Fibroblasts: A Molecular and Pathophysiological Perspective
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lendahl, U.; Muhl, L.; Betsholtz, C. Identification, Discrimination and Heterogeneity of Fibroblasts. Nat. Commun. 2022, 13, 3409. [Google Scholar] [CrossRef]
- Younesi, F.S.; Miller, A.E.; Barker, T.H.; Rossi, F.M.V.; Hinz, B. Fibroblast and Myofibroblast Activation in Normal Tissue Repair and Fibrosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 617–638. [Google Scholar] [CrossRef]
- Mutsaers, H.A.M.; Merrild, C.; Nørregaard, R.; Plana-Ripoll, O. The Impact of Fibrotic Diseases on Global Mortality from 1990 to 2019. J. Transl. Med. 2023, 21, 818. [Google Scholar] [CrossRef]
- Buechler, M.B.; Pradhan, R.N.; Krishnamurty, A.T.; Cox, C.; Calviello, A.K.; Wang, A.W.; Yang, Y.A.; Tam, L.; Caothien, R.; Roose-Girma, M.; et al. Cross-Tissue Organization of the Fibroblast Lineage. Nature 2021, 593, 575–579. [Google Scholar] [CrossRef]
- LeBleu, V.S.; Neilson, E.G. Origin and Functional Heterogeneity of Fibroblasts. FASEB J. 2020, 34, 3519–3536. [Google Scholar] [CrossRef]
- Steele, L.; Olabi, B.; Roberts, K.; Mazin, P.V.; Koplev, S.; Tudor, C.; Rumney, B.; Admane, C.; Jiang, T.; Correa-Gallegos, D.; et al. A Single-Cell and Spatial Genomics Atlas of Human Skin Fibroblasts Reveals Shared Disease-Related Fibroblast Subtypes across Tissues. Nat. Immunol. 2025, 26, 1807–1820. [Google Scholar] [CrossRef]
- Chu, C.Q.; Quan, T. Fibroblast Yap/Taz Signaling in Extracellular Matrix Homeostasis and Tissue Fibrosis. J. Clin. Med. 2024, 13, 3358. [Google Scholar] [CrossRef]
- Zhao, T.; Su, Y. Mechanisms and Therapeutic Potential of Myofibroblast Transformation in Pulmonary Fibrosis. J. Respir. Biol. Transl. Med. 2025, 2, 10001. [Google Scholar] [CrossRef]
- Paw, M.; Kusiak, A.A.; Nit, K.; Litewka, J.J.; Piejko, M.; Wnuk, D.; Sarna, M.; Fic, K.; Stopa, K.B.; Hammad, R.; et al. Hypoxia Enhances Anti-Fibrotic Properties of Extracellular Vesicles Derived from HiPSCs via the MiR302b-3p/TGFβ/SMAD2 Axis. BMC Med. 2023, 21, 412. [Google Scholar] [CrossRef]
- Wang, S.; Liang, Y.; Dai, C. Metabolic Regulation of Fibroblast Activation and Proliferation during Organ Fibrosis. Kidney Dis. 2022, 8, 115–125. [Google Scholar] [CrossRef]
- Zou, A.E.; Kongthong, S.; Mueller, A.A.; Brenner, M.B. Fibroblasts in Immune Responses, Inflammatory Diseases and Therapeutic Implications. Nat. Rev. Rheumatol. 2025, 21, 336–354. [Google Scholar] [CrossRef]
- Woodley, J.P.; Lambert, D.W.; Asencio, I.O. Understanding Fibroblast Behavior in 3D Biomaterials. Tissue Eng. Part B Rev. 2022, 28, 569–578. [Google Scholar] [CrossRef]
- Tiskratok, W.; Chuinsiri, N.; Limraksasin, P.; Kyawsoewin, M.; Jitprasertwong, P. Extracellular Matrix Stiffness: Mechanotransduction and Mechanobiological Response-Driven Strategies for Biomedical Applications Targeting Fibroblast Inflammation. Polymers 2025, 17, 822. [Google Scholar] [CrossRef]
- Pavlenko, A.; Lasota, S.; Wnuk, D.; Paw, M.; Czyż, J.; Michalik, M.; Madeja, Z. Bronchial Fibroblasts from Asthmatic Patients Display Impaired Responsiveness to Direct Current Electric Fields (DcEFs). Biomedicines 2023, 11, 2138. [Google Scholar] [CrossRef]
- Kulkarni, S.; Tebar, F.; Rentero, C.; Zhao, M.; Sáez, P. Competing Signaling Pathways Controls Electrotaxis. iScience 2025, 28, 112329. [Google Scholar] [CrossRef]
- Dirand, Z.; Tissot, M.; Chatelain, B.; Viennet, C.; Rolin, G. Is Spheroid a Relevant Model to Address Fibrogenesis in Keloid Research? Biomedicines 2023, 11, 2350. [Google Scholar] [CrossRef]
- Choi, Y.; Jang, H.-S.; Shim, J.; Yeo, E.; Kim, M.-H.; Noh, H.; Oh, S.; Park, J.-H.; Lee, D.; Lee, J.H. 3D Keloid Spheroid Model: Development and Application for Personalized Drug Response Prediction. Commun. Biol. 2024, 7, 1470. [Google Scholar] [CrossRef]
- Seifritz, T.; Brunner, M.; Camarillo Retamosa, E.; Maciukiewicz, M.; Krošel, M.; Moser, L.; Züllig, T.; Tomšič, M.; Distler, O.; Ospelt, C.; et al. BRD3 Regulates the Inflammatory and Stress Response in Rheumatoid Arthritis Synovial Fibroblasts. Biomedicines 2023, 11, 3188. [Google Scholar] [CrossRef]
- Dovrolis, N.; Valatas, V.; Drygiannakis, I.; Filidou, E.; Spathakis, M.; Kandilogiannakis, L.; Tarapatzi, G.; Arvanitidis, K.; Bamias, G.; Vradelis, S.; et al. Landscape of Interactions between Stromal and Myeloid Cells in Ileal Crohn’s Disease; Indications of an Important Role for Fibroblast-Derived CCL-2. Biomedicines 2024, 12, 1674. [Google Scholar] [CrossRef]
- Iliopoulou, L.; Tzaferis, C.; Prados, A.; Roumelioti, F.; Koliaraki, V.; Kollias, G. Different Fibroblast Subtypes Propel Spatially Defined Ileal Inflammation through TNFR1 Signalling in Murine Ileitis. Nat. Commun. 2025, 16, 3023. [Google Scholar] [CrossRef]
- Kato, N.; Nakai, K.; Tanaka, H.; Fukuzawa, K.; Hayashi, M.; Aoki, M.; Kawato, T. The Role of Sodium Fluoride Mouthwash in Regulating FGF-2 and TGF-β Expression in Human Gingival Fibroblasts. Biomedicines 2024, 12, 1727. [Google Scholar] [CrossRef] [PubMed]
- Nájera-Martínez, M.; Lara-Vega, I.; Avilez-Alvarado, J.; Pagadala, N.S.; Dzul-Caamal, R.; Domínguez-López, M.L.; Tuszynski, J.; Vega-López, A. The Generation of ROS by Exposure to Trihalomethanes Promotes the IκBα/NF-ΚB/P65 Complex Dissociation in Human Lung Fibroblast. Biomedicines 2024, 12, 2399. [Google Scholar] [CrossRef] [PubMed]
- Trejo Vazquez, J.A.; Towle, R.; Farnsworth, D.A.; Sarafan, M.; Lockwood, W.W.; Garnis, C. Extracellular Vesicles from Lung Adenocarcinoma Cells Induce Activation of Different Cancer-Associated Fibroblast Subtypes. Biomedicines 2024, 12, 2523. [Google Scholar] [CrossRef] [PubMed]
- Somnay, K.; Wadgaonkar, P.; Sridhar, N.; Roshni, P.; Rao, N.; Wadgaonkar, R. Liver Fibrosis Leading to Cirrhosis: Basic Mechanisms and Clinical Perspectives. Biomedicines 2024, 12, 2229. [Google Scholar] [CrossRef]
- Di, X.; Li, Y.; Wei, J.; Li, T.; Liao, B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. Adv. Sci. 2025, 12, e2410416. [Google Scholar] [CrossRef]
- Rieder, F.; Nagy, L.E.; Maher, T.M.; Distler, J.H.W.; Kramann, R.; Hinz, B.; Prunotto, M. Fibrosis: Cross-Organ Biology and Pathways to Development of Innovative Drugs. Nat. Rev. Drug Discov. 2025, 24, 543–569. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wnuk, D.; Paw, M. Fibroblasts: A Molecular and Pathophysiological Perspective. Biomedicines 2025, 13, 2754. https://doi.org/10.3390/biomedicines13112754
Wnuk D, Paw M. Fibroblasts: A Molecular and Pathophysiological Perspective. Biomedicines. 2025; 13(11):2754. https://doi.org/10.3390/biomedicines13112754
Chicago/Turabian StyleWnuk, Dawid, and Milena Paw. 2025. "Fibroblasts: A Molecular and Pathophysiological Perspective" Biomedicines 13, no. 11: 2754. https://doi.org/10.3390/biomedicines13112754
APA StyleWnuk, D., & Paw, M. (2025). Fibroblasts: A Molecular and Pathophysiological Perspective. Biomedicines, 13(11), 2754. https://doi.org/10.3390/biomedicines13112754
