.K.; Markowitz, G.J.; Gao, D.; Port, J.L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer 2019, 19, 9–31. [Google Scholar] [CrossRef] [PubMed]
- Sito, H.; Tan, S.C. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol. Biol. Rep. 2024, 51, 102. [Google Scholar] [CrossRef]
- Gong, W.J.; Liu, J.Y.; Yin, J.Y.; Cui, J.J.; Xiao, D.; Zhuo, W.; Luo, C.; Liu, R.J.; Li, X.; Zhang, W. Resistin facilitates metastasis of lung adenocarcinoma through the TLR 4/Src/EGFR/PI 3K/NF-κB pathway. Cancer Sci. 2018, 109, 2391–2400. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Srivastava, S.K.; Bhardwaj, A.; Singh, A.P.; Tyagi, N.; Marimuthu, S.; Dyess, D.L.; Dal Zotto, V.; Carter, J.E.; Singh, S. Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation. Oncotarget 2015, 6, 11231–11241. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.C.; Cheng, S.P.; Han, C.K.; Huang, Y.L.; Wang, S.W.; Lee, J.J.; Lai, C.T.; Fong, Y.C.; Tang, C.H. Resistin enhances angiogenesis in osteosarcoma via the MAPK signaling pathway. Aging 2019, 11, 9767–9777. [Google Scholar] [CrossRef]
- Gong, W.-J.; Zheng, W.; Xiao, L.; Tan, L.-M.; Song, J.; Li, X.-P.; Xiao, D.; Cui, J.-J.; Li, X.; Zhou, H.-H. Circulating resistin levels and obesity-related cancer risk: A meta-analysis. Oncotarget 2016, 7, 57694. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shi, A.; Song, D.; Han, B.; Zhang, Z.; Ma, L.; Liu, D.; Fan, Z. Resistin confers resistance to doxorubicin-induced apoptosis in human breast cancer cells through autophagy induction. Am. J. Cancer Res. 2017, 7, 574. [Google Scholar]
- Gong, W.-J.; Zhou, T.; Xu, J.-Q.; Huang, Y.-F.; Xiang, L.-P.; Zeng, F.; Han, Y.; Lv, Y.-N.; Zhang, Y.; Wu, S.-L. Resistin increases cisplatin-induced cytotoxicity in lung adenocarcinoma A549 cells via a mitochondria-mediated pathway. Med. Oncol. 2021, 38, 65. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-C.; Wu, K.-L.; Yen, C.-K.; Chang, S.-F.; Chen, C.-N.; Lu, Y.-C. Inhibition of NLRP3 by fermented quercetin decreases resistin-induced chemoresistance to 5-fluorouracil in human colorectal cancer cells. Pharmaceuticals 2022, 15, 798. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.R.; Briggs, E.R.; Qatanani, M.; Sawaya, H.; Sebag, I.A.; Picard, M.H.; Scherrer-Crosbie, M.; Lazar, M.A. Human resistin in chemotherapy-induced heart failure in humanized male mice and in women treated for breast cancer. Endocrinology 2013, 154, 4206–4214. [Google Scholar] [CrossRef]
- Gong, W.-J.; Ma, L.-Y.; Hu, L.; Lv, Y.-N.; Huang, H.; Xu, J.-Q.; Huang, D.-D.; Liu, R.-J.; Han, Y.; Zhang, Y. STAT3 rs4796793 contributes to lung cancer risk and clinical outcomes of platinum-based chemotherapy. Int. J. Clin. Oncol. 2019, 24, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Osawa, H.; Onuma, H.; Ochi, M.; Murakami, A.; Yamauchi, J.; Takasuka, T.; Tanabe, F.; Shimizu, I.; Kato, K.; Nishida, W. Resistin SNP-420 determines its monocyte mRNA and serum levels inducing type 2 diabetes. Biochem. Biophys. Res. Commun. 2005, 335, 596–602. [Google Scholar] [CrossRef]
- Chung, C.M.; Lin, T.H.; Chen, J.W.; Leu, H.B.; Yin, W.H.; Ho, H.Y.; Sheu, S.H.; Tsai, W.C.; Chen, J.H.; Lin, S.J. Common quantitative trait locus downstream of RETN gene identified by genome-wide association study is associated with risk of type 2 diabetes mellitus in Han Chinese: A Mendelian randomization effect. Diabetes/Metab. Res. Rev. 2014, 30, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.-j.; Peng, J.-b.; Yin, J.-y.; Li, X.-p.; Zheng, W.; Xiao, L.; Tan, L.-m.; Xiao, D.; Chen, Y.-x.; Li, X. Association between well-characterized lung cancer lncRNA polymorphisms and platinum-based chemotherapy toxicity in Chinese patients with lung cancer. Acta Pharmacol. Sin. 2017, 38, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Trotti, A.; Colevas, A.D.; Setser, A.; Rusch, V.; Jaques, D.; Budach, V.; Langer, C.; Murphy, B.; Cumberlin, R.; Coleman, C.N. CTCAE v3. 0: Development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 2003, 13, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Pusch, W.; Wurmbach, J.H.; Thiele, H.; Kostrzewa, M. MALDI-TOF mass spectrometry-based SNP genotyping. Pharmacogenomics 2002, 3, 537–548. [Google Scholar] [CrossRef]
- Walker, R.A. Quantification of immunohistochemistry—Issues concerning methods, utility and semiquantitative assessment I. Histopathology 2006, 49, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Wägsäter, D.; Mumtaz, M.; Lofgren, S.; Hugander, A.; Dimberg, J. Resistin in human colorectal cancer: Increased expression independently of resistin promoter -420C > G genotype. Cancer Investig. 2008, 26, 1008–1014. [Google Scholar] [CrossRef]
- Alharithy, R.N. Polymorphisms in RETN gene and susceptibility to colon cancer in Saudi patients. Ann. Saudi Med. 2014, 34, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.W.; Tang, C.H.; Sun, Y.; Lu, T.T.; Jiang, P.; Wu, Y.M.; Wang, C.Q.; Yang, S.F.; Su, C.M. Correlation between resistin gene polymorphism and clinical aspects of lung cancer. Medicine 2017, 96, e9485. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Karimi, K.; Arkani, M.; Farahani, H.; Vahedi, M.; Dabiri, R.; Nobakht, H.; Asadi, A.; Mirakhorli, M.; Arshi, B.; et al. Resistin -420C>G promoter variant and colorectal cancer risk. Int. J. Biol. Markers 2014, 29, e233–e238. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Majidzadeh, A.K.; Karimi, K.; Farahani, H.; Dabiri, R.; Nobakht, H.; Asadi, A.; Karimi, N.; Arkani, M.; Zali, M.R. Gly972Arg variant of insulin receptor substrate 1 gene and colorectal cancer risk in overweight/obese subjects. Int. J. Biol. Markers 2016, 31, e68–e72. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Stintzing, S.; Zhang, W.; Cao, S.; Ning, Y.; Okazaki, S.; Berger, M.D.; Suenaga, M.; Schirripa, M.; Soni, S.; et al. Polymorphisms in adipokine-related genes to predict treatment outcomes in patients (pts) with metastatic colorectal cancer (mCRC) treated with bevacizumab-based chemotherapy. J. Clin. Oncol. 2017, 35. [Google Scholar] [CrossRef]
- Muñoz-Palomeque, A.; Guerrero-Ramirez, M.A.; Rubio-Chavez, L.A.; Rosales-Gomez, R.C.; Lopez-Cardona, M.G.; Barajas-Avila, V.H.; Delgadillo-Barrera, A.; Canton-Romero, J.C.; Montoya-Fuentes, H.; Garcia-Cobian, T.A.; et al. Association of RETN and CAP1 SNPs, Expression and Serum Resistin Levels with Breast Cancer in Mexican Women. Genet. Test. Mol. Biomark. 2018, 22, 209–217. [Google Scholar] [CrossRef]
- Ozgor, B.Y.; Iyibozkurt, C.; Bastu, E.; Berkman, S.; Yalcın, O.; Cakmakoglu, B.; Saygılı, H. Investigation of resistin 420 and 62 gene polymorphism in patients with endometrial cancer. Taiwan. J. Obstet. Gynecol. 2019, 58, 164–167. [Google Scholar] [CrossRef]
- Pechlivanis, S.; Bermejo, J.L.; Pardini, B.; Naccarati, A.; Vodickova, L.; Novotny, J.; Hemminki, K.; Vodicka, P.; Försti, A. Genetic variation in adipokine genes and risk of colorectal cancer. Eur. J. Endocrinol. 2009, 160, 933–940. [Google Scholar] [CrossRef]
- Wang, C.Q.; Tang, C.H.; Tzeng, H.E.; Jin, L.; Zhao, J.; Kang, L.; Wang, Y.; Hu, G.N.; Huang, B.F.; Li, X.; et al. Impacts of RETN genetic polymorphism on breast cancer development. J. Cancer 2020, 11, 2769–2777. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.H.; Wang, S.J.; Chang, Y.S.; Su, C.M.; Yang, S.F.; Tang, C.H. Association of Resistin Gene Polymorphisms with Oral Squamous Cell Carcinoma Progression and Development. BioMed Res. Int. 2018, 2018, 9531315. [Google Scholar] [CrossRef] [PubMed]
- Düzköylü, Y.; Arıkan, S.; Turan, S.; Yaylım, İ.; Doğan, M.B.; Sarı, S.; Ersöz, F.; Zeybek, Ü.; Kahraman, Ö.T.; Çelikel, B. Possible relationship between the resistin gene C-420G polymorphism and colorectal cancer in a Turkish population. Turk. J. Gastroenterol. 2015, 26, 392–396. [Google Scholar] [CrossRef]
- Kohan, L. Investigating the association of rs1862513 genetic variant in resistin gene with susceptibility to breast cancer. J. Fasa Univ. Med. Sci. 2017, 7, 217–222. [Google Scholar]
- Tan, Z.; Xue, H.; Sun, Y.; Zhang, C.; Song, Y.; Qi, Y. The Role of Tumor Inflammatory Microenvironment in Lung Cancer. Front. Pharmacol. 2021, 12, 688625. [Google Scholar] [CrossRef] [PubMed]
- Sudan, S.K.; Deshmukh, S.K.; Poosarla, T.; Holliday, N.P.; Dyess, D.L.; Singh, A.P.; Singh, S. Resistin: An inflammatory cytokine with multi-faceted roles in cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2020, 1874, 188419. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Ninic, A.; Sopic, M.; Miljkovic, M.; Stefanovic, A.; Vekic, J.; Spasojevic-Kalimanovska, V.; Zeljkovic, D.; Trifunovic, B.; Stjepanovic, Z.; et al. Association among resistin, adenylate cyclase-associated protein 1 and high-density lipoprotein cholesterol in patients with colorectal cancer: A multi-marker approach, as a hallmark of innovative predictive, preventive, and personalized medicine. EPMA J. 2019, 10, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Bahari, G.; Tabasi, F.; Moazeni-Roodi, A.; Ghavami, S. Association between rs1862513 and rs3745367 genetic polymorphisms of resistin and risk of cancer: A meta-analysis. Asian Pac. J. Cancer Prev. APJCP 2018, 19, 2709. [Google Scholar] [PubMed]
- Tiaka, E.K.; Manolakis, A.C.; Kapsoritakis, A.N.; Potamianos, S.P. The implication of adiponectin and resistin in gastrointestinal diseases. Cytokine Growth Factor Rev. 2011, 22, 109–119. [Google Scholar] [CrossRef]
- Shehata, W.A.; Maraee, A.; Wahab, T.A.; Azmy, R. Serum resistin levels and resistin gene polymorphism in patients with acne vulgaris: Does it correlate with disease severity? Int. J. Dermatol. 2021, 60, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.C.; Chen, J.; Niu, R.F.; Liu, Y.; Zhang, C.G. Increased resistin suggests poor prognosis and promotes development of lung adenocarcinoma. Oncol. Rep. 2018, 40, 3392–3404. [Google Scholar] [CrossRef]
- Parafiniuk, K.; Skiba, W.; Pawłowska, A.; Suszczyk, D.; Maciejczyk, A.; Wertel, I. The Role of the Adipokine Resistin in the Pathogenesis and Progression of Epithelial Ovarian Cancer. Biomedicines 2022, 10, 920. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chen, Y.-J.; Wu, C.-C.; Lo, S.; Hou, M.-F.; Yuan, S.-S.F. Resistin expression in breast cancer tissue as a marker of prognosis and hormone therapy stratification. Gynecol. Oncol. 2012, 125, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Grossi, F.; Carbone, F.; Vecchié, A.; Minetti, S.; Bardi, N.; Elia, E.; Ansaldo, A.; Ferrara, D.; Rijavec, E. Resistin is associated with overall survival in non-small cell lung cancer patients during nivolumab treatment. Clin. Transl. Oncol. 2020, 22, 1603–1610. [Google Scholar] [CrossRef]
- Sasayama, D.; Hori, H.; Nakamura, S.; Yamamoto, N.; Hattori, K.; Teraishi, T.; Ota, M.; Kunugi, H. Increased protein and mRNA expression of resistin after dexamethasone administration. Horm. Metab. Res. Horm.-Und Stoffwechselforschung Horm. Metab. 2015, 47, 433–438. [Google Scholar] [CrossRef]
- Menale, C.; Grandone, A.; Nicolucci, C.; Cirillo, G.; Crispi, S.; Di Sessa, A.; Marzuillo, P.; Rossi, S.; Mita, D.G.; Perrone, L.; et al. Bisphenol A is associated with insulin resistance and modulates adiponectin and resistin gene expression in obese children. Pediatr. Obes. 2017, 12, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Pravdová, E.; Macho, L.; Hlavácová, N.; Ficková, M. Long-time alcohol intake modifies resistin secretion and expression of resistin gene in adipose tissue. Gen. Physiol. Biophys. 2007, 26, 221–229. [Google Scholar]
- Yao, H.; Fan, C.; Lu, Y.; Fan, X.; Xia, L.; Li, P.; Wang, R.; Tang, T.; Wang, Y.; Qi, K. Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes Nutr. 2020, 15, 12. [Google Scholar] [CrossRef]
Type | Genotype | n (%) | n (%) | Additive Model | Dominant Model | Recessive Model | |||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | ||||
Risk | Case | Control | |||||||
rs1862513 | 0.935 (0.716–1.221) | 0.623 | 1.032 (0.714–1.491) | 0.868 | 0.726 (0.433–1.218) | 0.225 | |||
GG | 56 (11.2) | 33 (15.5) | |||||||
GC | 243 (48.8) | 98 (46.0) | |||||||
CC | 188 (37.8) | 78 (36.6) | |||||||
rs3745367 | 0.977 (0.757–1.261) | 0.857 | 1.127 (0.783–1.621) | 0.521 | 0.744 (0.460–1.202) | 0.227 | |||
AA | 71 (14.3) | 37 (17.4) | |||||||
GA | 239 (48.0) | 86 (40.4) | |||||||
GG | 180 (36.1) | 85 (39.9) | |||||||
Chemotherapy response | Responder | Non-responder | |||||||
rs1862513 | 1.022 (0.760–1.374) | 0.884 | 1.170 (0.786–1.743) | 0.438 | 0.768 (0.424–1.391) | 0.383 | |||
GG | 24 (13.0) | 29 (10.2) | |||||||
GC | 81 (44.0) | 143 (50.5) | |||||||
CC | 74 (40.2) | 105 (37.1) | |||||||
rs3745367 | 0.965 (0.728–1.279) | 0.803 | 0.998 (0.667–1.494) | 0.992 | 0.882 (0.518–1.503) | 0.645 | |||
AA | 30 (16.3) | 39 (13.8) | |||||||
GA | 87 (47.3) | 135 (47.7) | |||||||
GG | 64 (34.8) | 105 (37.1) | |||||||
Gastrointestinal toxicity | Grade 0–2 | Grade 3–4 | |||||||
rs1862513 | 1.332 (0.945–1.878) | 0.102 | 1.226 (0.761–1.975) | 0.402 | 1.948 (1.030–3.687) | 0.04 | |||
GG | 35 (9.6) | 19 (18.8) | |||||||
GC | 178 (48.6) | 47 (46.5) | |||||||
CC | 142 (38.8) | 35 (34.7) | |||||||
rs3745367 | 0.956 (0.680–1.343) | 0.796 | 0.838 (0.521–1.347) | 0.465 | 1.173 (0.623–2.207) | 0.621 | |||
AA | 53 (14.5) | 16 (15.8) | |||||||
GA | 177 (48.4) | 45 (44.6) | |||||||
GG | 131 (35.8) | 38 (37.6) | |||||||
Hematological toxicity | Grade 0–2 | Grade 3–4 | |||||||
rs1862513 | 1.260 (0.909–1.747) | 0.165 | 1.434 (0.907–2.267) | 0.123 | 1.188 (0.620–2.274) | 0.604 | |||
GG | 38 (10.8) | 16 (14.0) | |||||||
GC | 164 (46.5) | 61 (53.5) | |||||||
CC | 142 (40.2) | 35 (30.7) | |||||||
rs3745367 | 0.987 (0.719–1.355) | 0.935 | 1.193 (0.753–1.888) | 0.453 | 0.688 (0.363–1.307) | 0.254 | |||
AA | 55 (15.6) | 14 (12.3) | |||||||
GA | 161 (45.6) | 61 (53.5) | |||||||
GG | 131 (37.1) | 38 (33.3) | |||||||
Overall toxicity | Grade 0–2 | Grade 3–4 | |||||||
rs1862513 | 1.295 (0.965–1.737) | 0.085 | 1.451 (0.971–2.169) | 0.069 | 1.266 (0.702–2.282) | 0.432 | |||
GG | 29 (10.1) | 25 (13.8) | |||||||
GC | 130 (45.4) | 95 (52.5) | |||||||
CC | 118 (41.3) | 59 (32.6) | |||||||
rs3745367 | 0.899 (0.677–1.194) | 0.461 | 0.930 (0.622–1.390) | 0.723 | 0.770 (0.444–1.336) | 0.352 | |||
AA | 45 (15.7) | 24 (13.3) | |||||||
GA | 134 (46.9) | 88 (48.6) | |||||||
GG | 102 (35.7) | 67 (37.0) |
Genetic Model | Test of Association | Test of Heterogeneity | Publication Bias (p Value) | |||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | p Value | Model | p Value | I2 (%) | Egger’s Test | Begg’s Test | |
rs1862513 | ||||||||
Codominant model 1 (GG vs. CC) | 1.195 | 0.958–1.492 | 0.115 | Random | 0.020 | 50 | 0.218 | 0.161 |
Codominant model 2 (CG vs. CC) | 1.073 | 0.976–1.180 | 0.133 | Fixed | 0.131 | 50 | 0.055 | 0.058 |
Codominant model 3 (GG vs. CG) | 1.058 | 0.880–1.273 | 0.547 | Random | 0.079 | 38 | 0.872 | 0.951 |
Dominant model (GG + CG vs. CC) | 1.068 | 0.977–1.167 | 0.149 | Fixed | 0.120 | 24 | 0.054 | 0.010 |
Recessive model (GG vs. CG + CC) | 1.100 | 0.914–1.326 | 0.313 | Random | 0.043 | 44 | 0.508 | 0.951 |
Overdominant model (CG vs. GG + CC) | 1.029 | 0.943–1.124 | 0.522 | Fixed | 0.329 | 12 | 0.075 | 0.059 |
Allelic model (G vs. C) | 1.083 | 0.985–1.190 | 0.098 | Random | 0.054 | 42 | 0.138 | 0.246 |
rs3745367 | ||||||||
Codominant model 1 (AA vs. GG) | 1.460 | 0.753–2.831 | 0.263 | Random | 0.001 | 86 | 0.264 | 0.260 |
Codominant model 2 (GA vs. GG) | 1.183 | 1.013–1.382 | 0.034 | Random | 0.029 | 60 | 0.012 | 0.060 |
Codominant model 3 (AA vs. GA) | 1.019 | 0.658–1.578 | 0.932 | Random | 0.001 | 75 | 0.770 | 1.000 |
Dominant model (AA + GA vs. GG) | 1.390 | 0.944–2.049 | 0.096 | Random | 0.001 | 78 | 0.052 | 0.133 |
Recessive model (AA vs. GA + GG) | 1.135 | 0.688–1.872 | 0.621 | Random | 0.001 | 83 | 0.630 | 0.452 |
Overdominant model (GA vs. GG + AA) | 1.109 | 0.992–1.239 | 0.069 | Fixed | 0.125 | 42 | 0.244 | 0.452 |
Allelic model (A vs. G) | 1.215 | 0.900–1.640 | 0.204 | Random | 0.001 | 86 | 0.255 | 0.260 |
Variables | Number | Negative | Positive | p Value | |
---|---|---|---|---|---|
Total | 104 | 36 | 68 | ||
Age | <60 | 64 | 22 | 42 | 0.883 |
≥60 | 40 | 14 | 26 | ||
Gender | male | 52 | 19 | 33 | 0.837 |
female | 52 | 17 | 35 | ||
History of Smoking | no | 68 | 20 | 48 | 0.188 |
yes | 36 | 16 | 20 | ||
Complications | no | 71 | 25 | 46 | 0.973 |
yes | 33 | 11 | 22 | ||
Stage | I, II | 36 | 16 | 20 | 0.076 |
III, IV | 63 | 17 | 46 | ||
Differentiation | low | 23 | 9 | 14 | |
middle | 56 | 17 | 39 | 0.614 | |
high | 25 | 10 | 15 | ||
Lymph Node Metastasis | no | 71 | 25 | 46 | 0.950 |
yes | 31 | 10 | 21 | ||
Other metastasis a | no | 69 | 32 | 37 | 0.000 * |
yes | 33 | 3 | 30 | ||
Metastasis | no | 41 | 22 | 19 | 0.002 * |
yes | 61 | 13 | 48 |
Variable | Item | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|---|
HR | 95%CI | p | HR | 95%CI | p | ||
Resistin | positive | 2.343 | (1.460, 3.759) | 0.000 * | 1.922 | (1.088, 3.393) | 0.024 * |
negative | 1.000 | ||||||
Metastasis | yes | 1.986 | (1.258, 3.136) | 0.003 * | 1.166 | (0.414, 3.289) | 0.771 |
no | 1.000 | ||||||
Stage | III, IV | 1.620 | (1.008, 2.604) | 0.046 * | 1.103 | (0.445, 2.730) | 0.833 |
I, II | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Huang, D.; Zhou, T.; Zhu, X.; Huang, Y.; Lv, Y.; Zhang, Y.; Liu, Z.; Zeng, F.; Wu, S. Decoding Resistin Gene Polymorphisms: Implications for Lung Cancer Risk and Clinical Outcomes of Platinum-Based Chemotherapy. Biomedicines 2025, 13, 291. https://doi.org/10.3390/biomedicines13020291
Gong W, Huang D, Zhou T, Zhu X, Huang Y, Lv Y, Zhang Y, Liu Z, Zeng F, Wu S. Decoding Resistin Gene Polymorphisms: Implications for Lung Cancer Risk and Clinical Outcomes of Platinum-Based Chemotherapy. Biomedicines. 2025; 13(2):291. https://doi.org/10.3390/biomedicines13020291
Chicago/Turabian StyleGong, Weijing, Dandan Huang, Tao Zhou, Xinxin Zhu, Yifei Huang, Yongning Lv, Yu Zhang, Zhaoqian Liu, Fang Zeng, and Sanlan Wu. 2025. "Decoding Resistin Gene Polymorphisms: Implications for Lung Cancer Risk and Clinical Outcomes of Platinum-Based Chemotherapy" Biomedicines 13, no. 2: 291. https://doi.org/10.3390/biomedicines13020291
APA StyleGong, W., Huang, D., Zhou, T., Zhu, X., Huang, Y., Lv, Y., Zhang, Y., Liu, Z., Zeng, F., & Wu, S. (2025). Decoding Resistin Gene Polymorphisms: Implications for Lung Cancer Risk and Clinical Outcomes of Platinum-Based Chemotherapy. Biomedicines, 13(2), 291. https://doi.org/10.3390/biomedicines13020291