Atrial Fibrillation in COVID-19: Mechanisms, Clinical Impact, and Monitoring Strategies
Abstract
1. Introduction
2. Epidemiology of AF in Patients with COVID-19
3. Pathophysiology and Mechanisms of AF Development in COVID-19
4. Clinical Significance and Prognosis
| Study/Year | Sample Size (N) | Type of AF (Atrial Fibrillation) | Incidence/Prevalence | Main Clinical Outcomes | Adjusted Association | Interpretation |
|---|---|---|---|---|---|---|
| ICU meta-analysis [39] | ICU cohort | NOAF | ~5–6% | ↑ICU/in-hospital mortality; ↑AMI, AKI, RRT; PE ns | Yes | NOAF reflects multiorgan failure |
| Retrospective cohort [40] | 647 | NOAF/AFL | 6.3% | Older age and sepsis = strongest predictors | Yes | Arrhythmia driven by systemic illness/sepsis burden |
| Multicenter study [41] | >23,000 | NOAF | ~5% | ↑30-day mortality | aOR~2.24 | Independent predictor of short-term mortality |
| COVID-PREDICT [42] | 3064 | NOAF | 5.4% | ↑ICU admission, ARDS, thromboembolism | aOR 1.71 | NOAF tracks severity rather than primary cardiac cause |
| AHA Registry [1] | >30,000 | NOAF | 5.4% | Crude mortality ↑ but attenuated after adjustment | aHR 1.10 (ns) | Mortality signal largely confounded by illness severity |
| Pooled meta-analysis [3] | >39,000, 000 | Pre-existing AF + NOAF | ~10% each | ↑Mortality in both AF phenotypes | Yes | AF functions as a global prognostic marker |
| VA cohort (long-term) [46] | 150,000 vs. 11,000,000 | Post-acute AF | persists ≥ 12 months | Long-term AF susceptibility | aHR 1.71 | Persistent vulnerability beyond acute phase |
5. Treatment and Management Strategies
6. Monitoring and Future Directions
7. Limitations
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| aHR | Adjusted Hazard Ratio |
| aOR | Adjusted Odds Ratio |
| ABP | Ambulatory Blood Pressure |
| ACE2 | Angiotensin-Converting Enzyme 2 |
| AAD | Antiarrhythmic Drug |
| AF | Atrial Fibrillation |
| AFL | Atrial Flutter |
| AI | Artificial Intelligence |
| AMI | Acute Myocardial Infarction |
| Ang2 | Angiopoietin-2 |
| ARDS | Acute Respiratory Distress Syndrome |
| ATII | Angiotensin II |
| ATP | Adenosine Triphosphate |
| BMI | Body Mass Index |
| BNP | B-type Natriuretic Peptide |
| BPM | Beats Per Minute |
| CAC | Coronary Artery Calcium |
| CAD | Coronary Artery Disease |
| CaMKII | Calcium/Calmodulin-Dependent Protein Kinase II |
| CIED | Cardiac Implantable Electronic Device |
| COPD | Chronic Obstructive Pulmonary Disease |
| COVID | Coronavirus Disease 2019 |
| CNN | Convolutional Neural Network |
| CRP | C-Reactive Protein |
| CT | Computed Tomography |
| DCNN | Deep Convolutional Neural Network |
| DOAC | Direct Oral Anticoagulant |
| DVT | Deep Vein Thrombosis |
| EAT | Epicardial Adipose Tissue |
| ECG | Electrocardiogram |
| ECMO | Extracorporeal Membrane Oxygenation |
| EHRs | Electronic Health Records |
| FiO2 | Fraction of Inspired Oxygen |
| GRU | Gated Recurrent Unit |
| HIF | Hypoxia-Inducible Factor |
| HMM | Hidden Markov Model |
| HRT | Heart Rate Turbulence |
| HRV | Heart Rate Variability |
| ICU | Intensive Care Units |
| IK1 | Inward Rectifier Potassium Current (type 1) |
| IL | Interleukin |
| ILR | Implantable Loop Recorder |
| INR | International Normalized Ratio |
| KDR | Kinase Insert Domain Receptor |
| LMWH | Low-Molecular-Weight Heparin |
| LSTM | Long Short-Term Memory |
| mRNA | Messenger Ribonucleic Acid |
| MACE | Major Adverse Cardiovascular Events |
| MCOT | Mobile Cardiac Outpatient Telemetry |
| MMP | Matrix Metalloproteinase |
| NAD+ | Nicotinamide Adenine Dinucleotide |
| NOAF | New-Onset Atrial Fibrillation |
| PaO2 | Partial Pressure of Oxygen |
| PE | Pulmonary Embolism |
| PIMS-TS | Pediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2 |
| PPG | Photoplethysmogram |
| RAAS | Renin–Angiotensin–Aldosterone System |
| RhoA | Ras Homolog Family Member A |
| RHR | Resting Heart Rate |
| RNN | Recurrent Neural Network |
| RR | Respiratory Rate |
| RRT | Renal Replacement Therapy |
| RT-PCR | Reverse-Transcriptase Polymerase Chain Reaction |
| RyR | Ryanodine Receptor |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| STE | Speckle Tracking Echocardiography |
| TEE | Transesophageal Echocardiography |
| TTE | Transthoracic Echocardiography |
| TGF-β1 | Transforming Growth Factor Beta 1 |
| TNF-α | Tumor Necrosis Factor Alpha |
| UFH | Unfractionated Heparin |
| VEGF | Vascular Endothelial Growth Factor |
| VKA | Vitamin K Antagonist |
References
- Rosenblatt, A.G.; Ayers, C.R.; Rao, A.; Howell, S.J.; Hendren, N.S.; Zadikany, R.H.; Ebinger, J.E.; Daniels, J.D.; Link, M.S.; de Lemos, J.A.; et al. New-Onset Atrial Fibrillation in Patients Hospitalized with COVID-19: Results from the American Heart Association COVID-19 Cardiovascular Registry. Circ. Arrhythmia Electrophysiol. 2022, 15, e010666. [Google Scholar] [CrossRef] [PubMed]
- Rosh, B.; Naoum, I.; Barnett-Griness, O.; Najjar-Debbiny, R.; Saliba, W. Association between SARS-CoV-2 infection and new-onset atrial fibrillation. Int. J. Cardiol. 2023, 392, 131298. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.N.; Wang, J.L.; Liu, X.W.; Fu, Y.P.; Chen, X.F. A pooled analysis of the incidence and mortality risk of atrial fibrillation in patients with COVID-19. PeerJ 2024, 12, e18330. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rathore, S.S.; Atulkar, A.; Remala, K.; Corrales, V.V.; Farrukh, A.M.; Puar, R.K.; Yao, S.J.N.; Ganipineni, V.D.P.; Patel, N.; Thota, N.; et al. A systematic review and meta-analysis of new-onset atrial fibrillation in the context of COVID-19 infection. J. Cardiovasc. Electrophysiol. 2024, 35, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, H.M.; Paciotti, B.; Srivatsa, U.N. Incidence and implications of atrial fibrillation in patients hospitalized for COVID compared to non-COVID pneumonia: A multicenter cohort study. Heart Rhythm O2 2023, 4, 3–8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tolu-Akinnawo, O.; Ezekwueme, F.; Awoyemi, T. Telemedicine in Cardiology: Enhancing Access to Care and Improving Patient Outcomes. Cureus 2024, 16, e62852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zuin, M.; Ojeda-Fernández, L.; Torrigiani, G.; Bertini, M. Risk of incident atrial fibrillation after COVID-19 infection: A systematic review and meta-analysis. Heart Rhythm 2024, 21, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Shakir, M.; Hassan, S.M.; Adil, U.; Abidi, S.M.A.; Ali, S.A. Unveiling the silent threat of new onset atrial fibrillation in COVID-19 hospitalized patients: A retrospective cohort study. PLoS ONE 2024, 19, e0291829. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vainoryte, R.; Jucevicius, J.; Baubonis, E.; Naudziunas, A.; Alisauskas, A.; Kalinauskiene, E. Electrocardiographic diagnostic possibilities for atrial fibrillation using artificial intelligence: Differentiation from sinus rhythm and other arrhythmias with the PMcardio app in COVID-19 patients. J. Electrocardiol. 2025, 91, 154020. [Google Scholar] [CrossRef] [PubMed]
- Gawałko, M.; Duncker, D.; Manninger, M.; van der Velden, R.M.J.; Hermans, A.N.L.; Verhaert, D.V.M.; Pison, L.; Pisters, R.; Hemels, M.; Sultan, A.; et al. The European TeleCheck-AF project on remote app-based management of atrial fibrillation during the COVID-19 pandemic: Centre and patient experiences. Europace 2021, 23, 1003–1015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534, Erratum in Lancet Infect. Dis. 2020, 20, e215. https://doi.org/10.1016/S1473-3099(20)30509-0. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuck, K.H.; Schlüter, M.; Vogler, J.; Heeger, C.H.; Tilz, R.R. Has COVID-19 changed the spectrum of arrhythmias and the incidence of sudden cardiac death? Herz 2023, 48, 212–217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhatla, A.; Mayer, M.M.; Adusumalli, S.; Hyman, M.C.; Oh, E.; Tierney, A.; Moss, J.; Chahal, A.A.; Anesi, G.; Denduluri, S.; et al. COVID-19 and cardiac arrhythmias. Heart Rhythm 2020, 17, 1439–1444. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Musikantow, D.R.; Turagam, M.K.; Sartori, S.; Chu, E.; Kawamura, I.; Shivamurthy, P.; Bokhari, M.; Oates, C.; Zhang, C.; Pumill, C.; et al. Atrial Fibrillation in Patients Hospitalized With COVID-19: Incidence, Predictors, Outcomes, and Comparison to Influenza. JACC Clin. Electrophysiol. 2021, 7, 1120–1130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paris, S.; Inciardi, R.M.; Lombardi, C.M.; Tomasoni, D.; Ameri, P.; Carubelli, V.; Agostoni, P.; Canale, C.; Carugo, S.; Danzi, G.; et al. Implications of atrial fibrillation on the clinical course and outcomes of hospitalized COVID-19 patients: Results of the Cardio-COVID-Italy multicentre study. Europace 2021, 23, 1603–1611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Slipczuk, L.; Castagna, F.; Schonberger, A.; Novogrodsky, E.; Dey, D.; Jorde, U.P.; Levsky, J.M.; Di Biase, L.; Garcia, M.J. Incidence of new-onset atrial fibrillation in COVID-19 is associated with increased epicardial adipose tissue. J. Interv. Card. Electrophysiol. 2022, 64, 383–391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, D.; Barajas-Martinez, H.; Zhang, Z.H.; Duan, H.Y.; Zhao, Q.Y.; Bao, M.W.; Du, Y.-M.; Burashnikov, A.; Monasky, M.M.; Pappone, C.; et al. Advances in basic and translational research in atrial fibrillation. Philos. Trans. R. Soc. Lond B Biol. Sci. 2023, 378, 20220174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Donniacuo, M.; De Angelis, A.; Rafaniello, C.; Cianflone, E.; Paolisso, P.; Torella, D.; Sibilio, G.; Paolisso, G.; Castaldo, G.; Urbanek, K.; et al. COVID-19 and atrial fibrillation: Intercepting lines. Front. Cardiovasc. Med. 2023, 10, 1093053. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, Z.; Ding, L.; Yao, Y. Atrial fibrillation: Mechanism and clinical management. Chin. Med. J. 2023, 136, 2668–2676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shamloo, A.S.; Dagres, N.; Arya, A.; Hindricks, G. Atrial fibrillation: A review of modifiable risk factors and preventive strategies. Romanian J. Intern. Med. 2019, 57, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Wadke, R. Atrial fibrillation. Dis. Mon. 2013, 59, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, T.F. Challenges in atrial fibrillation: Detection, alert systems, fibrosis, and infection. Eur. Heart J. 2020, 41, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Stone, E.; Kiat, H.; McLachlan, C.S. Atrial fibrillation in COVID-19: A review of possible mechanisms. FASEB J. 2020, 34, 11347–11354. [Google Scholar] [CrossRef] [PubMed]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X. The mechanistic insights into new-onset atrial fibrillation induced by SARS-CoV-2 infection. Int. J. Cardiol. 2024, 397, 131587. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, A.; Kędziora, P.; Kierzkowska, B.; Niewiadomska-Jarosik, K.; Perdas, E.; Smolewska, E. Changes in the cardiovascular system in children with pediatric multisystem inflammatory syndrome temporally associated with COVID-19—A single center experience. Int. J. Cardiol. 2022, 361, 126–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peña, J.M.; MacFadyen, J.; Glynn, R.J.; Ridker, P.M. High-sensitivity C-reactive protein, statin therapy, and risks of atrial fibrillation: An exploratory analysis of the JUPITER trial. Eur. Heart J. 2012, 33, 531–537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Butt, J.H.; Olesen, J.B.; Havers-Borgersen, E.; Gundlund, A.; Andersson, C.; Gislason, G.H.; Torp-Pedersen, C.; Køber, L.; Fosbøl, E.L. Risk of Thromboembolism Associated With Atrial Fibrillation Following Noncardiac Surgery. J. Am. Coll. Cardiol. 2018, 72, 2027–2036. [Google Scholar] [CrossRef] [PubMed]
- Conen, D.; Ridker, P.M.; Everett, B.M.; Tedrow, U.B.; Rose, L.; Cook, N.R.; Buring, J.E.; Albert, C.M. A multimarker approach to assess the influence of inflammation on the incidence of atrial fibrillation in women. Eur. Heart J. 2010, 31, 1730–1736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kallergis, E.M.; Manios, E.G.; Kanoupakis, E.M.; Mavrakis, H.E.; Kolyvaki, S.G.; Lyrarakis, G.M.; I Chlouverakis, G.; E Vardas, P. The role of the post-cardioversion time course of hs-CRP levels in clarifying the relationship between inflammation and persistence of atrial fibrillation. Heart 2008, 94, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020, 116, 1097–1100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Babapoor-Farrokhran, S.; Gill, D.; Alzubi, J.; Mainigi, S.K. Atrial fibrillation: The role of hypoxia-inducible factor-1-regulated cytokines. Mol. Cell. Biochem. 2021, 476, 2283–2293. [Google Scholar] [CrossRef] [PubMed]
- Gramley, F.; Lorenzen, J.; Jedamzik, B.; Gatter, K.; Koellensperger, E.; Munzel, T.; Pezzella, F. Atrial fibrillation is associated with cardiac hypoxia. Cardiovasc. Pathol. 2010, 19, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Pool, L.; Wijdeveld, L.F.J.M.; de Groot, N.M.S.; Brundel, B.J.J.M. The Role of Mitochondrial Dysfunction in Atrial Fibrillation: Translation to Druggable Target and Biomarker Discovery. Int. J. Mol. Sci. 2021, 22, 8463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mauriello, A.; Correra, A.; Molinari, R.; Del Vecchio, G.E.; Tessitore, V.; D’Andrea, A.; Russo, V. Mitochondrial Dysfunction in Atrial Fibrillation: The Need for a Strong Pharmacological Approach. Biomedicines 2024, 12, 2720. [Google Scholar] [CrossRef]
- Gad, B.K.; Arafa, M.A.; Attia, A.F.; Farahat, A.H.; Abdou, M.S. Depression, anxiety, and stress among COVID-19 patients in South Sinai, Egypt: Prevalence and associated predictors. Sci. Rep. 2023, 13, 19193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, H.; Li, C.; Li, B.; Zheng, T.; Feng, K.; Wu, Y. Psychological factors and risk of atrial fibrillation: A meta-analysis and systematic review. Int. J. Cardiol. 2022, 362, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Gui, P.; Wang, B. Complications of new-onset atrial fibrillation in critically ill COVID-19 patients admitted to the intensive care unit (ICU): A meta-analysis. BMC Cardiovasc. Disord. 2024, 24, 407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhuiya, T.; Shah, P.P.; Lau, W.H.; Park, T.; Munshi, R.F.; Hai, O.; Zeltser, R.; Makaryus, A.N. EEmergence of Atrial Fibrillation and Flutter in COVID-19 Patients: A Retrospective Cohort Study. Healthcare 2024, 12, 1682. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ko, D.; Treu, T.M.; Tarko, L.; Ho, Y.-L.; Preis, S.R.; Trinquart, L.; Gagnon, D.R.; Monahan, K.M.; Helm, R.H.; Orkaby, A.R.; et al. Incidence and prognostic significance of newly-diagnosed atrial fibrillation among older U.S. veterans hospitalized with COVID-19. Sci. Rep. 2024, 14, 952. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spruit, J.; Jansen, R.W.M.M.; de Groot, J.; de Vries, T.; Hemels, M.; Douma, R.; de Haan, L.R.; Brinkman, K.; Moeniralam, H.S.; de Kruif, M.; et al. Does atrial fibrillation affect prognosis in hospitalised COVID-19 patients? A multicentre historical cohort study in the Netherlands. BMJ Open 2023, 13, e071137. [Google Scholar] [CrossRef]
- Gopinathannair, R.; Olshansky, B.; Chung, M.K.; Gordon, S.; Joglar, J.A.; Marcus, G.M.; Mar, P.L.; Russo, A.M.; Srivatsa, U.N.; Wan, E.Y.; et al. Cardiac Arrhythmias and Autonomic Dysfunction Associated with COVID-19: A Scientific Statement From the American Heart Association. Circulation 2024, 150, e449–e465. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, B.; Manocha, K.K.; Ying, X.; Kirzner, J.; Ip, J.E.; Thomas, G.; Liu, C.F.; Markowitz, S.M.; Lerman, B.B.; Safford, M.M.; et al. Outcomes and mortality associated with atrial arrhythmias among patients hospitalized with COVID-19. J. Cardiovasc. Electrophysiol. 2020, 31, 3077–3085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zając, A.; Wrona, E.; Kasprzak, J.D. Permanent and Persistent Atrial Fibrillations Are Independent Risk Factors of Mortality after Severe COVID-19. J. Clin. Med. 2024, 13, 3112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yılmaz, M.; Mirzaoğlu, Ç. Individuals Recovered from Severe COVID-19 are Predispose to Develop Atrial Fibrillation. Int. J. Gen. Med. 2025, 18, 4379–4390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, K.R.; Lee, S.; Kim, B.S.; Chun, K.J. Long-Term Clinical Implications of Atrial Fibrillation on Mortality in Patients Hospitalized with COVID-19: A Nationwide Cohort Study. J. Clin. Med. 2023, 12, 6504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Potpara, T.; Romiti, G.F.; Sohns, C. The 2024 European Society of Cardiology Guidelines for Diagnosis and Management of Atrial Fibrillation: A Viewpoint from a Practicing Clinician’s Perspective. Thromb. Haemost. 2024, 124, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Barbhaiya, C. Atrial Fibrillation in COVID-19: Therapeutic Target or Grave Omen? Heart Lung Circ. 2021, 30, 1114–1116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomaszuk-Kazberuk, A.; Koziński, M.; Domienik-Karłowicz, J.; Jaguszewski, M.; Darocha, S.; Wybraniec, M.; Dobrowolski, P.; Kupczyńska, K.; Michalski, B.; Wańha, W.; et al. Pharmacotherapy of atrial fibrillation in COVID-19 patients. Cardiol. J. 2021, 28, 758–766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verma, K.P.; Wong, M. Atrial fibrillation. Aust. J. Gen. Pract. 2019, 48, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, I.C.; Hagens, V.E.; Bosker, H.A.; Kingma, J.H.; Kamp, O.; Kingma, T.; Said, S.A.; Darmanata, J.I.; Timmermans, A.J.; Tijssen, J.G.; et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N. Engl. J. Med. 2002, 347, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Sardar, P.; Lichstein, E.; Mukherjee, D.; Aikat, S. Pharmacologic rate versus rhythm-control strategies in atrial fibrillation: An updated comprehensive review and meta-analysis. Pacing Clin. Electrophysiol. 2013, 36, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156, Erratum in Circulation 2024, 149, e167. https://doi.org/10.1161/CIR.0000000000001207; Erratum in Circulation 2024, 149, e936. https://doi.org/10.1161/CIR.0000000000001218; Erratum in Circulation 2024, 149, e1413. https://doi.org/10.1161/CIR.0000000000001263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): Developed by the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC), with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Endorsed by the European Stroke Organisation (ESO). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef]
- Iisalo, E. Clinical pharmacokinetics of digoxin. Clin. Pharmacokinet. 1977, 2, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Latini, R.; Tognoni, G.; Kates, R.E. Clinical pharmacokinetics of amiodarone. Clin. Pharmacokinet. 1984, 9, 136–156. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Lam, C.Y.; Tan, P.H.; Tsang, H.F.; Wong, S.C. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int. J. Mol. Sci. 2024, 25, 8155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ribes, A.; Vardon-Bounes, F.; Mémier, V.; Poette, M.; Au-Duong, J.; Garcia, C.; Minville, V.; Sié, P.; Bura-Rivière, A.; Voisin, S.; et al. Thromboembolic events and COVID-19. Adv. Biol. Regul. 2020, 77, 100735. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Russo, V.; Rago, A.; Carbone, A.; Bottino, R.; Ammendola, E.; Della Cioppa, N.; Galante, D.; Golino, P.; Nigro, G. Atrial Fibrillation in COVID-19: From Epidemiological Association to Pharmacological Implications. J. Cardiovasc. Pharmacol. 2020, 76, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Dofferhoff, A.S.M.; Piscaer, I.; Schurgers, L.J.; Visser, M.P.J.; van den Ouweland, J.M.W.; de Jong, P.A.; Gosens, R.; Hackeng, T.M.; Van Daal, H.; Lux, P.; et al. Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019. Clin. Infect. Dis. 2021, 73, e4039–e4046. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bistrovic, P.; Manola, S.; Papic, I.; Jordan, A.; Ortner Hadziabdic, M.; Lucijanic, M. Atrial fibrillation in COVID-19 patients receiving remdesivir, matched case-control analysis. Am. J. Emerg. Med. 2022, 59, 182–183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blomström-Lundqvist, C. Effects of COVID-19 lockdown strategies on management of atrial fibrillation. Eur. Heart J. 2020, 41, 3080–3082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gladstone, D.J.; Wachter, R.; Schmalstieg-Bahr, K.; Quinn, F.R.; Hummers, E.; Ivers, N.; Marsden, T.; Thornton, A.; Djuric, A.; Suerbaum, J.; et al. Screening for Atrial Fibrillation in the Older Population: A Randomized Clinical Trial. JAMA Cardiol. 2021, 6, 558–567. [Google Scholar] [CrossRef]
- Newman, J.; O’Meara, E.; Böhm, M.; Savarese, G.; Kelly, P.R.; Vardeny, O.; Allen, L.A.; Lancellotti, P.; Gottlieb, S.S.; Samad, Z.; et al. Implications of Atrial Fibrillation for Guideline-Directed Therapy in Patients with Heart Failure: JACC State-of-the-Art Review. JACC 2024, 83, 932–950. [Google Scholar] [CrossRef]
- Dewland, T.A.; Whitman, I.R.; Win, S.; Sanchez, J.M.; Olgin, J.E.; Pletcher, M.J.; Santhosh, L.; Kumar, U.; Joyce, S.; Yang, V.; et al. Prospective arrhythmia surveillance after a COVID-19 diagnosis. Open Heart 2022, 9, e001758. [Google Scholar] [CrossRef]
- Hamdy, R.M.; Samy, M.; Mohamed, H.S. Clinical utility of ambulatory ECG monitoring and 2D-ventricular strain for evaluation of post-COVID-19 ventricular arrhythmia. BMC Cardiovasc. Disord. 2024, 24, 429. [Google Scholar] [CrossRef]
- Huseynov, A.; Akin, I.; Duerschmied, D.; Scharf, R.E. Cardiac Arrhythmias in Post-COVID Syndrome: Prevalence, Pathology, Diagnosis, and Treatment. Viruses 2023, 15, 389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ZeinElabdeen, S.G.; Sherif, A.; Kandil, N.T.; Altabib, A.M.O.; Abdelrashid, M.A. Left atrial longitudinal strain analysis in long COVID-19 syndrome. Int. J. Cardiovasc. Imaging 2023, 39, 939–944. [Google Scholar] [CrossRef]
- Radin, J.M.; Vogel, J.M.; Delgado, F.; Coughlin, E.; Gadaleta, M.; Pandit, J.A.; Steinhubl, S.R. Long-term changes in wearable sensor data in people with and without Long COVID. NPJ Digit. Med. 2024, 7, 246. [Google Scholar] [CrossRef] [PubMed]
- Sanches, C.A.; Silva, G.A.; Librantz, A.F.H.; Sampaio, L.M.M.; Belan, P.A. Wearable Devices to Diagnose and Monitor the Progression of COVID-19 Through Heart Rate Variability Measurement: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2023, 25, e47112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Natarajan, A.; Su, H.W.; Heneghan, C. Assessment of physiological signs associated with COVID-19 measured using wearable devices. NPJ Digit. Med. 2020, 3, 156. [Google Scholar] [CrossRef]
- Hasty, F.; García, G.; Dávila, H.; Wittels, S.H.; Hendricks, S.; Chong, S. Heart Rate Variability as a Possible Predictive Marker for Acute Inflammatory Response in COVID-19 Patients. Mil. Med. 2021, 186, e34–e38. [Google Scholar] [CrossRef]
- Jimah, T.; Kehoe, P.; Borg, H.; Pimentel, P.; Rahmani, A.; Dutt, N.; Guo, Y. A Micro-Level Analysis of Physiological Responses to COVID-19: Continuous Monitoring of Pregnant Women in California. Front. Public Health 2022, 10, 808763. [Google Scholar] [CrossRef]
- Hijazi, H.; Abu Talib, M.; Hasasneh, A.; Bou Nassif, A.; Ahmed, N.; Nasir, Q. Wearable Devices, Smartphones, and Interpretable Artificial Intelligence in Combating COVID-19. Sensors 2021, 21, 8424. [Google Scholar] [CrossRef]
- Hirten, R.P.; Danieletto, M.; Tomalin, L.; Choi, K.H.; Zweig, M.; Golden, E.; Kaur, S.; Helmus, D.; Biello, A.; Pyzik, R.; et al. Use of Physiological Data From a Wearable Device to Identify SARS-CoV-2 Infection and Symptoms and Predict COVID-19 Diagnosis: Observational Study. J. Med. Internet Res. 2021, 23, e26107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chow, J.S.F.; Maurya, N.; San Miguel, S.; Teramayi, R.; Parameswaran, A.; D’Souza, A.; Melbourne, G.; Descallar, J.; Juhn, Y.; Chan, E.; et al. Remote, smart telemonitoring of COVID-19 survivors for early detection of deterioration in cardiac health (the PARTMO study). Front. Med. Technol. 2025, 7, 1534097. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, H.A.; Lee, H.; Park, H.S.; Ahn, J.; Lee, S.-M.; Choi, S.-Y.; Oh, E.H.; Choi, J.-H.; Park, J.-Y.; Choi, K.-D. Wearable ECG patch monitoring for 72 h is comparable to conventional Holter monitoring for 24 h to detect cardiogenic vertigo. Sci. Rep. 2025, 15, 7744. [Google Scholar] [CrossRef]
- Norlock, V.; Vazquez, R.; Dunn, A.; Siegfried, C.; Wadhwa, M.; Medic, G. Comparing the outcomes and costs of cardiac monitoring with implantable loop recorders and mobile cardiac outpatient telemetry following stroke using real-world evidence. J. Comp. Eff. Res. 2024, 13, e240008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davies, F.; Finlay, I.; Howson, H.; Rich, N. Recommendations for a voluntary Long COVID Registry. J. R. Soc. Med. 2022, 115, 322–324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Albhaisi, S.; Wenzel, R.P. The Value of Medical Registries and Observational Studies Early in Pandemics: The Coronavirus Disease 2019 (COVID-19) Experience. Clin. Infect. Dis. 2022, 74, 1112–1116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Górska, A.; Canziani, L.M.; Rinaldi, E.; Pana, Z.D.; Beale, S.; Bai, F.; Klerk, B.M.B.-D.; de Bruijn, S.; Donà, D.; Ekkelenkamp, M.B.; et al. Learning from post-COVID-19 condition for epidemic preparedness: A variable catalogue for future post-acute infection syndromes. Clin. Microbiol. Infect. 2025, 31, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Núñez Mejía, S. Hidden Markov Models for early detection of cardiovascular diseases. Ing. Solidar. 2023, 20, 1–31. [Google Scholar] [CrossRef]
- Ping, Y.; Chen, C.; Wu, L.; Wang, Y.; Shu, M. Automatic Detection of Atrial Fibrillation Based on CNN-LSTM and Shortcut Connection. Healthcare 2020, 8, 139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, A.; Tang, X.; Xia, P.; Hao, M.; Shu, Y.; Ling, R.R. Cardiac Arrhythmia After COVID-19 Vaccination versus Non-COVID-19 Vaccination: A Systematic Review and Meta-Analysis. Circulation 2023. [Google Scholar] [CrossRef]
- Deshmukh, A.J.; Ahmad, R.; Cha, Y.M.; Mulpuru, S.K.; DeSimone, C.V.; Killu, A.M.; Mullane, S.; Harrell, C.; Kutyifa, V.; Cheung, J.W.; et al. Association between COVID-19 vaccination and atrial arrhythmias in individuals with cardiac implantable electronic devices. J. Cardiovasc. Electrophysiol. 2024, 35, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Cocco, N.; Leibundgut, G.; Pelliccia, F.; Cammalleri, V.; Nusca, A.; Mangiacapra, F.; Cocco, G.; Fanale, V.; Ussia, G.P.; Grigioni, F. Arrhythmias after COVID-19 Vaccination: Have We Left All Stones Unturned? Int. J. Mol. Sci. 2023, 24, 10405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kattubadi, A.; Solorzano, J.; Feng, K.; Brar, V.; Dominic, P. COVID-19 vaccines and atrial fibrillation risk: A pharmacovigilance analysis. J. Am. Coll. Cardiol. 2022, 79, 1838. [Google Scholar] [CrossRef] [PubMed Central]
- Kim, H.J.; Jeong, S.; Song, J.; Park, S.J.; Park, Y.J.; Oh, Y.H.; Jung, J.; Park, S.M. Risk of pulmonary embolism and deep vein thrombosis following COVID-19: A nationwide cohort study. MedComm 2024, 5, e655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemos, A.C.B.; do Espírito Santo, D.A.; Salvetti, M.C.; Gilio, R.N.; Agra, L.B.; Pazin-Filho, A.; Miranda, C.H. Therapeutic versus prophylactic anticoagulation for severe COVID-19: A randomized phase II clinical trial (HESACOVID). Thromb. Res. 2020, 196, 359–366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramacciotti, E.; Barile Agati, L.; Calderaro, D.; Aguiar, V.C.R.; Spyropoulos, A.C.; de Oliveira, C.C.C.; dos Santos, J.L.; Volpiani, G.G.; Sobreira, M.L.; Joviliano, E.E.; et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): An open-label, multicentre, randomised, controlled trial. Lancet 2022, 399, 50–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hylek, E.M. Anticoagulation therapy for atrial fibrillation. Semin. Thromb. Hemost. 2013, 39, 147–152. [Google Scholar] [CrossRef] [PubMed]
| Method | Type of Record | Typical Monitoring Duration | Main Advantages | Main Limitations | Typical Usage After COVID-19 |
|---|---|---|---|---|---|
| 24 h Holter ECG 2 | Continuous three-lead/two-lead ECG | 24 h | Widely available, inexpensive | Short monitoring duration—it is easy to miss intermittent episodes of arrhythmias | First-line test for patients with symptoms persisting for a short time after hospitalization |
| ECG patch | Continuous single-lead ECG | 72 h–14 d | Longer recording, better patient tolerance | More expensive; obligatory digital analysis | Ambulatory detection of intermittent episodes of AF 1 |
| Smartwatch (PPG 4 + 1-lead ECG) | Continuous/intermittent PPG + on-demand single-lead ECG | Continuous/passive alerts | Highly scalable, ability of passive long-term detection | PPG may generate false notifications; required ECG confirmation; differences in quality between devices | Screening and long-term remote monitoring of convalescents |
| ILR 3 | Continuous subcutaneous ECG | Years | Detects most events; effective in long-term monitoring | Invasive, expensive | Monitoring of patients with high risk of cardiovascular incidents (for example, after ischemic stroke) |
| Event-/patient-activated ECG (smartphone-based) | Short single-lead ECG, patient-activated | Days–weeks | Good for symptomatic episodes; encourages patients to cooperate with doctors; low cost | Missing asymptomatic incidents | Registering recurrent episodes in patients who are willing to report their symptoms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młynarska, E.; Hossa, K.; Krupińska, N.; Pietruszewska, H.; Przybylak, A.; Włudyka, K.; Rysz, J.; Franczyk, B. Atrial Fibrillation in COVID-19: Mechanisms, Clinical Impact, and Monitoring Strategies. Biomedicines 2025, 13, 2889. https://doi.org/10.3390/biomedicines13122889
Młynarska E, Hossa K, Krupińska N, Pietruszewska H, Przybylak A, Włudyka K, Rysz J, Franczyk B. Atrial Fibrillation in COVID-19: Mechanisms, Clinical Impact, and Monitoring Strategies. Biomedicines. 2025; 13(12):2889. https://doi.org/10.3390/biomedicines13122889
Chicago/Turabian StyleMłynarska, Ewelina, Katarzyna Hossa, Natalia Krupińska, Hanna Pietruszewska, Aleksandra Przybylak, Kinga Włudyka, Jacek Rysz, and Beata Franczyk. 2025. "Atrial Fibrillation in COVID-19: Mechanisms, Clinical Impact, and Monitoring Strategies" Biomedicines 13, no. 12: 2889. https://doi.org/10.3390/biomedicines13122889
APA StyleMłynarska, E., Hossa, K., Krupińska, N., Pietruszewska, H., Przybylak, A., Włudyka, K., Rysz, J., & Franczyk, B. (2025). Atrial Fibrillation in COVID-19: Mechanisms, Clinical Impact, and Monitoring Strategies. Biomedicines, 13(12), 2889. https://doi.org/10.3390/biomedicines13122889

