Central Role of Mitochondrial Oxidative Stress in the Pathophysiology of Disorders
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| HMG | 3-hydroxy-3-methylglutaric acid |
| AF | Atrial fibrillation |
| ERR-α | Estrogen-related receptor-α |
| ERRs | Estrogen-related receptors |
| ETC | Electron transport chain |
| LPS | Lipopolysaccharide |
| MFN1 | Mitofusin 1 |
| MFN2 | Mitofusin 2 |
| NAFLD | Non-alcoholic fatty liver disease |
| NRF1 | Nuclear respiratory factor-1 |
| NRF2 | Nuclear respiratory factor-2 |
| PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
| ROS | Reactive oxygen species |
References
- Popov, L.-D. Mitochondrial Biogenesis: An Update. J. Cell. Mol. Med. 2020, 24, 4892–4899. [Google Scholar] [CrossRef] [PubMed]
- Cid-Castro, C.; Hernández-Espinosa, D.R.; Morán, J. ROS as Regulators of Mitochondrial Dynamics in Neurons. Cell. Mol. Neurobiol. 2018, 38, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Ortega, S.P.; Chouchani, E.T.; Boudina, S. Stress Turns on the Heat: Regulation of Mitochondrial Biogenesis and UCP1 by ROS in Adipocytes. Adipocyte 2017, 6, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, S.; Guida, L.; Passalacqua, M.; Magnone, M.; Caushi, B.; Zocchi, E.; Sturla, L. The ABA/LANCL1-2 Hormone/Receptors System Controls ROS Production in Cardiomyocytes through ERRα. Biomedicines 2024, 12, 2071. [Google Scholar] [CrossRef] [PubMed]
- Silveira, J.d.A.; Marcuzzo, M.B.; da Rosa, J.S.; Kist, N.S.; Hoffmann, C.I.H.; Carvalho, A.S.; Ribeiro, R.T.; Quincozes-Santos, A.; Netto, C.A.; Wajner, M.; et al. 3-Hydroxy-3-Methylglutaric Acid Disrupts Brain Bioenergetics, Redox Homeostasis, and Mitochondrial Dynamics and Affects Neurodevelopment in Neonatal Wistar Rats. Biomedicines 2024, 12, 1563. [Google Scholar] [CrossRef] [PubMed]
- Emaus, K.J.; Fogo, G.M.; Wider, J.M.; Sanderson, T.H. The Role of Cardiolipin in Mitochondrial Dynamics and Quality Control in Neuronal Ischemia/Reperfusion Injury. Cell Death Dis. 2025, 16, 494. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, M.; Harvey, J.P.; Sladen, P.E.; Becchi, G.; Singh, K.; Sun, Y.J.; Burgoyne, T.; Duchen, M.R.; Yu-Wai-Man, P.; Cheetham, M.E. Disruption of Mitochondrial Homeostasis and Permeability Transition Pore Opening in OPA1 iPSC-Derived Retinal Ganglion Cells. Acta Neuropathol. Commun. 2025, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Dubinin, M.V.; Talanov, E.Y.; Tenkov, K.S.; Starinets, V.S.; Mikheeva, I.B.; Sharapov, M.G.; Belosludtsev, K.N. Duchenne Muscular Dystrophy Is Associated with the Inhibition of Calcium Uniport in Mitochondria and an Increased Sensitivity of the Organelles to the Calcium-Induced Permeability Transition. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165674. [Google Scholar] [CrossRef] [PubMed]
- Morla-Barcelo, P.M.; Melguizo-Salom, L.; Roca, P.; Nadal-Serrano, M.; Sastre-Serra, J.; Torrens-Mas, M. Obesity-Related Inflammation Reduces Treatment Sensitivity and Promotes Aggressiveness in Luminal Breast Cancer Modulating Oxidative Stress and Mitochondria. Biomedicines 2024, 12, 2813. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Seguritan, V.; Li, W.; Long, T.; Klitgord, N.; Bhatt, A.; Dulai, P.S.; Caussy, C.; Bettencourt, R.; Highlander, S.K.; et al. Gut Microbiome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017, 25, 1054–1062.e5. [Google Scholar] [CrossRef] [PubMed]
- Boursier, J.; Mueller, O.; Barret, M.; Machado, M.; Fizanne, L.; Araujo-Perez, F.; Guy, C.D.; Seed, P.C.; Rawls, J.F.; David, L.A.; et al. The Severity of Nonalcoholic Fatty Liver Disease Is Associated with Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota. Hepatology 2016, 63, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhang, L.; Yuan, S.; Li, H.; Zheng, C.; Xie, S.; Sun, Y.; Zhang, C.; Wang, R.; Jin, Y. Val-Val-Tyr-Pro Protects against Non-alcoholic Steatohepatitis in Mice by Modulating the Gut Microbiota and Gut-liver Axis Activation. J. Cell. Mol. Med. 2021, 25, 1439–1455. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, Y.; Zhang, Q.; Song, Y.; Wang, L.; Zhu, Z. Interactions Between Intestinal Microbiota and Neural Mito-chondria: ANew Perspective on Communicating Pathway From Gut to Brain. Front. Microbiol. 2022, 13, 798917. [Google Scholar]
- Huang, Y.; Xin, W.; Xiong, J.; Yao, M.; Zhang, B.; Zhao, J. The Intestinal Microbiota and Metabolites in the Gut-Kidney-Heart Axis of Chronic Kidney Disease. Front. Pharmacol. 2022, 13, 837500. [Google Scholar]
- Bahitham, W.; Alghamdi, S.; Omer, I.; Alsudais, A.; Hakeem, I.; Alghamdi, A.; Abualnaja, R.; Sanai, F.M.; Rosado, A.S.; Sergi, C.M. Double Trouble: How Microbiome Dysbiosis and Mitochondrial Dysfunction Drive Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Biomedicines 2024, 12, 550. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, A.; Correra, A.; Molinari, R.; Del Vecchio, G.E.; Tessitore, V.; D’Andrea, A.; Russo, V. Mitochondrial Dysfunction in Atrial Fibrillation: The Need for a Strong Pharmacological Approach. Biomedicines 2024, 12, 2720. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leipnitz, G.; Quincozes-Santos, A. Central Role of Mitochondrial Oxidative Stress in the Pathophysiology of Disorders. Biomedicines 2025, 13, 2881. https://doi.org/10.3390/biomedicines13122881
Leipnitz G, Quincozes-Santos A. Central Role of Mitochondrial Oxidative Stress in the Pathophysiology of Disorders. Biomedicines. 2025; 13(12):2881. https://doi.org/10.3390/biomedicines13122881
Chicago/Turabian StyleLeipnitz, Guilhian, and André Quincozes-Santos. 2025. "Central Role of Mitochondrial Oxidative Stress in the Pathophysiology of Disorders" Biomedicines 13, no. 12: 2881. https://doi.org/10.3390/biomedicines13122881
APA StyleLeipnitz, G., & Quincozes-Santos, A. (2025). Central Role of Mitochondrial Oxidative Stress in the Pathophysiology of Disorders. Biomedicines, 13(12), 2881. https://doi.org/10.3390/biomedicines13122881

