A Single-Center Clinical Experience with Fully Percutaneous, Minimally Invasive Fetoscopic Surgery for Spina Bifida Aperta
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Procedures
2.4.1. Maternal–Fetal Anesthesia and Intraoperative Monitoring
2.4.2. Fully Percutaneous Minimally Invasive Fetoscopic Approach
2.4.3. Perioperative and Delivery Management
2.4.4. Variables and Measurement
2.5. Statistical Methods
2.6. Ethical Consideration
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MOMS | The multicenter randomized controlled trial Management of Myelomeningocele Study |
| SBA | spina bifida aperta |
| PROM | premature rupture of membranes |
| STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
| DZFT | German Center for Fetal Surgery & Minimally Invasive Surgery |
| HELLP | hemolysis, elevated liver enzymes, low platelets |
| PE | preeclampsia |
| PPROM | preterm premature rupture of membranes |
| IFNTDRC | International Fetoscopic Neural Tube Defect Repair Consortium |
References
- Adzick, N.S. Fetal myelomeningocele: Natural history, pathophysiology, and in-utero intervention. In Seminars in Fetal and Neonatal Medicine; WB Saunders: Philadelphia, PA, USA, 2010; Volume 15, pp. 9–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adzick, N.S.; Thom, E.A.; Spong, C.Y.; Brock, J.W., 3rd; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; Sutton, L.N.; et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 2011, 364, 993–1004. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kohl, T.; Hering, R.; Heep, A.; Schaller, C.; Meyer, B.; Greive, C.; Bizjak, G.; Buller, T.; Van de Vondel, P.; Gogarten, W.; et al. Percutaneous fetoscopic patch coverage of spina bifida aperta in the human—Early clinical experience and potential. Fetal Diagn. Ther. 2006, 21, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Diehl, D.; Belke, F.; Kohl, T.; Axt-Fliedner, R.; Degenhardt, J.; Khaleeva, A.; Oehmke, F.; Faas, D.; Ehrhardt, H.; Kolodziej, M.; et al. Fully percutaneous fetoscopic repair of myelomeningocele: 30-month follow-up data. Ultrasound Obstet. Gynecol. 2021, 57, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Sanz Cortes, M.; Torres, P.; Yepez, M.; Guimaraes, C.; Zarutskie, A.; Shetty, A.; Hsiao, A.; Pyarali, M.; Davila, I.; Espinoza, J.; et al. Comparison of brain microstructure after prenatal spina bifida repair by either laparotomy-assisted fetoscopic or open approach. Ultrasound Obstet. Gynecol. 2020, 55, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Kosinski, P.; Samaha, R.B.B.; Lipa, M.; Wielgos, M.; Kohl, T. Contemporary management of prenatally diagnosed spina bifida aperta—An update. Ginekol. Pol. 2018, 89, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Pedreira, D.A.; Reece, E.A.; Chmait, R.H.; Kontopoulos, E.V.; Quintero, R.A. Fetoscopic repair of spina bifida: Safer and better? Ultrasound Obstet. Gynecol. 2016, 48, 141–147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kabagambe, S.K.; Jensen, G.W.; Chen, Y.J.; Vanover, M.A.; Farmer, D.L. Fetal Surgery for Myelomeningocele: A Systematic Review and Meta-Analysis of Outcomes in Fetoscopic versus Open Repair. Fetal Diagn. Ther. 2018, 43, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T. Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part I: Surgical technique and perioperative outcome. Ultrasound Obstet. Gynecol. 2014, 44, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Degenhardt, J.; Schürg, R.; Winarno, A.; Oehmke, F.; Khaleeva, A.; Kawecki, A.; Enzensberger, C.; Tinneberg, H.R.; Faas, D.; Ehrhardt, H.; et al. Percutaneous minimal-access fetoscopic surgery for spina bifida aperta. Part II: Maternal management and outcome. Ultrasound Obstet. Gynecol. 2014, 44, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T. Minimally invasive fetoscopic surgery for spina bifida aperta: Learning and doing. Ultrasound Obstet. Gynecol. 2020, 56, 633. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.A.; Whitehead, W.E.; Shamshirsaz, A.A.; Bateni, Z.H.; Olutoye, O.O.; Olutoye, O.A.; Mann, D.G.; Espinoza, J.; Williams, E.; Lee, T.C.; et al. Fetoscopic Open Neural Tube Defect Repair: Development and Refinement of a Two-Port, Carbon Dioxide Insufflation Technique. Obstet. Gynecol. 2017, 129, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Chmait, R.H.; Monson, M.A.; Pham, H.Q.; Chu, J.K.; Van Speybroeck, A.; Chon, A.H.; Kontopoulos, E.V.; Quintero, R.A. Percutaneous/mini-laparotomy fetoscopic repair of open spina bifida: A novel surgical technique. Am. J. Obstet. Gynecol. 2022, 227, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Zamłyński, J.; Olejek, A.; Bohosiewicz, J.; Bodzek, P.; Mańka, G.; Grettka, K.; Paliga, M.; Gajewska, A. Perinatal results of intrauterine open fetal surgery of fetuses diagnosed with myelomeningocoele—The clinical report of ten cases. Ginekol. Pol. 2007, 78, 647–651. [Google Scholar] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Strobe Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Schneck, E.; Koch, C.; Arens, C.; Schürg, R.; Zajonz, T.; Khaleeva, A.; Kohl, T.; Weigand, M.A.; Sander, M. Geburtshilfe: Anästhesie bei fetaler Chirurgie. Anasthesiol Intensiv. Notfallmed Schmerzther. 2017, 52, 204–213. (In Germany) [Google Scholar] [CrossRef] [PubMed]
- Arens, C.; Koch, C.; Veit, M.; Greenberg, R.S.; Lichtenstern, C.; Weigand, M.A.; Khaleeva, A.; Schuerg, R.; Kohl, T. Anesthetic Management for Percutaneous Minimally Invasive Fetoscopic Surgery of Spina Bifida Aperta: A Retrospective, Descriptive Report of Clinical Experience. Anesth. Analg. 2017, 125, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Hering, R.; Hoeft, A.; Putensen, C.; Tchatcheva, K.; Stressig, R.; Gembruch, U.; Kohl, T. Maternal haemodynamics and lung water content during percutaneous fetoscopic interventions under general anaesthesia. Br. J. Anaesth. 2009, 102, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T. Lifesaving Treatments for the Tiniest Patients-A Narrative Description of Old and New Minimally Invasive Approaches in the Arena of Fetal Surgery. Children 2022, 10, 67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lapa Pedreira, D.A.; Acacio, G.L.; Gonçalves, R.T.; Sá, R.A.M.; Brandt, R.A.; Chmait, R.H.; Kontopoulos, E.V.; Quintero, R.A. Percutaneous fetoscopic closure of large open spina bifida using a bilaminar skin substitute. Ultrasound Obstet. Gynecol. 2018, 52, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Pedreira, D.A.; Zanon, N.; Nishikuni, K.; Moreira de Sá, R.A.; Acacio, G.L.; Chmait, R.H.; Kontopoulos, E.V.; Quintero, R.A. Endoscopic surgery for the antenatal treatment of myelomeningocele: The CECAM trial. Am. J. Obstet. Gynecol. 2016, 214, 111.e1–111.e11. [Google Scholar] [CrossRef] [PubMed]
- Lapa, D.A. Endoscopic fetal surgery for neural tube defects. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 58, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Cortes, M.S.; Chmait, R.H.; Lapa, D.A.; Belfort, M.A.; Carreras, E.; Miller, J.L.; Samaha, R.B.B.; Gonzalez, G.S.; Gielchinsky, Y.; Yamamoto, M.; et al. Experience of 300 cases of prenatal fetoscopic open spina bifida repair: Report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am. J. Obstet. Gynecol. 2021, 225, 678.e1–678.e11. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T.; Tchatcheva, K.; Weinbach, J.; Hering, R.; Kozlowski, P.; Stressig, R.; Gembruch, U. Partial amniotic carbon dioxide insufflation (PACI) during minimally invasive fetoscopic surgery: Early clinical experience in humans. Surg. Endosc. 2010, 24, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T.; Tchatcheva, K.; Merz, W.; Wartenberg, H.C.; Heep, A.; Müller, A.; Franz, A.; Stressig, R.; Willinek, W.; Gembruch, U. Percutaneous fetoscopic patch closure of human spina bifida aperta: Advances in fetal surgical techniques may obviate the need for early postnatal neurosurgical intervention. Surg. Endosc. 2009, 23, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Amberg, B.J.; Hodges, R.J.; Rodgers, K.A.; Crossley, K.J.; Hooper, S.B.; DeKoninck, P.L.J. Why Do the Fetal Membranes Rupture Early after Fetoscopy? A Review. Fetal Diagn. Ther. 2021, 48, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Keil, C.; Köhler, S.; Sass, B.; Schulze, M.; Kalmus, G.; Belfort, M.; Schmitt, N.; Diehl, D.; King, A.; Groß, S.; et al. Implementation and Assessment of a Laparotomy-Assisted Three-Port Fetoscopic Spina Bifida Repair Program. J. Clin. Med. 2023, 12, 5151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Houtrow, A.J.; Thom, E.A.; Fletcher, J.M.; Burrows, P.K.; Adzick, N.S.; Thomas, N.H.; Brock, J.W., 3rd; Cooper, T.; Lee, H.; Bilaniuk, L.; et al. Prenatal Repair of Myelomeningocele and School-age Functional Outcomes. Pediatrics 2020, 145, e20191544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanz Cortes, M.; Davila, I.; Torres, P.; Yepez, M.; Lee, W.; Guimaraes, C.V.; Sangi-Haghpeykar, H.; Whitehead, W.E.; Castillo, J.; Nassr, A.A.; et al. Does fetoscopic or open repair for spina bifida affect fetal and postnatal growth? Ultrasound Obstet. Gynecol. 2019, 53, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Joyeux, L.; De Bie, F.; Danzer, E.; Russo, F.M.; Javaux, A.; Peralta, C.F.A.; De Salles, A.A.F.; Pastuszka, A.; Olejek, A.; Van Mieghem, T.; et al. Learning curves of open and endoscopic fetal spina bifida closure: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2020, 55, 730–739. [Google Scholar] [CrossRef] [PubMed]


| Inclusion Criteria | Exclusion Criteria |
|---|---|
|
|
| 4 Patients | 16 Patients | 14 Patients |
|---|---|---|
| Use of patch to cover the skin, no myofascial flap [3] | Skin-to-skin closure technique (with the addition of patches in cases where the lesion was too big) No myofascial flap | Myofascial flap Skin-to-skin closure technique (with the addition of patches in cases where the lesion was too big) [20] |
| Characteristic | This Study (N = 38) | MOMS (N = 78) | IFNTDRC (N = 300) | p-Value This Study vs. MOMS | p-Value This Study vs. IFNTDRC |
|---|---|---|---|---|---|
| Maternal characteristics | |||||
| Maternal age (y) | 33 (18–41) | 29.3 ± 5.3 | 30.4 (16–45) | 0.980 | 0.990 |
| [31.8 ± 6.4] | |||||
| Nulliparity | 12 (31.6) | 33 (42.3) | 131 (43.7) | 0.363 | 0.213 |
| Racial origin: | |||||
| White | 38 (100) | 73 (93.6) | 109 (36.3) | - | - |
| Asian | - | - | 4 (1.3) | ||
| Black | - | 1 (1.3) | 5 (1.7) | ||
| Mixed | - | - | 103 (34.3) | ||
| Body mass index (kg/m2) | 27.4 (18–42.4) | 26.2 ± 3.7 | 26.1 (18–42) | 0.980 | 0.990 |
| [26.7 ± 2.9] | |||||
| Previous uterine surgery | 10 (26) | 11 (14) | - | 0.178 | - |
| Presurgical findings | - | 0.070 | |||
| Type of lesion: myelschisis | 6 (15.8) | - | 94 (31.3) | 0.154 | 0.025 * |
| Anatomic level of lesion: | |||||
| Thoracic | - | 4 (5.1) | 15 (5) | ||
| L1-L2 | 12 (31.6) | 21 (26.9) | 52 (17.3) | ||
| L3-L4 | 20 (52.6) | 30 (38.5) | 133 (44.3) | ||
| L5-S1 | 6 (15.8) | 23 (29.5) | 100 (33.3) | ||
| Mean ventricular width of the largest ventricle (mm) | 12 (6–17) | - | 12 (5.6–31.5) | - | - |
| Anterior placenta | 10 (26) | 36 (46.2) | 138 (46) | 0.167 | 0.033 * |
| Cervical length before surgery (mm) | 35 ± 6 | 38.9 ± 7.3 | 37 ± 6 | 0.010 * | 0.020 * |
| Surgical details | |||||
| Gestational age at surgery in weeks | 26 (24.4–28.1) | 23.6 ± 1.4 | 25.9 (22.7–31.6) | 0.780 | 1.000 |
| [25.8 ± 0.1] | 0.020 * | ||||
| Duration of surgery- Skin-to-skin (min) | 236 (80–420) | - | 204 (72–458) | ||
| [221.0 ± 68.1] |
| Characteristic | This Study (N = 38) | MOMS (N = 78) | IFNTDRC (N = 300) | p-Value, This Study vs. MOMS | p-Value, This Study vs. IFNTDRC |
|---|---|---|---|---|---|
| Maternal outcome | |||||
| Placental abruption | 3 (7.9) | 5 (6.4) | 25 (8.9) | 0.999 | 0.999 |
| Chorioamniotic membrane separation | 15 (39.5) | 20 (25.6) | 72 (37.9) | 0.190 | 0.064 |
| Pulmonary edema | 1 (2.6) | 5 (6.4) | 15 (5) | 0.678 | 0.800 |
| PPROM (weeks) | 32 (84) | 36 (46.2) | 153 (54.6) | 0.210 | 0.350 |
| Blood transfusion | 1 (2.6) | 7 (9) | 9 (3) | 0.364 | 0.990 |
| Fetal or neonatal outcome | |||||
| Gestational age at birth (weeks) | 32 (26.1–37.5) | 34.1 ± 3.1 | 34.3 ± 3.6 | 0.990 | 0.040 * |
| [32.0 ± 2.6] | |||||
| Delivery at ≥37 wk | 3 (7.9) | 16 (20.5) | 79 (28.2) | 0.145 | 0.022 * |
| Delivery at ≤ 30 wk | 10 (26.3) | 10 (12.8) | 38 (13.6) | 0.123 | 0.043 * |
| Cesarean delivery | 37 (97) | 78 (100) | 192:280 (68.6) | 0.990 | <0.010 * |
| Birthweight (grams) | 1870 (1070–3350) | 2383 ± 688 | 2270 (810–4435) | <0.001 * | <0.001 * |
| [1907.90 ± 120.0] | – | <0.010 * | |||
| Length of stay in NICU (days) | 11 (0–75) | – | 17 (0–253) | 0.401 | 0.284 |
| [25.5 ± 27.6] | 0.678 | 0.999 | |||
| Perinatal death | 3 (7.9) | 2 (3) | 9 (3.2) | ||
| Respiratory distress syndrome | 9/34 (26.4) | 16/77 (20.8) | 40/159 (25.2) | 0.668 | 0.680 |
| Retinopathy | 1/34 (2.94) | 0 (0.0) | 16/250 (6.4) | 0.999 | 0.602 |
| Necrotizing enterocolitis | 0 (0.0) | 1/77 (1.3) | 8/273 (2.9) | 0.999 | 0.999 |
| Periventricular leukomalacia | 1/31 (3.2) | 4/77 (5.2) | 8/258 (3.1) | 0.464 | 0.954 |
| Motor function compared with the upper anatomic level of the lesion | 0.868 | 0.373 | |||
| ≥2 levels better | 11/27 (40.7) | 20/62 (32.3) | 98/257 (38.1) | 0.393 | 0.890 |
| 1 level better | 4/27 (14.8) | 7/62 (11.3) | 63/257 (24.5) | 0.999 | 0.979 |
| Same | 6/27 (22.2) | 14/62 (22.6) | 49/257 (19.1) | 0.352 | 0.875 |
| 1 level worse | 4/27 (14.8) | 13/62 (21.0) | 35/257 (13.6) | ||
| ≥2 levels worse | 2/27 (7.4) | 8/62 (12.9) | 12/257 (4.7) | 0.990 | 0.990 |
| Outcomes at 12 months | |||||
| Hydrocephalus treated with ventriculoperitoneal shunt | 13/31 (41.9) | 31/76 (40.8) | 88/201 (43.8) | ||
| placement | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brawura Biskupski Samaha, R.; Wielgoś, M.; Kohl, T.; Lipa, M.; Goławski, K.; Kosińska-Kaczyńska, K.; Luterek, K.; Kosiński, P.; Sienczyk, J. A Single-Center Clinical Experience with Fully Percutaneous, Minimally Invasive Fetoscopic Surgery for Spina Bifida Aperta. Biomedicines 2025, 13, 2625. https://doi.org/10.3390/biomedicines13112625
Brawura Biskupski Samaha R, Wielgoś M, Kohl T, Lipa M, Goławski K, Kosińska-Kaczyńska K, Luterek K, Kosiński P, Sienczyk J. A Single-Center Clinical Experience with Fully Percutaneous, Minimally Invasive Fetoscopic Surgery for Spina Bifida Aperta. Biomedicines. 2025; 13(11):2625. https://doi.org/10.3390/biomedicines13112625
Chicago/Turabian StyleBrawura Biskupski Samaha, Robert, Mirosław Wielgoś, Thomas Kohl, Michal Lipa, Ksawery Goławski, Katarzyna Kosińska-Kaczyńska, Katarzyna Luterek, Przemysław Kosiński, and Julia Sienczyk. 2025. "A Single-Center Clinical Experience with Fully Percutaneous, Minimally Invasive Fetoscopic Surgery for Spina Bifida Aperta" Biomedicines 13, no. 11: 2625. https://doi.org/10.3390/biomedicines13112625
APA StyleBrawura Biskupski Samaha, R., Wielgoś, M., Kohl, T., Lipa, M., Goławski, K., Kosińska-Kaczyńska, K., Luterek, K., Kosiński, P., & Sienczyk, J. (2025). A Single-Center Clinical Experience with Fully Percutaneous, Minimally Invasive Fetoscopic Surgery for Spina Bifida Aperta. Biomedicines, 13(11), 2625. https://doi.org/10.3390/biomedicines13112625

