The Role and Research Progress of CD8+ T Cells in Sepsis
Abstract
1. Introduction
2. Abnormal Changes in CD8+ T Cells in Sepsis
2.1. Alterations in Quantity and Subsets
2.1.1. Overall Quantitative Changes and Organ-Specific Distribution
2.1.2. Remodeling of Memory and Effector Subsets
2.1.3. Increase in Functionally Exhausted Subsets
2.2. Functional Alterations
2.2.1. Early Functional Response and Late Functional Exhaustion
2.2.2. Upregulation of Immune Checkpoint Molecules
2.2.3. Defective Metabolic Adaptability
3. Mechanisms of CD8+ T Cell Dysfunction in Sepsis
3.1. Metabolic Reprogramming
3.1.1. Mitochondrial Dysfunction
| Domain | Marker/Pathway | Change in Sepsis CD8+ T Cells | Functional Consequence | Main Evidence (Human/Murine/Other) | Immune Phase * | References |
|---|---|---|---|---|---|---|
| Immune checkpoint | PD-1, PD-L1 | ↑ | Inhibits TCR signaling, proliferation, cytokine production | Human sepsis, murine CLP, chronic viral infection | Early → late | [12,35,36,37] |
| Immune checkpoint | CTLA-4, LAG-3, TIM-3, 2B4 | ↑ | Synergistic inhibition, poly-checkpoint exhausted phenotype | Human sepsis, murine CLP, cancer models | Late | [18,38] |
| Cytokine production | IFN-γ, TNF-α | ↓ | Impaired macrophage activation and pathogen clearance | Human sepsis | Late | [20,43] |
| Survival/apoptosis | Bcl-2 (anti-apoptotic) | ↓ | Reduced survival, increased apoptosis | Human sepsis, murine CLP | Early | [8,21] |
| Survival/apoptosis | Fas/FasL, TRAIL, BAX/BAK | ↑ | Enhanced extrinsic and intrinsic apoptosis | Human sepsis, murine CLP | Early | [9,23,24] |
| Metabolism—glycolysis | GLUT1 expression | ↑ or ↔ | Compensatory upregulation but net glycolytic flux decreases in exhaustion | Chronic infection, cancer; limited sepsis data | Late | [46,47] |
| Metabolism—mitochondrial | Mitochondrial membrane potential, OXPHOS | ↓ | ATP shortage, ROS accumulation, release of cytochrome c | Human sepsis, murine models | Early → late | [25,48] |
| Oxidative stress | Mitochondrial & cytosolic ROS | ↑ | DNA/protein damage, activation of intrinsic apoptosis | Human sepsis, murine models | Early → late | [25,49] |
| Transcription factors | T-bet | ↓ | Loss of effector differentiation | Mainly murine infection, limited sepsis | Late | [50,51] |
| Transcription factors | EOMES, TOX | ↑ | Favors exhausted phenotype | Cancer and chronic infection models | Late | [52,53,54] |
| Epigenetics—DNA methylation | DNMT3a, global promoter methylation | ↑ | Stable silencing of effector and memory genes | Infection and cancer models | Late | [55,56] |
| Epigenetics—histone marks | EZH2 (H3K27me3), G9a (H3K9me2/3) | ↑ | Repressive chromatin at effector loci, maintained exhaustion | Sepsis (limited), chronic infection | Late | [57,58,59] |
3.1.2. Abnormal Glycolytic Metabolism
3.1.3. Disruption of Key Metabolic Regulatory Pathways
3.2. Abnormal Cell Death Pathways
3.2.1. Extrinsic Apoptotic Pathway
3.2.2. Intrinsic Apoptotic Pathway
3.2.3. Apoptotic Execution Phase
3.3. Transcriptional Regulation and Epigenetic Alterations
3.3.1. Disruption of the Transcription Factor Network
3.3.2. DNA Methylation Changes
3.3.3. Histone Modification Regulation
3.4. Altered Intercellular Communication
3.4.1. Enhanced Inhibitory Receptor/Ligand Interactions
3.4.2. Shift in Cytokine Communication Patterns
3.4.3. Other Modes of Communication
4. Therapeutic Strategies Targeting CD8+ T Cells
4.1. Immune Checkpoint Modulation
4.2. Intervention in Cell Death Pathways
4.3. Metabolic Regulation Therapy
- (1)
- Optimizing energy supply: Exogenous supplementation of key metabolic substrates such as glutamine, acetate, or ketone bodies may provide alternative energy sources for T cells, bypassing compromised metabolic pathways [101].
- (2)
- Remodeling metabolic pathways: Small molecule drugs targeting critical metabolic enzymes or signaling pathways could be utilized. For instance, moderate inhibition of glycolysis might promote the conversion of exhausted T cells toward a memory phenotype [102,103]; regulating mitophagy to clear damaged mitochondria and restore oxidative phosphorylation capacity represents another promising approach.
- (3)
- Targeted delivery systems: The lack of cellular specificity poses a major challenge for metabolic interventions. Systemic administration may induce side effects [101], underscoring the need for precise delivery systems such as antibody-drug conjugates (ADCs) or nanocarrier technologies to specifically transport metabolic modulators to CD8+ T cells [110].
4.4. Other Innovative Therapeutic Strategies
- (1)
- “Exhaustion-resistant” T cells: Employing gene editing technologies like clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR/Cas9) [111,112] to knockout immune checkpoint genes (e.g., PD-1, LAG-3) in CD8+ T cells from sepsis patients, thereby enabling the reinfused cells to resist the inhibitory microenvironment and sustain cytotoxic activity.
- (2)
- Pathogen-specific T cells: For sepsis caused by specific pathogens such as drug-resistant bacteria or fungi, CD8+ T cells capable of efficiently recognizing these pathogens can be isolated, expanded, or engineered via T cell receptor (TCR) gene modification, achieving “cellular antibiotic”-like precision therapy.
5. Summary and Outlook
- (1)
- Utilize single-cell multi-omics technologies (such as scRNA-seq, scATAC-seq, TCR sequencing and CITE-seq) combined with spatial transcriptomics to comprehensively map CD8+ T cell states, clonal architecture, epigenetic programs and cell–cell interaction networks in blood and tissues across different stages of sepsis. Such integrated, spatially resolved datasets will refine current immune subtyping schemes, clarify how local microenvironments drive CD8+ T cell exhaustion, and provide a rational basis for designing CD8+ T cell-targeted interventions.
- (2)
- Conduct in-depth investigation into memory formation and the long-term immunological impacts of CD8+ T cells in sepsis, particularly their defensive capacity against secondary infections.
- (3)
- Systematically explore the cross-disciplinary interface between sepsis-induced CD8+ T cell exhaustion and cancer immunotherapy. On the one hand, studies of exhausted tumor-infiltrating CD8+ T cells have delineated hierarchical exhaustion states, key transcriptional/epigenetic regulators and metabolic checkpoints, and have identified biomarkers that predict responsiveness or resistance to immune checkpoint inhibitors [67,68,69,70,96,97,99,100,101]. Applying these conceptual frameworks and analytical tools (e.g., single-cell multi-omics, exhaustion state scoring, epigenetic profiling) to sepsis may help distinguish reversible from terminally fixed exhaustion, optimize checkpoint-based or adoptive T cell therapies, and inspire rational combination strategies. On the other hand, severe infections and sepsis episodes may reshape the CD8+ T cell compartment and its epigenetic “imprinting” in patients with cancer, thereby influencing subsequent responses and toxicity profiles to immunotherapies. Clarifying these bidirectional interactions will be essential for designing safer and more effective immunomodulatory regimens in both critical care and oncology settings.
- (4)
- Develop precise immunomodulatory strategies targeting CD8+ T cells, including specific metabolic interventions, blockade of cell death pathways, and epigenetic remodeling.
- (5)
- Promote the clinical translation process of innovative drugs (such as STC3141), addressing the current gap in targeted therapies for sepsis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Yu, M.; Chai, Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis. 2019, 10, 782. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef]
- Xie, Q.; Ding, J.; Chen, Y. Role of CD8+ T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharm. Sin. B 2021, 11, 1365–1378. [Google Scholar] [CrossRef]
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Chen, B.; Guo, J.; Zhang, D. Changes in Early T-Cell Subsets and Their Impact on Prognosis in Patients with Sepsis: A Single-Center Retrospective Study. Int. J. Clin. Pract. 2023, 2023, 1688385. [Google Scholar] [CrossRef]
- Lu, X.; Song, C.-Y.; Wang, P.; Li, L.; Lin, L.-Y.; Jiang, S.; Zhou, J.-N.; Feng, M.-X.; Yang, Y.-M.; Lu, Y.-Q. The clinical trajectory of peripheral blood immune cell subsets, T-cell activation, and cytokines in septic patients. Inflamm. Res. 2023, 73, 145–155. [Google Scholar] [CrossRef]
- Sun, X.-F.; Luo, W.-C.; Huang, S.-Q.; Zheng, Y.-J.; Xiao, L.; Zhang, Z.-W.; Liu, R.-H.; Zhong, Z.-W.; Song, J.-Q.; Nan, K.; et al. Immune-cell signatures of persistent inflammation, immunosuppression, and catabolism syndrome after sepsis. Med 2025, 6, 100569. [Google Scholar] [CrossRef]
- Boomer, J.S.; Shuherk-Shaffer, J.; Hotchkiss, R.S.; Green, J.M. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit. Care 2012, 16, R112. [Google Scholar] [CrossRef]
- Sharma, A.; Yang, W.-L.; Matsuo, S.; Wang, P. Differential alterations of tissue T-cell subsets after sepsis. Immunol. Lett. 2015, 168, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Schmieg, R.E.; Hui, J.J.; Chang, K.C.; Osborne, D.F.; Freeman, B.D.; Cobb, J.P.; Buchman, T.G.; et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol. 2001, 166, 6952–6963. [Google Scholar] [CrossRef]
- Wesche-Soldato, D.E.; Chung, C.-S.; Gregory, S.H.; Salazar-Mather, T.P.; Ayala, C.A.; Ayala, A. CD8+ T cells promote inflammation and apoptosis in the liver after sepsis: Role of Fas-FasL. Am. J. Pathol. 2007, 171, 87–96. [Google Scholar] [CrossRef]
- John, B.; Crispe, I.N. Passive and active mechanisms trap activated CD8+ T cells in the liver. J. Immunol. 2004, 172, 5222–5229. [Google Scholar] [CrossRef]
- Mehal, W.Z.; Juedes, A.E.; Crispe, I.N. Selective retention of activated CD8+ T cells by the normal liver. J. Immunol. 1999, 163, 3202–3210. [Google Scholar] [CrossRef]
- Pirozyan, M.R.; Nguyen, N.; Cameron, B.; Luciani, F.; Bull, R.A.; Zekry, A.; Lloyd, A.R. Chemokine-Regulated Recruitment of Antigen-Specific T-Cell Subpopulations to the Liver in Acute and Chronic Hepatitis C Infection. J. Infect. Dis. 2019, 219, 1430–1438. [Google Scholar] [CrossRef]
- Hickman, H.D.; Reynoso, G.V.; Ngudiankama, B.F.; Cush, S.S.; Gibbs, J.; Bennink, J.R.; Yewdell, J.W. CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells. Immunity 2015, 42, 524–537. [Google Scholar] [CrossRef]
- Zhang, W.; Fei, Y.; Gao, J.; Liu, B.; Zhang, F. The role of CXCR3 in the induction of primary biliary cirrhosis. Clin. Dev. Immunol. 2011, 2011, 564062. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, S.; Li, S. The role of the liver in sepsis. Int. Rev. Immunol. 2014, 33, 498–510. [Google Scholar] [CrossRef]
- Jensen, I.J.; Li, X.; McGonagill, P.W.; Shan, Q.; Fosdick, M.G.; Tremblay, M.M.; Houtman, J.C.; Xue, H.-H.; Griffith, T.S.; Peng, W.; et al. Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells. eLife 2021, 10, e70989. [Google Scholar] [CrossRef] [PubMed]
- Moioffer, S.J.; Berton, R.R.; McGonagill, P.W.; Jensen, I.J.; Griffith, T.S.; Badovinac, V.P. Inefficient Recovery of Repeatedly Stimulated Memory CD8 T Cells after Polymicrobial Sepsis Induction Leads to Changes in Memory CD8 T Cell Pool Composition. J. Immunol. 2023, 210, 168–179. [Google Scholar] [CrossRef]
- Heidarian, M.; Griffith, T.S.; Badovinac, V.P. Sepsis-induced changes in differentiation, maintenance, and function of memory CD8 T cell subsets. Front. Immunol. 2023, 14, 1130009. [Google Scholar] [CrossRef]
- Antoni, A.-C.; Pylaeva, E.; Budeus, B.; Jablonska, J.; Klein-Hitpaß, L.; Dudda, M.; Flohé, S.B. TLR2-induced CD8+ T-cell deactivation shapes dendritic cell differentiation in the bone marrow during sepsis. Front. Immunol. 2022, 13, 945409. [Google Scholar] [CrossRef]
- Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D.; Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011, 306, 2594–2605. [Google Scholar] [CrossRef]
- Yan, L.; Chen, Y.; Han, Y.; Tong, C. Role of CD8+ T cell exhaustion in the progression and prognosis of acute respiratory distress syndrome induced by sepsis: A prospective observational study. BMC Emerg. Med. 2022, 22, 182. [Google Scholar] [CrossRef]
- Li, F.; Qu, H.; Li, Y.; Liu, J.; Fu, H. Establishment and assessment of mortality risk prediction model in patients with sepsis based on early-stage peripheral lymphocyte subsets. Aging 2024, 16, 7460–7473. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, J.; Sun, T.; Xu, J.; Zhu, H.; Chen, J. Unveiling Dynamic Changes and Regulatory Mechanisms of T Cell Subsets in Sepsis Pathogenesis. Immunotargets Ther. 2024, 13, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Kobayashi, A.; Kooguchi, K.; Kitamura, Y.; Onodera, H.; Nakajima, H. Upregulation of two death pathways of perforin/granzyme and FasL/Fas in septic acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2000, 161, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Lertmemongkolchai, G.; Cai, G.; Hunter, C.A.; Bancroft, G.J. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-gamma in response to bacterial pathogens. J. Immunol. 2001, 166, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Salerno, F.; Guislain, A.; Cansever, D.; Wolkers, M.C. TLR-Mediated Innate Production of IFN-γ by CD8+ T Cells Is Independent of Glycolysis. J. Immunol. 2016, 196, 3695–3705. [Google Scholar] [CrossRef]
- Gao, D.-N.; Yang, Z.-X.; Qi, Q.-H. Roles of PD-1, Tim-3 and CTLA-4 in immunoregulation in regulatory T cells among patients with sepsis. Int. J. Clin. Exp. Med. 2015, 8, 18998–19005. [Google Scholar]
- Kurachi, M. CD8+ T cell exhaustion. Semin. Immunopathol. 2019, 41, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Strother, R.K.; Danahy, D.B.; Kotov, D.I.; Kucaba, T.A.; Zacharias, Z.R.; Griffith, T.S.; Legge, K.L.; Badovinac, V.P. Polymicrobial Sepsis Diminishes Dendritic Cell Numbers and Function Directly Contributing to Impaired Primary CD8 T Cell Responses In Vivo. J. Immunol. 2016, 197, 4301–4311. [Google Scholar] [CrossRef]
- Duong, S.; Condotta, S.A.; Rai, D.; Martin, M.D.; Griffith, T.S.; Badovinac, V.P. Polymicrobial sepsis alters antigen-dependent and -independent memory CD8 T cell functions. J. Immunol. 2014, 192, 3618–3625. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, S.B.; Kim, J.H.; Park, S.-H.; Park, M.S.; Kim, J.M.; Han, S.H.; Shin, E.-C. Impaired polyfunctionality of CD8+ T cells in severe sepsis patients with human cytomegalovirus reactivation. Exp. Mol. Med. 2017, 49, e382. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Chen, X.; Yu, F.; Huang, H.; Shen, X.; Tan, Y.; Wu, Q. Relationship Between the Expression of PD-1 and CTLA-4 on T Lymphocytes and the Severity and Prognosis of Sepsis. Int. J. Gen. Med. 2023, 16, 1513–1525. [Google Scholar] [CrossRef]
- Niu, B.; Zhou, F.; Su, Y.; Wang, L.; Xu, Y.; Yi, Z.; Wu, Y.; Du, H.; Ren, G. Different Expression Characteristics of LAG3 and PD-1 in Sepsis and Their Synergistic Effect on T Cell Exhaustion: A New Strategy for Immune Checkpoint Blockade. Front. Immunol. 2019, 10, 1888. [Google Scholar] [CrossRef]
- Zhong, W.; Li, J.; Li, D.; Li, X.; Liu, M.; Zhang, T.; Huang, J.; Huang, G.; Zeng, H.; Zhou, M.; et al. Elevated PD-1/CD28 Ratio Rather Than PD-1 Expression in CD8+ T Cells Predicts Nosocomial Infection in Sepsis Patients: A Prospective, Observational Cohort Study. Shock 2022, 58, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, G.; Wang, X.; Liu, D. Metabolic reprogramming consequences of sepsis: Adaptations and contradictions. Cell. Mol. Life Sci. 2022, 79, 456. [Google Scholar] [CrossRef]
- Cao, J.; Liao, S.; Zeng, F.; Liao, Q.; Luo, G.; Zhou, Y. Effects of altered glycolysis levels on CD8+ T cell activation and function. Cell Death Dis. 2023, 14, 407. [Google Scholar] [CrossRef]
- Ma, S.; Ming, Y.; Wu, J.; Cui, G. Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell. Mol. Immunol. 2024, 21, 419–435. [Google Scholar] [CrossRef]
- Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 2015, 6, 6692. [Google Scholar] [CrossRef]
- Park, D.W.; Zmijewski, J.W. Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis. Infect. Chemother. 2017, 49, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.L.; Zhang, D.; Bush, J.; Graham, K.; Starr, J.; Murray, J.; Tuluc, F.; Henrickson, S.; Deutschman, C.S.; Becker, L.; et al. Mitochondrial Dysfunction is Associated With an Immune Paralysis Phenotype in Pediatric Sepsis. Shock 2020, 54, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Sheeja Prabhakaran, H.; Zhang, Y.-Y.; Luo, G.; He, W.; Liou, Y.-C. Mitochondrial dysfunction in sepsis: Mechanisms and therapeutic perspectives. Crit. Care 2024, 28, 292. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Li, Z.; Lin, S.; Zheng, T.; Hao, B.; Hou, Y.; Zhang, Y.; Wang, K.; Qin, C.; et al. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: A review. J. Exp. Clin. Cancer Res. 2022, 41, 227. [Google Scholar] [CrossRef]
- Boomer, J.S.; Green, J.M.; Hotchkiss, R.S. The changing immune system in sepsis: Is individualized immuno-modulatory therapy the answer? Virulence 2013, 5, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Gao, Y.; Zhao, L.; Lv, X.; Du, Y. Molecular mechanisms of Sepsis attacking the immune system and solid organs. Front. Med. 2024, 11, 1429370. [Google Scholar] [CrossRef]
- Wu, J.Q.; Dwyer, D.E.; Dyer, W.B.; Yang, Y.H.; Wang, B.; Saksena, N.K. Genome-wide analysis of primary CD4+ and CD8+ T cell transcriptomes shows evidence for a network of enriched pathways associated with HIV disease. Retrovirology 2011, 8, 18. [Google Scholar] [CrossRef]
- Douglas, J.J.; Walley, K.R. Metabolic changes in cardiomyocytes during sepsis. Crit. Care 2013, 17, 186. [Google Scholar] [CrossRef]
- Zhang, P.; Pan, S.; Yuan, S.; Shang, Y.; Shu, H. Abnormal glucose metabolism in virus associated sepsis. Front. Cell. Infect. Microbiol. 2023, 13, 1120769. [Google Scholar] [CrossRef]
- Rha, M.-S.; Shin, E.-C. Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cell. Mol. Immunol. 2021, 18, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Jeng, M.Y.; Hull, P.A.; Fei, M.; Kwon, H.-S.; Tsou, C.-L.; Kasler, H.; Ng, C.-P.; Gordon, D.E.; Johnson, J.; Krogan, N.; et al. Metabolic reprogramming of human CD8+ memory T cells through loss of SIRT1. J. Exp. Med. 2017, 215, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Franco, F.; Lu, Y.-T.; Rahiman, N.; Kao, K.-C.; Chuang, Y.-M.; Zhu, Y.; Held, W.; Xie, X.; Gunsalus, K.C.; et al. PPARβ/δ-orchestrated metabolic reprogramming supports the formation and maintenance of memory CD8+ T cells. Sci. Immunol. 2024, 9, eadn2717. [Google Scholar] [CrossRef] [PubMed]
- Strasser, A.; Jost, P.J.; Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 2009, 30, 180–192. [Google Scholar] [CrossRef]
- Hou, Y.-M.; Yang, X. Regulation of cell death by transfer RNA. Antioxid. Redox Signal. 2013, 19, 583–594. [Google Scholar] [CrossRef]
- Schneider-Brachert, W.; Heigl, U.; Ehrenschwender, M. Membrane trafficking of death receptors: Implications on signalling. Int. J. Mol. Sci. 2013, 14, 14475–14503. [Google Scholar] [CrossRef]
- Unsinger, J.; Kazama, H.; McDonough, J.S.; Griffith, T.S.; Hotchkiss, R.S.; Ferguson, T.A. Sepsis-induced apoptosis leads to active suppression of delayed-type hypersensitivity by CD8+ regulatory T cells through a TRAIL-dependent mechanism. J. Immunol. 2010, 184, 6766–6772. [Google Scholar] [CrossRef]
- Chi, S.-W. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 2014, 47, 167–172. [Google Scholar] [CrossRef]
- Gupta, S.; Su, H.; Bi, R.; Agrawal, S.; Gollapudi, S. Life and death of lymphocytes: A role in immunesenescence. Immun. Ageing 2005, 2, 12. [Google Scholar] [CrossRef]
- Abou-Ghali, M.; Stiban, J. Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J. Biol. Sci. 2015, 22, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Distelhorst, C.W. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ. 2002, 9, 6–19. [Google Scholar] [CrossRef]
- Abhimanyu; Ontiveros, C.O.; Guerra-Resendez, R.S.; Nishiguchi, T.; Ladki, M.; Hilton, I.B.; Schlesinger, L.S.; DiNardo, A.R. Reversing Post-Infectious Epigenetic-Mediated Immune Suppression. Front. Immunol. 2021, 12, 688132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lei, F.; Tan, H. The development of CD8 T-cell exhaustion heterogeneity and the therapeutic potentials in cancer. Front. Immunol. 2023, 14, 1166128. [Google Scholar] [CrossRef]
- Zebley, C.C.; Gottschalk, S.; Youngblood, B. Rewriting History: Epigenetic Reprogramming of CD8+ T Cell Differentiation to Enhance Immunotherapy. Trends Immunol. 2020, 41, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Ford, B.R.; Poholek, A.C. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. J. Immunol. 2023, 210, 869–879. [Google Scholar] [CrossRef]
- Maimela, N.R.; Liu, S.; Zhang, Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput. Struct. Biotechnol. J. 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Wentink, M.W.J.; Mueller, Y.M.; Dalm, V.A.S.H.; Driessen, G.J.; van Hagen, P.M.; van Montfrans, J.M.; van der Burg, M.; Katsikis, P.D. Exhaustion of the CD8+ T Cell Compartment in Patients with Mutations in Phosphoinositide 3-Kinase Delta. Front. Immunol. 2018, 9, 446. [Google Scholar] [CrossRef]
- Pauken, K.E.; Sammons, M.A.; Odorizzi, P.M.; Manne, S.; Godec, J.; Khan, O.; Drake, A.M.; Chen, Z.; Sen, D.R.; Kurachi, M.; et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 2016, 354, 1160–1165. [Google Scholar] [CrossRef]
- de Ruijter, A.J.M.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B.P. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749. [Google Scholar] [CrossRef]
- Arulkumaran, N.; Deutschman, C.S.; Pinsky, M.R.; Zuckerbraun, B.; Schumacker, P.T.; Gomez, H.; Gomez, A.; Murray, P.; Kellum, J.A. Mitochondrial Function in Sepsis. Shock 2016, 45, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Pieniawska, M.; Iżykowska, K. Role of Histone Deacetylases in T-Cell Development and Function. Int. J. Mol. Sci. 2022, 23, 7828. [Google Scholar] [CrossRef] [PubMed]
- Verdon, D.J.; Mulazzani, M.; Jenkins, M.R. Cellular and Molecular Mechanisms of CD8+ T Cell Differentiation, Dysfunction and Exhaustion. Int. J. Mol. Sci. 2020, 21, 7357. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, D.; Zhou, X.; Tang, L. Effects and molecular mechanism of histone methyltransferase enhancer of zeste homolog 2 on regulating sepsis-induced T cell dysfunction. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2022, 34, 357–361. [Google Scholar] [CrossRef]
- Gupta, S.S.; Wang, J.; Chen, M. Metabolic Reprogramming in CD8+ T Cells During Acute Viral Infections. Front. Immunol. 2020, 11, 1013. [Google Scholar] [CrossRef]
- Barili, V.; Fisicaro, P.; Montanini, B.; Acerbi, G.; Filippi, A.; Forleo, G.; Romualdi, C.; Ferracin, M.; Guerrieri, F.; Pedrazzi, G.; et al. Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection. Nat. Commun. 2020, 11, 604. [Google Scholar] [CrossRef]
- Luperto, M.; Zafrani, L. T cell dysregulation in inflammatory diseases in ICU. Intensive Care Med. Exp. 2022, 10, 43. [Google Scholar] [CrossRef]
- Santacroce, E.; D’Angerio, M.; Ciobanu, A.L.; Masini, L.; Lo Tartaro, D.; Coloretti, I.; Busani, S.; Rubio, I.; Meschiari, M.; Franceschini, E.; et al. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024, 13, 439. [Google Scholar] [CrossRef]
- Brahmamdam, P.; Inoue, S.; Unsinger, J.; Chang, K.C.; McDunn, J.E.; Hotchkiss, R.S. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J. Leukoc. Biol. 2010, 88, 233–240. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Yang, Y.; Liu, L. [Programmed death-1/programmed death-ligand 1 pathway and T cell exhaustion in sepsis]. Zhonghua Nei Ke Za Zhi 2019, 58, 158–160. [Google Scholar] [CrossRef]
- Bhadra, R.; Gigley, J.P.; Khan, I.A. PD-1-mediated attrition of polyfunctional memory CD8+ T cells in chronic toxoplasma infection. J. Infect. Dis. 2012, 206, 125–134. [Google Scholar] [CrossRef]
- Chen, C.-W.; Mittal, R.; Klingensmith, N.J.; Burd, E.M.; Terhorst, C.; Martin, G.S.; Coopersmith, C.M.; Ford, M.L. Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis. J. Immunol. 2017, 199, 1961–1966. [Google Scholar] [CrossRef]
- Xie, J.; Crepeau, R.L.; Chen, C.-W.; Zhang, W.; Otani, S.; Coopersmith, C.M.; Ford, M.L. Sepsis erodes CD8+ memory T cell-protective immunity against an EBV homolog in a 2B4-dependent manner. J. Leukoc. Biol. 2019, 105, 565–575. [Google Scholar] [CrossRef]
- Marques, A.; Torre, C.; Pinto, R.; Sepodes, B.; Rocha, J. Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. J. Clin. Med. 2023, 12, 2892. [Google Scholar] [CrossRef]
- Chang, K.; Svabek, C.; Vazquez-Guillamet, C.; Sato, B.; Rasche, D.; Wilson, S.; Robbins, P.; Ulbrandt, N.; Suzich, J.; Green, J.; et al. Targeting the programmed cell death 1: Programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit. Care 2014, 18, R3. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Yin, Y. Regulatory role of the programmed cell death 1 signaling pathway in sepsis induced immunosuppression. Front. Immunol. 2023, 14, 1183542. [Google Scholar] [CrossRef] [PubMed]
- Curran, C.S.; Busch, L.M.; Li, Y.; Cui, X.; Sun, J.; Eichacker, P.Q.; Torabi-Parizi, P. Anti-PD-L1 Therapy Does Not Improve Survival in a Murine Model of Lethal Staphylococcus aureus Pneumonia. J. Infect. Dis. 2021, 224, 2073–2084. [Google Scholar] [CrossRef]
- Curran, C.S.; Cui, X.; Li, Y.; Jeakle, M.; Sun, J.; Demirkale, C.Y.; Minkove, S.; Hoffmann, V.; Dhamapurkar, R.; Chumbris, S.; et al. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front. Immunol. 2024, 14, 1308358. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-W.; Xue, M.; Zhang, W.; Xie, J.; Coopersmith, C.M.; Ford, M.L. 2B4 but not PD-1 blockade improves mortality in septic animals with preexisting malignancy. JCI Insight 2019, 4, e127867. [Google Scholar] [CrossRef]
- Busch, L.M.; Sun, J.; Cui, X.; Eichacker, P.Q.; Torabi-Parizi, P. Checkpoint inhibitor therapy in preclinical sepsis models: A systematic review and meta-analysis. Intensive Care Med. Exp. 2020, 8, 7. [Google Scholar] [CrossRef]
- Henriksen, N.L.; Jensen, P.Ø.; Jensen, L.K. Immune checkpoint blockade in experimental bacterial infections. J. Infect. 2025, 90, 106391. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Lu, Y.; Zheng, J.; Liu, X. Of mice and men: Laboratory murine models for recapitulating the immunosuppression of human sepsis. Front. Immunol. 2022, 13, 956448. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhou, L. PD-1 signaling pathway in sepsis: Does it have a future? Clin. Immunol. 2021, 229, 108742. [Google Scholar] [CrossRef]
- Darden, D.B.; Kelly, L.S.; Fenner, B.P.; Moldawer, L.L.; Mohr, A.M.; Efron, P.A. Dysregulated Immunity and Immunotherapy after Sepsis. J. Clin. Med. 2021, 10, 1742. [Google Scholar] [CrossRef]
- Jain, A.; Singam, A.; Mudiganti, V.N.K.S. Recent Advances in Immunomodulatory Therapy in Sepsis: A Comprehensive Review. Cureus 2024, 16, e57309. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Choi, E.; Kim, T.; Yeo, H.J.; Jeon, D.; Kim, Y.S.; Cho, W.H. Navigating the Modern Landscape of Sepsis: Advances in Diagnosis and Treatment. Int. J. Mol. Sci. 2024, 25, 7396. [Google Scholar] [CrossRef]
- Chiscano-Camón, L.; Ruiz-Sanmartin, A.; Bajaña, I.; Bastidas, J.; Lopez-Martinez, R.; Franco-Jarava, C.; Gonzalez, J.J.; Larrosa, N.; Riera, J.; Nuvials-Casals, X.; et al. Current perspectives in the management of sepsis and septic shock. Front. Med. 2024, 11, 1431791. [Google Scholar] [CrossRef]
- McBride, M.A.; Patil, T.K.; Bohannon, J.K.; Hernandez, A.; Sherwood, E.R.; Patil, N.K. Immune Checkpoints: Novel Therapeutic Targets to Attenuate Sepsis-Induced Immunosuppression. Front. Immunol. 2021, 11, 624272. [Google Scholar] [CrossRef]
- Huang, L.; Li, H.; Zhang, C.; Chen, Q.; Liu, Z.; Zhang, J.; Luo, P.; Wei, T. Unlocking the potential of T-cell metabolism reprogramming: Advancing single-cell approaches for precision immunotherapy in tumour immunity. Clin. Transl. Med. 2024, 14, e1620. [Google Scholar] [CrossRef]
- Yao, Z.; Zeng, Y.; Liu, C.; Jin, H.; Wang, H.; Zhang, Y.; Ding, C.; Chen, G.; Wu, D. Focusing on CD8+ T-cell phenotypes: Improving solid tumor therapy. J. Exp. Clin. Cancer Res. 2024, 43, 266. [Google Scholar] [CrossRef]
- Zhou, Z.; Zheng, J.; Lu, Y.; Mai, Z.; Lin, Y.; Lin, P.; Zheng, Y.; Chen, X.; Xu, R.; Zhao, X.; et al. Optimizing CD8+ T cell-based immunotherapy via metabolic interventions: A comprehensive review of intrinsic and extrinsic modulators. Exp. Hematol. Oncol. 2024, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, M.; Liu, J.; Ji, Y.; Subramanian, M.; Crompton, J.G.; Yu, Z.; Roychoudhuri, R.; Palmer, D.C.; Muranski, P.; Karoly, E.D.; et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Investig. 2013, 123, 4479–4488. [Google Scholar] [CrossRef]
- Mao, W. Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability. Front. Immunol. 2022, 13, 1056622. [Google Scholar] [CrossRef]
- Anyalebechi, J.C.; Sun, Y.; Davis, C.; Wagener, M.E.; Liang, Z.; Burd, E.M.; Coopersmith, C.M.; Ford, M.L. CD8+ T cells are necessary for improved sepsis survival induced by CD28 agonism in immunologically experienced mice. Front. Immunol. 2024, 15, 1346097. [Google Scholar] [CrossRef] [PubMed]
- Harm, T.; Zdanyte, M.; Goldschmied, A.; Uribe, Á.P.; Reinert, M.; Schreieck, J.; Aidery, P.; Rath, D.; Geisler, T.; Gawaz, M.P.; et al. Pre-interventional transesophageal echocardiography as a reliable predictor of residual shunt following patent foramen ovale closure. Clin. Res. Cardiol. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Hänggi, K.; Ruffell, B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023, 9, 381–396. [Google Scholar] [CrossRef]
- Francois, B.; Jeannet, R.; Daix, T.; Walton, A.H.; Shotwell, M.S.; Unsinger, J.; Monneret, G.; Rimmelé, T.; Blood, T.; Morre, M.; et al. Interleukin-7 restores lymphocytes in septic shock: The IRIS-7 randomized clinical trial. JCI Insight 2018, 3, e98960. [Google Scholar] [CrossRef]
- Wang, H.; Han, W.; Guo, R.; Bai, G.; Chen, J.; Cui, N. CD8+ T cell survival in lethal fungal sepsis was ameliorated by T-cell-specific mTOR deletion. Int. J. Med. Sci. 2021, 18, 3004–3013. [Google Scholar] [CrossRef]
- Pearce, E.L.; Walsh, M.C.; Cejas, P.J.; Harms, G.M.; Shen, H.; Wang, L.-S.; Jones, R.G.; Choi, Y. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009, 460, 103–107. [Google Scholar] [CrossRef]
- Feng, B. Editorial: Metabolic Intervention Based on Functional Biomaterial Strategy to Potentiate Cancer Immunotherapy, Volume I. Front. Pharmacol. 2022, 13, 925673. [Google Scholar] [CrossRef] [PubMed]
- Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020, 367, eaba7365. [Google Scholar] [CrossRef]
- Ren, J.; Liu, X.; Fang, C.; Jiang, S.; June, C.H.; Zhao, Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin. Cancer Res. 2016, 23, 2255–2266. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Zhou, J.; Shou, S. Exploration of m6A methylation regulators as epigenetic targets for immunotherapy in advanced sepsis. BMC Bioinform. 2023, 24, 257. [Google Scholar] [CrossRef] [PubMed]
- Yerinde, C.; Siegmund, B.; Glauben, R.; Weidinger, C. Metabolic Control of Epigenetics and Its Role in CD8+ T Cell Differentiation and Function. Front. Immunol. 2019, 10, 2718. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Huang, Q.; Zuo, Z.; Wang, Z.; Zhang, L.; Qian, Z. The Role and Research Progress of CD8+ T Cells in Sepsis. Biomedicines 2025, 13, 2912. https://doi.org/10.3390/biomedicines13122912
Wang X, Huang Q, Zuo Z, Wang Z, Zhang L, Qian Z. The Role and Research Progress of CD8+ T Cells in Sepsis. Biomedicines. 2025; 13(12):2912. https://doi.org/10.3390/biomedicines13122912
Chicago/Turabian StyleWang, Xianwen, Qihang Huang, Zhihong Zuo, Zhanwen Wang, Lina Zhang, and Zhaoxin Qian. 2025. "The Role and Research Progress of CD8+ T Cells in Sepsis" Biomedicines 13, no. 12: 2912. https://doi.org/10.3390/biomedicines13122912
APA StyleWang, X., Huang, Q., Zuo, Z., Wang, Z., Zhang, L., & Qian, Z. (2025). The Role and Research Progress of CD8+ T Cells in Sepsis. Biomedicines, 13(12), 2912. https://doi.org/10.3390/biomedicines13122912

