Maternal Dietary Choices Might Impact Intrauterine Healing Processes and Postnatal Phenotype and Function in Human Fetuses with Spina Bifida Aperta—Early Clinical Observations and Implications from a Retrospective Cohort Study
Abstract
1. Introduction
2. Patients, Observations and Methods
2.1. Case 1
2.2. Case 2
2.3. Case 3
2.4. Backtesting 2010 to 2020
2.5. Case 4
2.6. Case 5
2.7. Case 6
2.8. Case 7
2.9. Backtesting 2021 to 2024
2.10. Processing of Images
2.11. Data Management
2.12. Statistical Analysis
3. Results
4. Discussion

4.1. Research Implications
4.2. Clinical Implications
4.3. Limitations
4.4. Assessment and Reduction in Risks
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tulpi, N. Observationum Medicarum Libri Tres. Capitum 30 Spina Dorsi Bifida, 1st ed.; Ludovicum Elzevirium: Amstelredami, The Netherlands, 1641. [Google Scholar]
- Özek, M.M.; Cinalli, G.; Maixner, W.J. Spina bifida Management and Outcome. In Management of Vertebral Problems and Deformities; Özek, M.M., Erol, B., Tama, I.J., Eds.; Springer: Milan, Italy, 2008; pp. 305–318. [Google Scholar]
- Wagh, K.; Kancheria, V.; Dorsey, A.; Pachón, H.; Oakley, G.P. A global update on the status of prevention of folic-acid-preventable spina bifida and anencephaly in year 2022. Birth Defects Res. 2024, 116, e2343. [Google Scholar] [CrossRef]
- Heffez, D.S.; Aryanpur, J.; Hutchins, G.M.; Freeman, J.M. The paralysis associated with myelomeningocele: Clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery 1990, 26, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Correia-Pinto, J.; Reis, J.L.; Hutchins, G.M.; Baptista, M.J.; Estevão-Costa, J.; Flake, A.W.; Leite-Moreira, A.F. In utero meconium exposure increases spinal cord necrosis in a rat model of myelomeningocele. J. Pediatr. Surg. 2002, 37, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Drewek, M.J.; Bruner, J.P.; Whetsell, W.O.; Tulipan, N. Quantitative analysis of the toxicity of human amniotic fluid to cultured rat spinal cord. Pediatr. Neurosurg. 1997, 27, 190–193. [Google Scholar] [CrossRef]
- Danzer, E.; Zhang, L.; Radu, A.; Bebbington, M.W.; Liechty, K.W.; Adzick, N.S.; Flake, A.W. Amniotic fluid levels of glial fibrillary acidic protein in fetal rats with retinoic acid induced myelomeningocele: A potential marker for spinal cord injury. Am. J. Obs. Gynecol. 2011, 204, e1–e11. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T. Stool contamination. J. Neurosurg. Pediatr. 2010, 5, 422. [Google Scholar] [CrossRef]
- Athiel, Y.; Jouannic, J.M.; Lépine, M.; Maillet, C.; de Saint Denis, T.; Larghero, J.; Guilbaud, L. Role of Amniotic Fluid Toxicity in the Pathophysiology of Myelomeningocele: A Narrative Literature Review. Prenat. Diagn. 2024, 44, 1530–1535. [Google Scholar] [CrossRef]
- Selauki, M.; Manning, S.; Bernfield, M. The curly tail mouse model of human neural tube defects demonstrates normal spinal cord differentiation at the level of the myelomeningocele: Implications for fetal surgery. Child’s Nerv. Syst. 2001, 17, 19–23. [Google Scholar]
- Michejda, M. Intrauterine treatment of spina bifida: Primate model. Eur. J. Pediatr. Surg. 1984, 39, 259–261. [Google Scholar] [CrossRef]
- Michejda, M. Antenatal treatment of central nervous system defects: Current and future developments in experimental therapies. Fetal Ther. 1989, 4 (Suppl. S1), 108–131. [Google Scholar] [CrossRef]
- Meuli, M.; Meuli-Simmen, C.; Yingling, C.D.; Hutchins, G.M.; Hoffman, K.M.; Harrison, M.R.; Adzick, N.S. Creation of myelomeningocele in utero: A model of functional damage from spinal cord exposure in fetal sheep. J. Pediatr. Surg. 1995, 30, 1028–1033. [Google Scholar] [CrossRef]
- Meuli, M.; Meuli-Simmen, C.; Yingling, C.D.; Hutchins, G.M.; Timmel, G.B.; Harrison, M.R.; Adzick, N.S. In utero repair of experimental myelomeningocele saves neurological function at birth. J. Pediatr. Surg. 1996, 31, 397–402. [Google Scholar] [CrossRef]
- Kohl, T.; Witteler, R.; Strümper, D.; Gogarten, W.; Asfour, B.; Reckers, J.; Merschhoff, G.; Marcus, A.E.; Weyand, M.; Van Aken, H.; et al. Operative techniques and strategies for minimally invasive fetoscopic fetal cardiac interventions in sheep. Surg. Endosc. 2000, 14, 424–430. [Google Scholar] [CrossRef]
- Kohl, T.; Große Hartlage, M.G.; Kienitz, D.; Westphal, M.; Buller, T.; Achenbach, S.; Aryee, S.; Gembruch, U.; Brentrup, A. Percutaneous fetoscopic patch coverage of experimental lumbosacral full- thickness skin lesions in sheep—A minimally invasive technique aimed at minimizing maternal trauma from fetal surgery for myelomeningocele. Surg. Endosc. 2003, 17, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Herrera, S.R.; de Almeida Leme, R.J.; Valente, P.R.; Caldini, E.G.; Saldiva, P.H.; Lapa Pedreira, D.A. Comparison between two surgical techniques for prenatal correction of meningomyelocele in sheep. Einstein 2012, 10, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Adzick, N.S.; Thom, E.A.; Spong, C.Y.; Brock, J.W., 3rd; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; Sutton, L.N.; et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 2011, 364, 993–1004. [Google Scholar] [CrossRef]
- Kohl, T. Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part I: Surgical technique and perioperative outcome. Ultrasound Obs. Gynecol. 2014, 44, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Diehl, D.; Belke, F.; Kohl, T.; Axt-Fliedner, R.; Degenhardt, J.; Khaleeva, A.; Oehmke, F.; Faas, D.; Ehrhardt, H.; Kolodziej, M.; et al. Fully Percutaneous Fetoscopic Repair of Myelomeningocele: 30 months follow up data. J. Ultrasound Obs. Gynecol. 2021, 57, 113–118. [Google Scholar] [CrossRef]
- Cortes, M.S.; Chmait, R.H.; Lapa, D.A.; Belfort, M.A.; Carreras, E.; Miller, J.L.; Brawura Biskupski Samaha, R.; Gonzalez, G.S.; Gielchinsky, Y.; Yamamoto, M.; et al. Experience of 300 cases of prenatal fetoscopic open spina bifida repair: Report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am. J. Obs. Gynecol. 2021, 225, e1–e678. [Google Scholar] [CrossRef]
- Lorenz, H.P.; Adzick, N.S. Scarless skin wound repair in the fetus. West. J. Med. 1993, 159, 350–355. [Google Scholar] [PubMed]
- Deutsch, D. The Beginning of Infinity. Explanations that Transform the World; Penguin Books: London, UK, 2011; ISBN 978-0140-27816-3. [Google Scholar]
- Spill, M.; Callahan, E.; Johns, K.; Shapiro, M.; Spahn, J.M.; Wong, Y.P.; Terry, N.; Benjamin-Neelon, S.; Birch, L.; Black, M.; et al. Influence of Maternal Diet on Flavor Transfer to Amniotic Fluid and Breast Milk and Children’s Responses: A Systematic Review. Am. J. Clin. Nutr. 2019, 109, 1003S–1026S. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Lu, D.; Jaleel, S.; Palmer, S.N.; Mahendroo, M.; Zhan, X.; Mirpuri, J. Maternal high fat diet exposure modifies amniotic fluid metabolites and expands 3 innate lymphoid cells dependent on the maternal microbiome and MyD88-signaling. Front. Immunol. 2024, 15, 1439804. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.K.; Worobey, J. Early influences on the development of food preferences. Curr. Biol. 2013, 23, R401–R408. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.Y.; Roberts, V.H.J.; Frias, A.E.; Brace, R.A. High-fat die effects on amniotic fluid volume and amnion aquaporin expression in non-human primates. Physiol. Rep. 2018, 6, e13792. [Google Scholar] [CrossRef]
- Priyadarhini, M.; Thomas, A.; Reisetter, A.C.; Wolever, M.S.; Josefson, J.L.; Layden, B.T. Maternal short-chain fatty acids are associated with metabolic parameters in mothers and newborns. Transl. Res. 2014, 164, 153–157. [Google Scholar] [CrossRef]
- Larqué, E.; Demmelmair, H.; Gil-Sánchez, A.; Prieto-Sánchez, M.T.; Blanco, J.E.; Pagán, A.; Faber, F.L.; Zamora, S.; Parrilla, J.J.; Koletzko, B. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr. 2011, 94, 1908S–1913S. [Google Scholar] [CrossRef]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid supplementation during pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef]
- Zielińska, M.A.; Wesolowska, A.; Pawlus, B.; Harnulka, J. Health Effects of Carotenoids during Pregnancy and Lactation. Nutrients 2017, 9, 838. [Google Scholar] [CrossRef]
- de Souza Mesquita, L.M.; Mennitti, L.V.; de Rosso, V.V.; Pisani, L.P. The role of vitamin A and its pro-vitamin carotenoids in fetal and neonatal programming: Gaps in knowledge and metabolic pathways. Nutr. Rev. 2021, 79, 76–87. [Google Scholar] [CrossRef]
- Black, A.M.; Armstrong, E.A.; Scott, O.; Juurlink, B.J.H.; Yager, J.Y. Broccoli sprout supplementation during pregnancy prevents brain injury in the newborn rat following placental insufficiency. Behav. Brain Res. 2015, 291, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Ladak, Z.; Garcia, E.; Yoon, J.; Landy, T.; Armstrong, E.A.; Yager, J.Y.; Persad, S. Sulforaphane (SFA) protects neuronal cells from oxygen & glucose deprivation (OGD). PLoS ONE 2021, 16, e0248777. [Google Scholar]
- Li, Z.; Han, Y.; Li, X.; Xiang, W.; Cui, T.; Xi, W.; Jin, S.; Zhan, X. Polycyclic aromatic hydrocarbons in early pregnancy on child neurodevelopment. Environ. Pollut. 2025, 366, 125527. [Google Scholar] [CrossRef]
- Syeda, T.; Cannon, J.R. Potential Role of Heterocyclic Aromatic Amines in Neurodegeneration. Chem. Res. Toxicol. 2022, 35, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Turesky, R.J. Heterocyclic aromatic amines: Metabolism, DNA adducts, formation, mutagenesis, and carcinogenesis. Drug Metab. Rev. 2002, 34, 625–650. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, W.; Liu, Y.; Zhang, Q. Reproductive and developmental toxicology of nitrosamines. Toxicol. Res. 2025, 14, tfaf051. [Google Scholar] [CrossRef]
- Huncharek, M.; Kupelnick, B. A meta-analysis of maternal cured meat consumption during pregnancy and the risk of childhood brain tumors. Neuroepidemiology 2004, 23, 78–84. [Google Scholar] [CrossRef]
- von Stedingk, H.; Vikström, A.C.; Rydberg, P.; Pedersen, M.; Nielsen, J.K.; Segerbäck, D.; Knudsen, L.E.; Törnqvist, M. Analysis of hemoglobin adducts from acrylamide, glycidamide, and ethylene oxide in paired mother/cord blood samples from Denmark. Chem. Res. Toxicol. 2011, 24, 1957–1965. [Google Scholar] [CrossRef]
- Erdemli, M.E.; Aladag, M.A.; Altinoz, E.; Demirtas, S.; Turkoz, Y.; Yigitcan, B.; Bag, H.G. Acrylamide applied during pregnancy causes the neurotoxic effect by lowering BDNF levels in the fetal brain. Neurotoxicol. Teratol. 2018, 67, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, B.; Deng, L. The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Front. Nutr. 2022, 9, 859189. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 2010, 110, 911–916. [Google Scholar] [CrossRef]
- Vincent, A.M.; Perrone, L.; Sullivan, K.A.; Backus, C.; Sastry, A.M.; Lastoskie, C.; Feldman, E.L. Receptor for Advanced Glycation End Products Activation Injures Primary Sensory Neurons via Oxidative Stress. Endocrinology 2007, 148, 548–558. [Google Scholar] [CrossRef]
- Sival, D.A.; Montserrat, G.; den Dunnen, W.F.A.; Bátiz, L.F.; Alvial, G.; Castañeyra-Perdomo, A.; Rodríguez, E.M. Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol. 2011, 21, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Correia-Pinto, J.; Tavares, M.L.; Baptista, M.J.; Henriques-Coelho, T.; Estevão-Costa, J.; Flake, A.W.; Leite-Moreira, A.F. Meconium dependence of bowel damage in gastroschisis. J. Pediatr. Surg. 2002, 37, 31–35. [Google Scholar] [CrossRef][Green Version]
- Olguner, M.; Akgür, F.M.; Api, A.; Ozer, E.; Aktug, T. The effects of intraamniotic human neonatal urine and meconium on the intestines of the chick embryo with gastroschisis. J. Pediatr. Surg. 2000, 35, 458–461. [Google Scholar] [CrossRef]
- Luton, D.; De Lagausie, P.; Guibourdenche, J.; Oury, J.F.; Vuillard, E.; Sibony, O.; Farnoux, C.; Aigrain, Y.; Blot, P. Prognostic factors of prenatally diagnosed gastroschisis. Fetal Diagn. Ther. 1997, 12, 7–14. [Google Scholar] [CrossRef]
- Yisahak, S.F.; Hinkle, S.N.; Mumford, S.L.; Li, M.; Andriessen, V.C.; Grantz, K.L.; Zhang, C.; Grewal, J. Vegetarian diets during pregnancy, and maternal and neonatal outcomes. Int. J. Epidemiol. 2020, 50, 165–178. [Google Scholar] [CrossRef]
- Przybysz, P.; Kruszewski, A.; Kacperczyk-Barnik, J.; Romejko-Wolniewicz, E. The Impact of Maternal Plant-Based Diet on Obstetric and Neonatal Outcomes—A Cross-Sectional Study. Nutrients 2023, 15, 4717. [Google Scholar] [CrossRef] [PubMed]
- Mensink, G.B.M.; Barbosa, C.L.; Brettschneider, A.K. Prevalence of persons following a vegetarian diet in Germany. J. Health Monit. 2016, 1, 2–14. [Google Scholar]
- Food Safety Authority of Ireland. IARC Report: Red Meat, Processed Meat and Cancer; FSAI: Dublin, Ireland, 2015; Available online: https://www.fsai.ie/consumer-advice/food-safety-and-hygiene/chemicals-in-food/iarc-report-red-meat-processed-meat-and-cancer (accessed on 27 August 2025).
- Hill, D.J.; Hill, D.G. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front. Endocrinol. 2024, 15, 1456629. [Google Scholar] [CrossRef] [PubMed]
- Meulenbroeks, D.; Otten, E.; Smeets, S.; Groeneveld, L.; Jonkers, D.; Eussen, S.; Scheepers, H.; Gubbels, J. The Association of a Vegan Diet during Pregnancy with Maternal and Child Outcomes: A Systematic Review. Nutrients 2024, 16, 3329. [Google Scholar] [CrossRef]
- Kesary, Y.; Avital, K.; Hiersch, L. Maternal plant-based diet during gestation and pregnancy outcomes. Arch. Gynecol. Obs. 2020, 302, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Palma, O.; Jallah, J.K.; Mahakalkar, M.G.; Mendhe, D.M. The Effects of Vegan Diet on Fetus and Maternal Health: A Review. Cureus 2023, 15, e47971. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, G.; Barbero, A.H.; Borrás-Novell, C.; Casanova, M.A.; Aldecoa-Bilbao, V.; Andreu-Fernández, V.; Tutusaus, M.P.; Martínez, S.F.; Gómez Roig, M.D.; García-Algar, O. The Effects of Vegetarian and Vegan Diet during Pregnancy on the Health of Mothers and Offspring. Nutrients 2019, 11, 557. [Google Scholar] [CrossRef] [PubMed]












| Cases Fetoscopic Surgery | Gestational Age at Fetal Surgery (Weeks + Days) | Gestational Age at Delivery (Weeks + Days) | Time to Complete Healing (Days) | Aspect of Patch at Delivery | Maternal Diet | Figure |
|---|---|---|---|---|---|---|
| 1 | 25 + 0 | 33 + 6 | 13 | Remarkably advanced healing | Mostly plant-based | Figure 5 |
| 2 | 21 + 2 | 38 + 3 | 14 | Remarkably advanced healing | Mostly vegetarian | Figure 8 |
| 3 | 25 + 4 | 35 + 4 | 23 | Remarkably advanced healing | Mostly vegetarian diet, some poultry | Figure 9 |
| 4 | 25 + 4 | 33 + 2 | not recollected | Marked overgrowth | Mostly vegetarian, rarely meat | Figure 10 |
| 5 | 23 + 0 | 31 + 6 | 24 | Marked overgrowth | Vegetarian | Figure 11 |
| 6 | 25 + 1 | 29 + 5 | 22 | Marked overgrowth | Vegetarian | - |
| 7 | 25 + 5 | 32 + 1 | 31 | Marked overgrowth | Vegetarian | - |
| 8 | 26 + 1 | 34 + 5 | 27 | Marked centripetal overgrowth | Vegetarian | - |
| Postnatal surgery | Level | Aspect of lesion at delivery | Maternal diet | Figure | ||
| No fetal surgery. Standard neonatal closure | – | 32 + 5 | Anatomical level L2 Functional level L5 | Unusually well preserved and clean neural tissue | Strictly vegan diet with vitamin supplements. | Figure 6 |
| No fetal surgery. Standard neonatal closure. | – | 35 + 2 | Anatomical level L3 Functional level L5 | Well preserved but slightly stool-soiled neural tissue | Vegetarian | Figure 7 |
Group I—Patch healing in days in 31 newborns/no maternal dietary restrictions |
| 26, 28, 30, 31, 32, 33, 36, 36, 38, 39, 40, 41, 41, 42, 42, 42, 43, 45, 46, 46, 49, 49, 50, 50, 50, 52, 56, 56, 57, 63, 86 |
| Mean 44.35 ± 11.91 days (Range 26–86 days/Median 42 days) |
Group II—Patch healing in days in 7 newborns/mainly plant-based maternal diets |
| 13, 14, 22, 23, 24, 27, 31 |
Mean 22.00 ± 6.53 days (Range 13–31 days/Median 23 days) |
| (p < 0.001 in two-tailed Welch’s t-test) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohl, T. Maternal Dietary Choices Might Impact Intrauterine Healing Processes and Postnatal Phenotype and Function in Human Fetuses with Spina Bifida Aperta—Early Clinical Observations and Implications from a Retrospective Cohort Study. Biomedicines 2025, 13, 2791. https://doi.org/10.3390/biomedicines13112791
Kohl T. Maternal Dietary Choices Might Impact Intrauterine Healing Processes and Postnatal Phenotype and Function in Human Fetuses with Spina Bifida Aperta—Early Clinical Observations and Implications from a Retrospective Cohort Study. Biomedicines. 2025; 13(11):2791. https://doi.org/10.3390/biomedicines13112791
Chicago/Turabian StyleKohl, Thomas. 2025. "Maternal Dietary Choices Might Impact Intrauterine Healing Processes and Postnatal Phenotype and Function in Human Fetuses with Spina Bifida Aperta—Early Clinical Observations and Implications from a Retrospective Cohort Study" Biomedicines 13, no. 11: 2791. https://doi.org/10.3390/biomedicines13112791
APA StyleKohl, T. (2025). Maternal Dietary Choices Might Impact Intrauterine Healing Processes and Postnatal Phenotype and Function in Human Fetuses with Spina Bifida Aperta—Early Clinical Observations and Implications from a Retrospective Cohort Study. Biomedicines, 13(11), 2791. https://doi.org/10.3390/biomedicines13112791

