Exploring the Role of Transcriptomics, Proteomics, and Machine Learning in HPV Infection and Cardiovascular Disease
Abstract
1. Introduction
1.1. Overview of HPV Infection and Global Burden
1.2. Emerging Evidence Linking HPV to Cardiovascular Disease (CVD)
1.3. Need for Multi-Omics and Machine Learning Integration to Uncover Mechanisms
2. Relationship Between HPV Biomarkers and Cardiovascular Disease
2.1. Transcriptomics
2.1.1. E6, E7 Genes
2.1.2. CCNB2 (Cyclin B2)
2.1.3. Id1 (DNA-Binding Protein Inhibitor ID-1)
2.1.4. MicroRNAs: miR-146a-5p, miR-9-5p, and miR-363-3p
2.1.5. TMEM45A (Transmembrane Protein 45A)
2.1.6. p16INK4a
2.1.7. K17 (Stress Keratin 17)
2.2. Proteomics
2.2.1. p16
2.2.2. TP73 (Tumour Protein p73)
2.2.3. HP (Haptoglobin)
2.2.4. TMEM97 (Sigma Intracellular Receptor 2)
2.2.5. IGHA1/2 (Immunoglobulin Heavy Constant Gamma 2)
2.2.6. SERPINA1 (Alpha-1-Antitrypsin)
2.2.7. Nuclear Factor κB Essential Modulator (NEMO), Casein Kinase 1 (CK1), and Beta-Transducin Repeat-Containing Protein (β-TrCP)
2.2.8. Thbs1 (Thrombospondin 1), Kininogen-1 (KNG1), Histidine-Rich Glycoprotein (HRG), Paraoxonase-1 (PON1), and Coagulation Factor X (F10)
3. Machine Learning and HPV Proteomics
4. Machine Learning and HPV Transcriptomics
5. Clinical Diagnostics and Therapeutics
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Reis, D.R.A.; Medeiros-Fonseca, B.; Costa, J.M.; de Oliveira Neto, C.P.; Gil da Costa, R.M.; Oliveira, P.A.; Medeiros, R.; Bastos, M.M.S.M.; Brito, H.O.; Brito, L.M.O. HPV Infection as a Risk Factor for Atherosclerosis: A Connecting Hypothesis. Med. Hypotheses 2020, 144, 109979. [Google Scholar] [CrossRef]
- Yeo-Teh, N.S.L.; Ito, Y.; Jha, S. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. Int. J. Mol. Sci. 2018, 19, 1706. [Google Scholar] [CrossRef] [PubMed]
- Bruni, L.; Albero, G.; Rowley, J.; Alemany, L.; Arbyn, M.; Giuliano, A.R.; Markowitz, L.E.; Broutet, N.; Taylor, M. Global and Regional Estimates of Genital Human Papillomavirus Prevalence among Men: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2023, 11, e1345–e1362. [Google Scholar] [CrossRef] [PubMed]
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human Papillomavirus Is a Necessary Cause of Invasive Cervical Cancer Worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Cervical Cancer Prognosis and Survival Rates—NCI. Available online: https://www.cancer.gov/types/cervical/survival (accessed on 30 June 2025).
- Granja, A.N.; Lima, A.B.R.; Martins, P.V.B.; Salgado, B.J.L.; Costa, R.M.G.d.; Brito, H.O.; Salgado Filho, N. HPV and Coronary Diseases in Menopausal Women: An Integrative Review. Rev. Bras. Ginecol. Obstet. 2024, 46, e-rbgo57. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.who.int/media/globocan/factsheets/cancers/23-cervix-uteri-fact-sheet.pdf (accessed on 25 September 2025).
- Dutta, P.; Saha, D.; Earle, M.; Prasad, C.P.; Singh, M.; Darswal, M.; Aggarwal, V.; Naik, N.; Yadav, R.; Shankar, A.; et al. Unveiling HPV’s Hidden Link: Cardiovascular Diseases and the Viral Intrigue. Indian. Heart J. 2024, 76, 1–5. [Google Scholar] [CrossRef]
- de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide Burden of Cancer Attributable to HPV by Site, Country and HPV Type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef]
- Dickinson, A.; Joenväärä, S.; Tohmola, T.; Renkonen, J.; Mattila, P.; Carpén, T.; Mäkitie, A.; Silén, S. Altered Microheterogeneity at Several N—Glycosylation Sites in OPSCC in Constant Protein Expression Conditions. FASEB Bioadv. 2023, 6, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Human Papillomavirus and Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/human-papilloma-virus-and-cancer (accessed on 30 June 2025).
- Tonhajzerova, I.; Olexova, L.B.; Jurko, A.; Spronck, B.; Jurko, T.; Sekaninova, N.; Visnovcova, Z.; Mestanikova, A.; Kudela, E.; Mestanik, M. Novel Biomarkers of Early Atherosclerotic Changes for Personalised Prevention of Cardiovascular Disease in Cervical Cancer and Human Papillomavirus Infection. Int. J. Mol. Sci. 2019, 20, 3720. [Google Scholar] [CrossRef]
- Cheong, H.S.; Chang, Y.; Kim, Y.; Kwon, M.-J.; Cho, Y.; Kim, B.; Joo, E.-J.; Bae, Y.H.; Kim, C.; Ryu, S. Human Papillomavirus Infection and Cardiovascular Mortality: A Cohort Study. Eur. Heart J. 2024, 45, 1072–1082. [Google Scholar] [CrossRef]
- Liang, X.; Chou, O.H.I.; Cheung, B.M.Y. The Effects of Human Papillomavirus Infection and Vaccination on Cardiovascular Diseases, NHANES 2003-2016. Am. J. Med. 2023, 136, 294–301.e2. [Google Scholar] [CrossRef]
- Alharbi, F.; Vakanski, A. Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review. Bioengineering 2023, 10, 173. [Google Scholar] [CrossRef] [PubMed]
- Hoppe-Seyler, K.; Herrmann, A.L.; Däschle, A.; Kuhn, B.J.; Strobel, T.D.; Lohrey, C.; Bulkescher, J.; Krijgsveld, J.; Hoppe-Seyler, F. Effects of Metformin on the Virus/Host Cell Crosstalk in Human Papillomavirus-Positive Cancer Cells. Int. J. Cancer 2021, 149, 1137–1149. [Google Scholar] [CrossRef]
- Bienvenu, E.; Mukanyangezi, M.F.; Rulisa, S.; Martner, A.; Hasséus, B.; Vorontsov, E.; Tobin, G.; Giglio, D. Changes in the Proteome in the Development of Chronic Human Papillomavirus Infection—A Prospective Study in HIV Positive and HIV Negative Rwandan Women. Cancers 2021, 13, 5983. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.-Z.; Liu, Y.; Wang, K.; Ding, W.; Wang, H.; Liu, X.; Zhou, S.; Lu, X.-C.; Yang, H.-B.; et al. Nuclear Lactate Dehydrogenase A Senses ROS to Produce α-Hydroxybutyrate for HPV-Induced Cervical Tumor Growth. Nat. Commun. 2018, 9, 4429. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, E.K.; Roumeliotis, T.I.; Chrysagi, A.; Trigoni, C.; Charvalos, E.; Townsend, P.A.; Pavlakis, K.; Garbis, S.D. The Shotgun Proteomic Study of the Human ThinPrep Cervical Smear Using iTRAQ Mass-Tagging and 2D LC-FT-Orbitrap-MS: The Detection of the Human Papillomavirus at the Protein Level. J. Proteome Res. 2013, 12, 2078–2089. [Google Scholar] [CrossRef]
- Sandberg, A.; Lindell, G.; Källström, B.N.; Branca, R.M.; Danielsson, K.G.; Dahlberg, M.; Larson, B.; Forshed, J.; Lehtiö, J. Tumor Proteomics by Multivariate Analysis on Individual Pathway Data for Characterization of Vulvar Cancer Phenotypes. Mol. Cell Proteom. 2012, 11, M112.016998. [Google Scholar] [CrossRef]
- Lebeau, A.; Bruyere, D.; Roncarati, P.; Peixoto, P.; Hervouet, E.; Cobraiville, G.; Taminiau, B.; Masson, M.; Gallego, C.; Mazzucchelli, G.; et al. HPV Infection Alters Vaginal Microbiome through Down-Regulating Host Mucosal Innate Peptides Used by Lactobacilli as Amino Acid Sources. Nat. Commun. 2022, 13, 1076. [Google Scholar] [CrossRef]
- Shi, Y.; Yan, S.; Shao, G.-C.; Wang, J.; Jian, Y.-P.; Liu, B.; Yuan, Y.; Qin, K.; Nai, S.; Huang, X.; et al. O-GlcNAcylation Stabilizes the Autophagy-Initiating Kinase ULK1 by Inhibiting Chaperone-Mediated Autophagy upon HPV Infection. J. Biol. Chem. 2022, 298, 102341. [Google Scholar] [CrossRef] [PubMed]
- Wamsley, N.T.; Wilkerson, E.M.; Guan, L.; LaPak, K.M.; Schrank, T.P.; Holmes, B.J.; Sprung, R.W.; Gilmore, P.E.; Gerndt, S.P.; Jackson, R.S.; et al. Targeted Proteomic Quantitation of NRF2 Signaling and Predictive Biomarkers in HNSCC. Mol. Cell Proteom. 2023, 22, 100647. [Google Scholar] [CrossRef]
- Yang, R.; Klimentová, J.; Göckel-Krzikalla, E.; Ly, R.; Gmelin, N.; Hotz-Wagenblatt, A.; Řehulková, H.; Stulík, J.; Rösl, F.; Niebler, M. Combined Transcriptome and Proteome Analysis of Immortalized Human Keratinocytes Expressing Human Papillomavirus 16 (HPV16) Oncogenes Reveals Novel Key Factors and Networks in HPV-Induced Carcinogenesis. mSphere 2019, 4, e00129-19. [Google Scholar] [CrossRef]
- Tuhkuri, A.; Saraswat, M.; Mäkitie, A.; Mattila, P.; Silén, R.; Dickinson, A.; Carpén, T.; Tohmola, T.; Joenväärä, S.; Renkonen, S. Patients with Early-Stage Oropharyngeal Cancer Can Be Identified with Label-Free Serum Proteomics. Br. J. Cancer 2018, 119, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Mühlenbruch, L.; Abou-Kors, T.; Dubbelaar, M.L.; Bichmann, L.; Kohlbacher, O.; Bens, M.; Thomas, J.; Ezić, J.; Kraus, J.M.; Kestler, H.A.; et al. The HLA Ligandome of Oropharyngeal Squamous Cell Carcinomas Reveals Shared Tumour-Exclusive Peptides for Semi-Personalised Vaccination. Br. J. Cancer 2023, 128, 1777–1787. [Google Scholar] [CrossRef]
- Brant, A.C.; Menezes, A.N.; Felix, S.P.; de Almeida, L.M.; Sammeth, M.; Moreira, M.A.M. Characterization of HPV Integration, Viral Gene Expression and E6E7 Alternative Transcripts by RNA-Seq: A Descriptive Study in Invasive Cervical Cancer. Genomics 2019, 111, 1853–1861. [Google Scholar] [CrossRef]
- Qian, K.; Pietilä, T.; Rönty, M.; Michon, F.; Frilander, M.J.; Ritari, J.; Tarkkanen, J.; Paulín, L.; Auvinen, P.; Auvinen, E. Identification and Validation of Human Papillomavirus Encoded microRNAs. PLoS ONE 2013, 8, e70202. [Google Scholar] [CrossRef]
- BioStudies BioStudies < The European Bioinformatics Institute < EMBL-EBI. Available online: https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-GEOD-39001 (accessed on 6 August 2025).
- Dhanjal, S.; Kajitani, N.; Glahder, J.; Mossberg, A.-K.; Johansson, C.; Schwartz, S. Heterogeneous Nuclear Ribonucleoprotein C Proteins Interact with the Human Papillomavirus Type 16 (HPV16) Early 3′-Untranslated Region and Alleviate Suppression of HPV16 Late L1 mRNA Splicing*. J. Biol. Chem. 2015, 290, 13354–13371. [Google Scholar] [CrossRef]
- Sharma, B.K.; Kolhe, R.; Black, S.M.; Keller, J.R.; Mivechi, N.F.; Satyanarayana, A. Inhibitor of Differentiation 1 Transcription Factor Promotes Metabolic Reprogramming in Hepatocellular Carcinoma Cells. FASEB J. 2016, 30, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Peta, E.; Sinigaglia, A.; Masi, G.; Di Camillo, B.; Grassi, A.; Trevisan, M.; Messa, L.; Loregian, A.; Manfrin, E.; Brunelli, M.; et al. HPV16 E6 and E7 Upregulate the Histone Lysine Demethylase KDM2B through the C-MYC/miR-146a-5p Axys. Oncogene 2018, 37, 1654–1668. [Google Scholar] [CrossRef]
- Smith, S.P.; Scarpini, C.G.; Groves, I.J.; Odle, R.I.; Coleman, N. Identification of Host Transcriptional Networks Showing Concentration-Dependent Regulation by HPV16 E6 and E7 Proteins in Basal Cervical Squamous Epithelial Cells. Sci. Rep. 2016, 6, 29832. [Google Scholar] [CrossRef]
- Kehrmann, A.; Truong, H.; Repenning, A.; Boger, R.; Klein-Hitpass, L.; Pascheberg, U.; Beckmann, A.; Opalka, B.; Kleine-Lowinski, K. Complementation of Non-Tumorigenicity of HPV18-Positive Cervical Carcinoma Cells Involves Differential mRNA Expression of Cellular Genes Including Potential Tumor Suppressor Genes on Chromosome 11q13. Cancer Genet. 2013, 206, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Manawapat-Klopfer, A.; Thomsen, L.T.; Martus, P.; Munk, C.; Russ, R.; Gmuender, H.; Frederiksen, K.; Haedicke-Jarboui, J.; Stubenrauch, F.; Kjaer, S.K.; et al. TMEM45A, SERPINB5 and p16INK4A Transcript Levels Are Predictive for Development of High-Grade Cervical Lesions. Am. J. Cancer Res. 2016, 6, 1524–1536. [Google Scholar]
- Božinović, K.; Sabol, I.; Dediol, E.; Milutin Gašperov, N.; Manojlović, S.; Vojtechova, Z.; Tachezy, R.; Grce, M. Genome-Wide miRNA Profiling Reinforces the Importance of miR-9 in Human Papillomavirus Associated Oral and Oropharyngeal Head and Neck Cancer. Sci. Rep. 2019, 9, 2306. [Google Scholar] [CrossRef]
- Harden, M.E.; Prasad, N.; Griffiths, A.; Munger, K. Modulation of microRNA-mRNA Target Pairs by Human Papillomavirus 16 Oncoproteins. mBio 2017, 8, e02170-16. [Google Scholar] [CrossRef]
- Vermeer, D.W.; Coppock, J.D.; Zeng, E.; Lee, K.M.; Spanos, W.C.; Onken, M.D.; Uppaluri, R.; Lee, J.H.; Vermeer, P.D. Metastatic Model of HPV+ Oropharyngeal Squamous Cell Carcinoma Demonstrates Heterogeneity in Tumor Metastasis. Oncotarget 2016, 7, 24194–24207. [Google Scholar] [CrossRef]
- Wang, W.; Lozar, T.; Golfinos, A.E.; Lee, D.; Gronski, E.; Ward-Shaw, E.; Hayes, M.; Bruce, J.Y.; Kimple, R.J.; Hu, R.; et al. Stress Keratin 17 Expression in Head and Neck Cancer Contributes to Immune Evasion and Resistance to Immune Checkpoint Blockade. Clin. Cancer Res. 2022, 28, 2953–2968. [Google Scholar] [CrossRef]
- BioStudies BioStudies < The European Bioinformatics Institute < EMBL-EBI. Available online: https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-GEOD-43082 (accessed on 6 August 2025).
- GEO Accession Viewer. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162816 (accessed on 16 August 2025).
- Yim, E.-K.; Park, J.-S. The Role of HPV E6 and E7 Oncoproteins in HPV-Associated Cervical Carcinogenesis. Cancer Res. Treat. 2005, 37, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, Z.; Li, G. High Expression of CCNB2 Is an Independent Predictive Poor Prognostic Biomarker and Correlates with Immune Infiltrates in Breast Carcinoma. Heliyon 2024, 10, e31586. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Li, Y.; Wang, B.; Sun, X.; Qian, D.; Ying, Y.; Zhou, J. The Role and Research Progress of Inhibitor of Differentiation 1 in Atherosclerosis. DNA Cell Biol. 2022, 41, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Iacona, J.R.; Lutz, C.S. miR-146a-5p: Expression, Regulation, and Functions in Cancer. WIREs RNA 2019, 10, e1533. [Google Scholar] [CrossRef]
- Shimada, B.K.; Yang, Y.; Zhu, J.; Wang, S.; Suen, A.; Kronstadt, S.M.; Jeyaram, A.; Jay, S.M.; Zou, L.; Chao, W. Extracellular miR-146a-5p Induces Cardiac Innate Immune Response and Cardiomyocyte Dysfunction. Immunohorizons 2020, 4, 561–572. [Google Scholar] [CrossRef]
- Schuermans, A.; Pournamdari, A.B.; Lee, J.; Bhukar, R.; Ganesh, S.; Darosa, N.; Small, A.M.; Yu, Z.; Hornsby, W.; Koyama, S.; et al. Integrative Proteomic Analyses across Common Cardiac Diseases Yield Mechanistic Insights and Enhanced Prediction. Nat. Cardiovasc. Res. 2024, 3, 1516–1530. [Google Scholar] [CrossRef]
- Chai, C.-Y.; Tai, I.-C.; Zhou, R.; Song, J.; Zhang, C.; Sun, S. MicroRNA-9-5p Inhibits Proliferation and Induces Apoptosis of Human Hypertrophic Scar Fibroblasts through Targeting Peroxisome Proliferator-Activated Receptor β. Biol. Open 2020, 9, bio051904. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Chen, Y.; Li, J.; Zhang, Z.; Sun, Y.; Shen, H.; Zhao, Z.; Huang, Z.; Zhang, W.; et al. Inhibition of MicroRNA-9-5p Protects Against Cardiac Remodeling Following Myocardial Infarction in Mice. Hum. Gene Ther. 2019, 30, 286–301. [Google Scholar] [CrossRef]
- Gu, H.; Duan, Y.; Li, S.; Wang, Q.; Zhen, W.; Zhang, W.; Zhang, Y.; Jiang, M.; Wang, C. miR-96-5p Regulates Myocardial Infarction-Induced Cardiac Fibrosis via Smad7/Smad3 Pathway. Acta Biochim. Biophys. Sin. 2022, 54, 1874–1888. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Qian, H.; Shi, Q.; Zhang, H. MicroRNA-363-3p Serves as a Diagnostic Biomarker of Acute Myocardial Infarction and Regulates Vascular Endothelial Injury by Targeting KLF2. Cardiovasc. Diagn. Ther. 2020, 10, 42130–42430. [Google Scholar] [CrossRef] [PubMed]
- Martin-Rendon, E.; Hale, S.J.M.; Ryan, D.; Baban, D.; Forde, S.P.; Roubelakis, M.; Sweeney, D.; Moukayed, M.; Harris, A.L.; Davies, K.; et al. Transcriptional Profiling of Human Cord Blood CD133+ and Cultured Bone Marrow Mesenchymal Stem Cells in Response to Hypoxia. Stem Cells 2007, 25, 1003–1012. [Google Scholar] [CrossRef]
- Hayez, A.; Malaisse, J.; Roegiers, E.; Reynier, M.; Renard, C.; Haftek, M.; Geenen, V.; Serre, G.; Simon, M.; de Rouvroit, C.L.; et al. High TMEM45A Expression Is Correlated to Epidermal Keratinization. Exp. Dermatol. 2014, 23, 339–344. [Google Scholar] [CrossRef]
- Xu, H.; Ding, S.; Ning, X.; Ma, Y.; Yu, Q.; Shen, Y.; Han, L.; Xu, Z. Integrated Bioinformatics and Validation Reveal TMEM45A in Systemic Lupus Erythematosus Regulating Atrial Fibrosis in Atrial Fibrillation. Mol. Med. 2025, 31, 104. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Luttropp, K.; McGuinness, D.; Witasp, A.; Qureshi, A.R.; Wernerson, A.; Nordfors, L.; Schalling, M.; Ripsweden, J.; Wennberg, L.; et al. CDKN2A/p16INK4a Expression Is Associated with Vascular Progeria in Chronic Kidney Disease. Aging 2017, 9, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Sun, J.; Liu, L.; Shan, T.; Meng, H.; Yang, T.; Wang, S.; Wei, T.; Chen, B.; Ma, Y.; et al. P16ink4a Overexpression Ameliorates Cardiac Remodeling of Mouse Following Myocardial Infarction via CDK4/pRb Pathway. Biochem. Biophys. Res. Commun. 2022, 595, 62–68. [Google Scholar] [CrossRef]
- Lozar, T.; Laklouk, I.; Golfinos, A.E.; Gavrielatou, N.; Xu, J.; Flynn, C.; Keske, A.; Yu, M.; Bruce, J.Y.; Wang, W.; et al. Stress Keratin 17 Is a Predictive Biomarker Inversely Associated with Response to Immune Check-Point Blockade in Head and Neck Squamous Cell Carcinomas and Beyond. Cancers 2023, 15, 4905. [Google Scholar] [CrossRef]
- Chung, C.H.; Zhang, Q.; Kong, C.S.; Harris, J.; Fertig, E.J.; Harari, P.M.; Wang, D.; Redmond, K.P.; Shenouda, G.; Trotti, A.; et al. P16 Protein Expression and Human Papillomavirus Status As Prognostic Biomarkers of Nonoropharyngeal Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2014, 32, 3930–3938. [Google Scholar] [CrossRef]
- Li, J.; Poi, M.J.; Tsai, M.-D. The Regulatory Mechanisms of Tumor Suppressor P16INK4A and Relevance to Cancer. Biochemistry 2011, 50, 5566–5582. [Google Scholar] [CrossRef]
- Malik, N.; Yan, H.; Yang, H.H.; Ayaz, G.; DuBois, W.; Tseng, Y.-C.; Kim, Y.-I.; Jiang, S.; Liu, C.; Lee, M.; et al. CBFB Cooperates with P53 to Maintain TAp73 Expression and Suppress Breast Cancer. PLOS Genet. 2021, 17, e1009553. [Google Scholar] [CrossRef]
- Logotheti, S.; Richter, C.; Murr, N.; Spitschak, A.; Marquardt, S.; Pützer, B.M. Mechanisms of Functional Pleiotropy of P73 in Cancer and Beyond. Front. Cell Dev. Biol. 2021, 9, 737735. [Google Scholar] [CrossRef]
- Ijäs, P.; Melkas, S.; Saksi, J.; Jula, A.; Jauhiainen, M.; Oksala, N.; Pohjasvaara, T.; Kaste, M.; Karhunen, P.J.; Lindsberg, P.; et al. Haptoglobin Hp2 Variant Promotes Premature Cardiovascular Death in Stroke Survivors. Stroke 2017, 48, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Riad, A.; Mach, R.H. The Biological Function of Sigma-2 Receptor/TMEM97 and Its Utility in PET Imaging Studies in Cancer. Cancers 2020, 12, 1877. [Google Scholar] [CrossRef]
- Vance, J.E. Cellular Itinerary of LDL Cholesterol. Proc. Natl. Acad. Sci. USA 2022, 119, e2122584119. [Google Scholar] [CrossRef]
- Huang, S.; Henry, L.; Ho, Y.K.; Pownall, H.J.; Rudenko, G. Mechanism of LDL Binding and Release Probed by Structure-Based Mutagenesis of the LDL Receptor. J. Lipid Res. 2010, 51, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Mou, T.; Wang, J.; Hu, B.; Gao, M.; Yun, M.; Gao, X.; Tian, Y.; Li, H.; Jia, H.; Zhang, X.; et al. Discovery of σ2R/TMEM97 as a Novel Biomarker for Atherosclerotic Plaques: A PET Imaging and Validation Study. Arterioscler. Thromb. Vasc. Biol. 2025, 45, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
- Schmit, K.; Michiels, C. TMEM Proteins in Cancer: A Review. Front. Pharmacol. 2018, 9, 1345. [Google Scholar] [CrossRef]
- Yang, K.; Zeng, C.; Wang, C.; Sun, M.; Yin, D.; Sun, T. Sigma-2 Receptor—A Potential Target for Cancer/Alzheimer’s Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules 2020, 25, 5439. [Google Scholar] [CrossRef]
- Lasrado, N.; Yalaka, B.; Reddy, J. Triggers of Inflammatory Heart Disease. Front. Cell Dev. Biol. 2020, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Arkelius, K.; Won, S.J.; Gupta, L.; Zhang, M.; Swanson, R.; SINGHAL, N. Abstract TP380: TMEM97 and Lipid Metabolism: Unraveling Post-Stroke Lipid Regulation. Stroke 2025, 56 (Suppl. 1), ATP380. [Google Scholar] [CrossRef]
- Yamazaki, R.; Kikuchi, T.; Kato, J.; Sakurai, M.; Koda, Y.; Hashida, R.; Yamane, Y.; Abe, R.; Hasegawa, N.; Okamoto, S.; et al. Recurrent Bacterial Pneumonia Due to Immunoglobulin G2 Subclass Deficiency after Allogeneic Hematopoietic Stem Cell Transplantation: Efficacy of Immunoglobulin Replacement. Transpl. Infect. Dis. 2018, 20, e12863. [Google Scholar] [CrossRef] [PubMed]
- Gilutz, H.; Siegel, Y.; Paran, E.; Cristal, N.; Quastel, M.R. Alpha 1-Antitrypsin in Acute Myocardial Infarction. Heart 1983, 49, 26–29. [Google Scholar] [CrossRef]
- Winther, S.V.; Landt, E.M.; Nordestgaard, B.G.; Seersholm, N.; Dahl, M. A1-Antitrypsin Deficiency Associated with Increased Risk of Heart Failure. ERJ Open Res. 2023, 9, 00319-2023. [Google Scholar] [CrossRef]
- Ihara, K.; Sasano, T.; Hiraoka, Y.; Togo-Ohno, M.; Soejima, Y.; Sawabe, M.; Tsuchiya, M.; Ogawa, H.; Furukawa, T.; Kuroyanagi, H. A Missense Mutation in the RSRSP Stretch of Rbm20 Causes Dilated Cardiomyopathy and Atrial Fibrillation in Mice. Sci. Rep. 2020, 10, 17894. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, M.-M.; Wang, C.-Y.; Li, Y.-C.; Yu, C.-J.; Gong, Y.-F.; Zhang, J.; Wang, Q.-S.; Song, B.-L.; Yu, K.; et al. Characterization of Cardiac Anoctamin1 Ca2+-Activated Chloride Channels and Functional Role in Ischemia-Induced Arrhythmias. J. Cell Physiol. 2015, 230, 337–346. [Google Scholar] [CrossRef]
- Tian, X.; Sun, C.; Wang, X.; Ma, K.; Chang, Y.; Guo, Z.; Si, J. ANO1 Regulates Cardiac Fibrosis via ATI-Mediated MAPK Pathway. Cell Calcium 2020, 92, 102306. [Google Scholar] [CrossRef]
- Belfiori, M.; Lazzari, L.; Hezzell, M.; Angelini, G.D.; Dong, T. Transcriptomics, Proteomics and Bioinformatics in Atrial Fibrillation: A Descriptive Review. Bioengineering 2025, 12, 149. [Google Scholar] [CrossRef]
- Crespo-Bravo, M.; Hettich, A.; Thorlacius-Ussing, J.; Cox, T.R.; Karsdal, M.A.; Willumsen, N. Type XII Collagen Is Elevated in Serum from Patients with Solid Tumors: A Non-Invasive Biomarker of Activated Fibroblasts. Clin. Exp. Med. 2024, 24, 166. [Google Scholar] [CrossRef]
- Crespo-Bravo, M.; Thorlacius-Ussing, J.; Nissen, N.I.; Pedersen, R.S.; Boisen, M.K.; Liljefors, M.; Johansen, A.Z.; Johansen, J.S.; Karsdal, M.A.; Willumsen, N. Levels of Type XVII Collagen (BP180) Ectodomain Are Elevated in Circulation from Patients with Multiple Cancer Types and Is Prognostic for Patients with Metastatic Colorectal Cancer. BMC Cancer 2023, 23, 949. [Google Scholar] [CrossRef]
- Wang, J.; Pan, W. The Biological Role of the Collagen Alpha-3 (VI) Chain and Its Cleaved C5 Domain Fragment Endotrophin in Cancer. Onco Targets Ther. 2020, 13, 5779–5793. [Google Scholar] [CrossRef] [PubMed]
- Izu, Y.; Birk, D.E. Collagen XII Mediated Cellular and Extracellular Mechanisms in Development, Regeneration, and Disease. Front. Cell Dev. Biol. 2023, 11, 1129000. [Google Scholar] [CrossRef]
- Kondo, J.; Kusachi, S.; Ninomiya, Y.; Yoshioka, H.; Oohashi, T.; Doi, M.; Murakami, T.; Moritani, H.; Kumashiro, H.; Tsuji, T. Expression of Type XVII Collagen Alpha 1 Chain mRNA in the Mouse Heart. Jpn. Heart J. 1998, 39, 211–220. [Google Scholar] [CrossRef]
- Klewer, S.E.; Krob, S.L.; Kolker, S.J.; Kitten, G.T. Expression of Type VI Collagen in the Developing Mouse Heart. Dev. Dyn. 1998, 211, 248–255. [Google Scholar] [CrossRef]
- Vanhoutte, D.; Schips, T.G.; Vo, A.; Grimes, K.M.; Baldwin, T.A.; Brody, M.J.; Accornero, F.; Sargent, M.A.; Molkentin, J.D. Thbs1 Induces Lethal Cardiac Atrophy through PERK-ATF4 Regulated Autophagy. Nat. Commun. 2021, 12, 3928. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, D.; Song, H.; Tian, X.; Yan, C.; Han, Y. Overexpression of Kininogen-1 Aggravates Oxidative Stress and Mitochondrial Dysfunction in DOX-Induced Cardiotoxicity. Biochem. Biophys. Res. Commun. 2021, 550, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.; Maletzki, C.; Koczan, D.; Frank, M.; Springer, A.; Steffen, C.; Revenko, A.S.; MacLeod, A.R.; Mikkat, S.; Kreikemeyer, B.; et al. Kininogen Supports Inflammation and Bacterial Spreading during Streptococccus Pyogenes Sepsis. eBioMedicine 2020, 58, 102908. [Google Scholar] [CrossRef]
- Ponczek, M.B. High Molecular Weight Kininogen: A Review of the Structural Literature. Int. J. Mol. Sci. 2021, 22, 13370. [Google Scholar] [CrossRef]
- Mackness, B.; Quarck, R.; Verreth, W.; Mackness, M.; Holvoet, P. Human Paraoxonase-1 Overexpression Inhibits Atherosclerosis in a Mouse Model of Metabolic Syndrome. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1545–1550. [Google Scholar] [CrossRef]
- Basak, S.; Das, T.K. Enzyme-Immobilized Oxoammonium Nanogels: A Biocompatible and Injectable Platform for Enhanced Enzyme Stability and Reusability. Biomacromolecules 2025, 26, 8289–8302. [Google Scholar] [CrossRef]
- Bos, S.; Phillips, M.; Watts, G.F.; Verhoeven, A.J.M.; Sijbrands, E.J.G.; Ward, N.C. Novel Protein Biomarkers Associated with Coronary Artery Disease in Statin-Treated Patients with Familial Hypercholesterolemia. J. Clin. Lipidol. 2017, 11, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Dong, T.; Wang, H.; Ding, Y.; Zhang, J.; Zhu, X.; Ding, Y.; Cai, W.; Wei, Y.; Wang, Q.; et al. Integrative Machine Learning Frameworks to Uncover Specific Protein Signature in Neuroendocrine Cervical Carcinoma. BMC Cancer 2025, 25, 57. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Dong, B.; Cai, H.; Tian, T.; Wang, J.; Fu, L.; Wang, B.; Zhang, W.; Lin, S.; Tuo, X.; et al. Identifying Data-Driven Clinical Subgroups for Cervical Cancer Prevention with Machine Learning: Population-Based, External, and Diagnostic Validation Study. JMIR Public. Health Surveill. 2025, 11, e67840. [Google Scholar] [CrossRef]
- Rader, J.S.; Pan, A.; Corbin, B.; Iden, M.; Lu, Y.; Vellano, C.P.; Akbani, R.; Mills, G.B.; Simpson, P. Identification and Validation of a Prognostic Proteomic Signature for Cervical Cancer. Gynecol. Oncol. 2019, 155, 324–330. [Google Scholar] [CrossRef]
- Jafari, A.; Farahani, M.; Abdollahpour-Alitappeh, M.; Manzari-Tavakoli, A.; Yazdani, M.; Rezaei-Tavirani, M. Unveiling Diagnostic and Therapeutic Strategies for Cervical Cancer: Biomarker Discovery through Proteomics Approaches and Exploring the Role of Cervical Cancer Stem Cells. Front. Oncol. 2024, 13, 1277772. [Google Scholar] [CrossRef] [PubMed]
- Santa, S.; Kwofie, S.K.; Agyenkwa-Mawuli, K.; Quaye, O.; Brown, C.A.; Tagoe, E.A. Prediction of Human Papillomavirus-Host Oncoprotein Interactions Using Deep Learning. Bioinform. Biol. Insights 2024, 18, 11779322241304666. [Google Scholar] [CrossRef]
- Singh, N.; Bhatnagar, S. Machine Learning for Prediction of Drug Targets in Microbe Associated Cardiovascular Diseases by Incorporating Host-Pathogen Interaction Network Parameters. Mol. Inform. 2022, 41, 2100115. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, S.; Sun, X.; Hao, L.; Gao, Q. Identification of Endocrine-Disrupting Chemicals Targeting Key DCM-Associated Genes via Bioinformatics and Machine Learning. Ecotoxicol. Environ. Saf. 2024, 274, 116168. [Google Scholar] [CrossRef]
- Jarwal, A.; Dhall, A.; Arora, A.; Patiyal, S.; Srivastava, A.; Raghava, G.P.S. A Deep Learning Method for Classification of HNSCC and HPV Patients Using Single-Cell Transcriptomics. Front. Mol. Biosci. 2024, 11, 1395721. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, E.; Hess, J.; Kurz, C.; Riboldi, M.; Marschner, S.; Baumeister, P.; Lauber, K.; Pflugradt, U.; Walch, A.; Canis, M.; et al. DeepClassPathway: Molecular Pathway Aware Classification Using Explainable Deep Learning. Eur. J. Cancer 2022, 176, 41–49. [Google Scholar] [CrossRef]
- Mao, Y.; Hou, X.; Fu, S.; Luan, J. Transcriptomic and Machine Learning Analyses Identify Hub Genes of Metabolism and Host Immune Response That Are Associated with the Progression of Breast Capsular Contracture. Genes. Dis. 2024, 11, 101087. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, Y.; Ma, X.; Zhang, L. Integrated Analysis of lncRNA–miRNA–mRNA ceRNA Network and the Potential Prognosis Indicators in Sarcomas. BMC Med. Genom. 2021, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Ma, A.; Rani, A.Q.; Luo, M.; Li, J.; Liu, X.; Ma, Q. Identification of HPV Oncogene and Host Cell Differentiation Associated Cellular Heterogeneity in Cervical Cancer via Single-Cell Transcriptomic Analysis. J. Med. Virol. 2023, 95, e29060. [Google Scholar] [CrossRef]
- Nikitina, A.; Kiriy, D.; Tyshevich, A.; Tychinin, D.; Antysheva, Z.; Sobol, A.; Kushnarev, V.; Shin, N.; Brown, J.H.; Lewis, J.; et al. Viral Transcript and Tumor Immune Microenvironment-Based Transcriptomic Profiling of HPV-Associated Head and Neck Squamous Cell Carcinoma Identifies Subtypes Associated with Prognosis. Viruses 2025, 17, 4. [Google Scholar] [CrossRef]
- Arora, R.; Cao, C.; Kumar, M.; Sinha, S.; Chanda, A.; McNeil, R.; Samuel, D.; Arora, R.K.; Matthews, T.W.; Chandarana, S.; et al. Spatial Transcriptomics Reveals Distinct and Conserved Tumor Core and Edge Architectures That Predict Survival and Targeted Therapy Response. Nat. Commun. 2023, 14, 5029. [Google Scholar] [CrossRef]
- Dinia, A.; Ammari, S.; Filtes, J.; Classe, M.; Moya-Plana, A.; Bidault, F.; Temam, S.; Blanchard, P.; Lassau, N.; Gorphe, P. Events Prediction after Treatment in HPV-Driven Oropharyngeal Carcinoma Using Machine Learning. Eur. J. Cancer 2022, 171, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Hong, R.; Demicco, E.G.; Tan, J.; Lazcano, R.; Moreira, A.L.; Li, Y.; Calinawan, A.; Razavian, N.; Schraink, T.; et al. Deep Learning Integrates Histopathology and Proteogenomics at a Pan-Cancer Level. Cell Rep. Med. 2023, 4, 101173. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Shu, M.; Bekiranov, S.; Zang, C.; Zhang, A. Interpretable Meta-Learning of Multi-Omics Data for Survival Analysis and Pathway Enrichment. Bioinformatics 2023, 39, btad113. [Google Scholar] [CrossRef]
- Schrank, T.P.; Prince, A.C.; Sathe, T.; Wang, X.; Liu, X.; Alzhanov, D.T.; Burtness, B.; Baldwin, A.S.; Yarbrough, W.G.; Issaeva, N. NF-kB over-Activation Portends Improved Outcomes in HPV-Associated Head and Neck Cancer. Oncotarget 2022, 13, 707–722. [Google Scholar] [CrossRef] [PubMed]
- Wolk, D.M.; Kaleta, E.J.; Wysocki, V.H. PCR–Electrospray Ionization Mass Spectrometry. J. Mol. Diagn. 2012, 14, 295–304. [Google Scholar] [CrossRef]
- Madaan, T.; Nieman, M.L.; Rakheja, T.; Siddiqui, N.; Gherardini, D.; Sertorio, M.; Kamble, N.S.; Thomas, S.C.; Hartman, A.; Koch, S.E.; et al. Modulating Cardiac-Gut Microbiome Interaction Post-Myocardial Infarction with Engineered Bacteria. bioRxiv 2025. [Google Scholar] [CrossRef]
- Kamble, N.S.; Thomas, S.; Madaan, T.; Ehsani, N.; Sange, S.; Tucker, K.; Muhumure, A.; Kunkler, S.; Kotagiri, N. Engineered Bacteria as an Orally Administered Anti-Viral Treatment and Immunization System. Gut Microbes 2025, 17, 2500056. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-Y.; Lu, W.-J.; Changou, C.A.; Hsiung, Y.-C.; Trang, N.T.T.; Lee, C.-Y.; Chang, T.-H.; Jayakumar, T.; Hsieh, C.-Y.; Yang, C.-H.; et al. Platelet Autophagic Machinery Involved in Thrombosis through a Novel Linkage of AMPK-MTOR to Sphingolipid Metabolism. Autophagy 2021, 17, 4141–4158. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Sinha, S.; Zhai, B.; Fudulu, D.P.; Chan, J.; Narayan, P.; Judge, A.; Caputo, M.; Dimagli, A.; Benedetto, U.; et al. Cardiac Surgery Risk Prediction Using Ensemble Machine Learning to Incorporate Legacy Risk Scores: A Benchmarking Study. Digit. Health 2023, 9, 20552076231187605. [Google Scholar] [CrossRef]




| Category | Tissue Type | Biomarkers | References |
|---|---|---|---|
| Proteomics | Vulvar and cervical | ASF1B, CDC20, UBE2C and ATAD2; TNFRSF12A/Fn14, OLFM1 and ID1 | [16] |
| EIF1; BLOC1S5; LIMCH1; SGTA; ERH; IGKV2-30; TMEM97; DNAJA4 | [17] | ||
| LDHA | [18] | ||
| Involucrin; IL-18; Probable protein E4; Major capsid protein L1; Early protein E4; Minor capsid protein L2; E4 protein; L2 protein | [19] | ||
| Collagen type I alpha 2 and alpha 1 (COL1A1 and 2); periostin osteoblast specific factor (POSTN) and fibrillin 1 (FBN1) | [20] | ||
| NEMO, CK1 and β-TrCP | [21] | ||
| Head and neck squamous cell | ULK1 | [22] | |
| NRF2, p16, TP73 | [23] | ||
| Oral and oropharyngeal | CPPED1, GPRC5A, and TAGLN; CPPED1, OAS2, OAS3, FN1, SAMHD1, and ISG15; KYNU, LCP1, UCHL1, and GAGE12H | [24] | |
| A1BG, AHSG, AMBP, APOA4, APOC1, APOC2, APOC4; APOD, APOF, APOH, APOL1, APOM; ORM2, PON1; SAA1, SAA2, SAA2-SAA4; SERPINF1, SERPINF2, SOD3; TTR, UBA3 | [25] | ||
| HP, IGHA1/2, SERPINA1 | |||
| THBS1, KNG1, HRG, F9,F10,F12 | [25] | ||
| JSRP1, ANO1, Collagen alpha-1 (XII) chain, Collagen alpha-1 (XVII) chain, Collagen alpha-3 (VI) chain, Fibronectin, Ankycorbin, Periostin, SPARC | [26] | ||
| Transcriptomics | Cervical cell | E6/E7 | [27] |
| HPV16-miR-H1-1, HPV16-miR-H2-1 | [28] | ||
| CCNB2, PRC1, SYCP2, CDC20, NUSAP1, CDKN3 | [29] | ||
| L1 | [30] | ||
| Id-1 | [31] | ||
| miR-146a-5p | [32] | ||
| PA2G4, ATL3 | [33] | ||
| S100P; KRT17; PDE3A; TM4SF1; TLR4; AQP3 | [34] | ||
| TMEM45A, SERPINB5 and p16INK4a | [35] | ||
| Oropharyngeal | miR-9 | [36,37] | |
| E6/E7 | [38] | ||
| Stress keratin 17 (K17) | [39] | ||
| Keratinocytes | NFX1-123 | [40] | |
| miR-9-5p, miR-363-3p | [37] | ||
| ΔNp73α | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazzari, L.; Casati, I.; Wang, S.; Hezzell, M.J.; Angelini, G.D.; Dong, T. Exploring the Role of Transcriptomics, Proteomics, and Machine Learning in HPV Infection and Cardiovascular Disease. Biomedicines 2025, 13, 2942. https://doi.org/10.3390/biomedicines13122942
Lazzari L, Casati I, Wang S, Hezzell MJ, Angelini GD, Dong T. Exploring the Role of Transcriptomics, Proteomics, and Machine Learning in HPV Infection and Cardiovascular Disease. Biomedicines. 2025; 13(12):2942. https://doi.org/10.3390/biomedicines13122942
Chicago/Turabian StyleLazzari, Lisa, Ilaria Casati, Sarah Wang, Melanie J. Hezzell, Gianni D. Angelini, and Tim Dong. 2025. "Exploring the Role of Transcriptomics, Proteomics, and Machine Learning in HPV Infection and Cardiovascular Disease" Biomedicines 13, no. 12: 2942. https://doi.org/10.3390/biomedicines13122942
APA StyleLazzari, L., Casati, I., Wang, S., Hezzell, M. J., Angelini, G. D., & Dong, T. (2025). Exploring the Role of Transcriptomics, Proteomics, and Machine Learning in HPV Infection and Cardiovascular Disease. Biomedicines, 13(12), 2942. https://doi.org/10.3390/biomedicines13122942

