Inflammatory Bowel Disease: Understanding Therapeutic Effects of Distinct Molecular Inhibitors as the Key to Current and Future Advanced Therapeutic Strategies
Abstract
1. Introduction
2. Tumor Necrosis Factor (TNF)-α Antagonists
3. Interleukin-Inhibitors
4. Adhesion and Trafficking Inhibitors
4.1. Anti-Integrin Agents
4.2. S1PR Modulators
5. Janus Kinase Inhibitors
6. The Role of Microbiome: Probiotics and Postbiotics
7. Future Perspectives
7.1. Advanced Combination Therapy
7.2. Emerging Biomarkers for the Selection of Personalized Therapies: Microbiome Signatures, Proteomic and Organoids
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abraham, C.; Abreu, M.T.; Turner, J.R. Pattern Recognition Receptor Signaling and Cytokine Networks in Microbial Defenses and Regulation of Intestinal Barriers: Implications for Inflammatory Bowel Disease. Gastroenterology 2022, 162, 1602–1616.e6. [Google Scholar] [CrossRef] [PubMed]
- Bretto, E.; Urpì-Ferreruela, M.; Casanova, G.R.; González-Suárez, B. The Role of Gut Microbiota in Gastrointestinal Immune Homeostasis and Inflammation: Implications for Inflammatory Bowel Disease. Biomedicines 2025, 13, 1807. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Chang, L.; Kwon, H.-K.; Im, S.-H. Beyond the Gut: Decoding the Gut-Immune-Brain Axis in Health and Disease. Cell. Mol. Immunol. 2025, 22, 1287–1312. [Google Scholar] [CrossRef]
- Yashima, K.; Kurumi, H.; Yamaguchi, N.; Isomoto, H. Progressing Advanced Therapies for Inflammatory Bowel Disease: Current Status Including Dual Biologic Therapy and Discontinuation of Biologics. Expert Rev. Gastroenterol. Hepatol. 2025, 19, 291–310. [Google Scholar] [CrossRef]
- Mao, R.; Chen, M. Precision Medicine in IBD: Genes, Drugs, Bugs and Omics. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 81–82. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; et al. Infliximab for Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2005, 353, 2462–2476. [Google Scholar] [CrossRef]
- Reinisch, W.; Sandborn, W.J.; Hommes, D.W.; D’Haens, G.; Hanauer, S.; Schreiber, S.; Panaccione, R.; Fedorak, R.N.; Tighe, M.B.; Huang, B.; et al. Adalimumab for Induction of Clinical Remission in Moderately to Severely Active Ulcerative Colitis: Results of a Randomised Controlled Trial. Gut 2011, 60, 780–787. [Google Scholar] [CrossRef]
- Sandborn, W.J.; van Assche, G.; Reinisch, W.; Colombel, J.-F.; D’Haens, G.; Wolf, D.C.; Kron, M.; Tighe, M.B.; Lazar, A.; Thakkar, R.B. Adalimumab Induces and Maintains Clinical Remission in Patients with Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2012, 142, e1–e3. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Marano, C.; Zhang, H.; Strauss, R.; Johanns, J.; Adedokun, O.J.; Guzzo, C.; Colombel, J.-F.; Reinisch, W.; et al. Subcutaneous Golimumab Induces Clinical Response and Remission in Patients with Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2014, 146, 85–95; quiz e14–e15. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Feagan, B.G.; Marano, C.; Zhang, H.; Strauss, R.; Johanns, J.; Adedokun, O.J.; Guzzo, C.; Colombel, J.-F.; Reinisch, W.; et al. Subcutaneous Golimumab Maintains Clinical Response in Patients with Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2014, 146, 96–109.e1. [Google Scholar] [CrossRef]
- Sands, B.E.; Sandborn, W.J.; Panaccione, R.; O’Brien, C.D.; Zhang, H.; Johanns, J.; Adedokun, O.J.; Li, K.; Peyrin-Biroulet, L.; Van Assche, G.; et al. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2019, 381, 1201–1214. [Google Scholar] [CrossRef]
- Pbo, I. Risankizumab Induction Therapy in Patients With Moderately to Severely Active Ulcerative Colitis: Efficacy and Safety in the Randomized Phase 3 INSPIRE Study. Gastroenterol. Hepatol. 2023, 19, 9–10. [Google Scholar]
- Panaccione, R.; Louis, E.; Colombel, J.-F.; D’Haens, G.; Peyrin-Biroulet, L.; Dubinsky, M.; Takeuchi, K.; Rubin, D.T.; Kalabic, J.; Chien, K.B.; et al. Risankizumab Efficacy and Safety Based on Prior Inadequate Response or Intolerance to Advanced Therapy: Post Hoc Analysis of the INSPIRE and COMMAND Phase 3 Studies. J. Crohn’s Colitis 2025, 19, jjaf005. [Google Scholar] [CrossRef]
- D’Haens, G.; Dubinsky, M.; Kobayashi, T.; Irving, P.M.; Howaldt, S.; Pokrotnieks, J.; Krueger, K.; Laskowski, J.; Li, X.; Lissoos, T.; et al. Mirikizumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2023, 388, 2444–2455. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.T.; Allegretti, J.R.; Panés, J.; Shipitofsky, N.; Yarandi, S.S.; Huang, K.-H.G.; Germinaro, M.; Wilson, R.; Zhang, H.; Johanns, J.; et al. Guselkumab in Patients with Moderately to Severely Active Ulcerative Colitis (QUASAR): Phase 3 Double-Blind, Randomised, Placebo-Controlled Induction and Maintenance Studies. Lancet 2025, 405, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.-F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.-J.; Danese, S.; et al. Vedolizumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Feagan, B.G.; D’Haens, G.; Wolf, D.C.; Jovanovic, I.; Hanauer, S.B.; Ghosh, S.; Petersen, A.; Hua, S.Y.; Lee, J.H.; et al. Ozanimod as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2021, 385, 1280–1291. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Vermeire, S.; Peyrin-Biroulet, L.; Dubinsky, M.C.; Panes, J.; Yarur, A.; Ritter, T.; Baert, F.; Schreiber, S.; Sloan, S.; et al. Etrasimod as Induction and Maintenance Therapy for Ulcerative Colitis (ELEVATE): Two Randomised, Double-Blind, Placebo-Controlled, Phase 3 Studies. Lancet 2023, 401, 1159–1171. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Su, C.; Sands, B.E.; D’Haens, G.R.; Vermeire, S.; Schreiber, S.; Danese, S.; Feagan, B.G.; Reinisch, W.; Niezychowski, W.; et al. Tofacitinib as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2017, 376, 1723–1736. [Google Scholar] [CrossRef]
- Danese, S.; Vermeire, S.; Zhou, W.; Pangan, A.L.; Siffledeen, J.; Greenbloom, S.; Hébuterne, X.; D’Haens, G.; Nakase, H.; Panés, J.; et al. Upadacitinib as Induction and Maintenance Therapy for Moderately to Severely Active Ulcerative Colitis: Results from Three Phase 3, Multicentre, Double-Blind, Randomised Trials. Lancet 2022, 399, 2113–2128. [Google Scholar] [CrossRef]
- Feagan, B.G.; Danese, S.; Loftus, E.V.; Vermeire, S.; Schreiber, S.; Ritter, T.; Fogel, R.; Mehta, R.; Nijhawan, S.; Kempiński, R.; et al. Filgotinib as Induction and Maintenance Therapy for Ulcerative Colitis (SELECTION): A Phase 2b/3 Double-Blind, Randomised, Placebo-Controlled Trial. Lancet 2021, 397, 2372–2384. [Google Scholar] [CrossRef]
- Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; et al. Maintenance Infliximab for Crohn’s Disease: The ACCENT I Randomised Trial. Lancet 2002, 359, 1541–1549. [Google Scholar] [CrossRef]
- Colombel, J.F.; Sandborn, W.J.; Reinisch, W.; Mantzaris, G.J.; Kornbluth, A.; Rachmilewitz, D.; Lichtiger, S.; D’Haens, G.; Diamond, R.H.; Broussard, D.L.; et al. Infliximab, Azathioprine, or Combination Therapy for Crohn’s Disease. N. Engl. J. Med. 2010, 362, 1383–1395. [Google Scholar] [CrossRef] [PubMed]
- Hanauer, S.B.; Sandborn, W.J.; Rutgeerts, P.; Fedorak, R.N.; Lukas, M.; MacIntosh, D.; Panaccione, R.; Wolf, D.; Pollack, P. Human Anti-Tumor Necrosis Factor Monoclonal Antibody (Adalimumab) in Crohn’s Disease: The CLASSIC-I Trial. Gastroenterology 2006, 130, 323–333; quiz 591. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Hanauer, S.B.; Rutgeerts, P.; Fedorak, R.N.; Lukas, M.; MacIntosh, D.G.; Panaccione, R.; Wolf, D.; Kent, J.D.; Bittle, B.; et al. Adalimumab for Maintenance Treatment of Crohn’s Disease: Results of the CLASSIC II Trial. Gut 2007, 56, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Rutgeerts, P.; Enns, R.; Hanauer, S.B.; Colombel, J.-F.; Panaccione, R.; D’Haens, G.; Li, J.; Rosenfeld, M.R.; Kent, J.D.; et al. Adalimumab Induction Therapy for Crohn Disease Previously Treated with Infliximab: A Randomized Trial. Ann. Intern. Med. 2007, 146, 829–838. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Van Assche, G.; Sandborn, W.J.; Wolf, D.C.; Geboes, K.; Colombel, J.-F.; Reinisch, W.; EXTEND Investigators; Kumar, A.; Lazar, A.; et al. Adalimumab Induces and Maintains Mucosal Healing in Patients with Crohn’s Disease: Data from the EXTEND Trial. Gastroenterology 2012, 142, 1102–1111.e2. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Stoinov, S.; Honiball, P.J.; Rutgeerts, P.; Mason, D.; Bloomfield, R.; Schreiber, S.; PRECISE 1 Study Investigators. Certolizumab Pegol for the Treatment of Crohn’s Disease. N. Engl. J. Med. 2007, 357, 228–238. [Google Scholar] [CrossRef]
- Schreiber, S.; Khaliq-Kareemi, M.; Lawrance, I.C.; Thomsen, O.Ø.; Hanauer, S.B.; McColm, J.; Bloomfield, R.; Sandborn, W.J.; PRECISE 2 Study Investigators. Maintenance Therapy with Certolizumab Pegol for Crohn’s Disease. N. Engl. J. Med. 2007, 357, 239–250. [Google Scholar] [CrossRef]
- Feagan, B.G.; Sandborn, W.J.; Gasink, C.; Jacobstein, D.; Lang, Y.; Friedman, J.R.; Blank, M.A.; Johanns, J.; Gao, L.-L.; Miao, Y.; et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2016, 375, 1946–1960. [Google Scholar] [CrossRef]
- D’Haens, G.; Panaccione, R.; Baert, F.; Bossuyt, P.; Colombel, J.-F.; Danese, S.; Dubinsky, M.; Feagan, B.G.; Hisamatsu, T.; Lim, A.; et al. Risankizumab as Induction Therapy for Crohn’s Disease: Results from the Phase 3 ADVANCE and MOTIVATE Induction Trials. Lancet 2022, 399, 2015–2030. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Panaccione, R.; Baert, F.; Bossuyt, P.; Colombel, J.-F.; Danese, S.; Dubinsky, M.; Feagan, B.G.; Hisamatsu, T.; Lim, A.; et al. Risankizumab as Maintenance Therapy for Moderately to Severely Active Crohn’s Disease: Results from the Multicentre, Randomised, Double-Blind, Placebo-Controlled, Withdrawal Phase 3 FORTIFY Maintenance Trial. Lancet 2022, 399, 2031–2046. [Google Scholar] [CrossRef]
- Ferrante, M.; D’Haens, G.; Jairath, V.; Danese, S.; Chen, M.; Ghosh, S.; Hisamatsu, T.; Kierkus, J.; Siegmund, B.; Bragg, S.M.; et al. Efficacy and Safety of Mirikizumab in Patients with Moderately-to-Severely Active Crohn’s Disease: A Phase 3, Multicentre, Randomised, Double-Blind, Placebo-Controlled and Active-Controlled, Treat-through Study. Lancet 2024, 404, 2423–2436. [Google Scholar] [CrossRef]
- Hart, A.; Panaccione, R.; Steinwurz, F.; Danese, S.; Hisamatsu, T.; Cao, Q.; Ritter, T.; Seidler, U.; Olurinde, M.; Vetter, M.L.; et al. Efficacy and Safety of Guselkumab Subcutaneous Induction and Maintenance in Participants With Moderately to Severely Active Crohn’s Disease: Results From the Phase 3 GRAVITI Study. Gastroenterology 2025, 169, 308–325. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Hanauer, S.; Colombel, J.-F.; Sands, B.E.; Lukas, M.; Fedorak, R.N.; Lee, S.; Bressler, B.; et al. Vedolizumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2013, 369, 711–721. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Colombel, J.F.; Enns, R.; Feagan, B.G.; Hanauer, S.B.; Lawrance, I.C.; Panaccione, R.; Sanders, M.; Schreiber, S.; Targan, S.; et al. Natalizumab Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2005, 353, 1912–1925. [Google Scholar] [CrossRef]
- Loftus, E.V.; Panés, J.; Lacerda, A.P.; Peyrin-Biroulet, L.; D’Haens, G.; Panaccione, R.; Reinisch, W.; Louis, E.; Chen, M.; Nakase, H.; et al. Upadacitinib Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2023, 388, 1966–1980. [Google Scholar] [CrossRef]
- Pagnini, C.; Cominelli, F. Tumor Necrosis Factor’s Pathway in Crohn’s Disease: Potential for Intervention. Int. J. Mol. Sci. 2021, 22, 10273. [Google Scholar] [CrossRef]
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef]
- Zeng, Z.; Lin, H.; Jiang, M.; Yuan, J.; Li, X.; Jia, Y.; Yang, L.; Zhang, H. Anti-TNFα in Inflammatory Bowel Disease: From Originators to Biosimilars. Front. Pharmacol. 2024, 15, 1424606. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Blank, M.A.; Patel, K.; van Deventer, S.J. Long-Term Treatment of Rectovaginal Fistulas in Crohn’s Disease: Response to Infliximab in the ACCENT II Study. Clin. Gastroenterol. Hepatol. 2004, 2, 912–920. [Google Scholar] [CrossRef]
- Laharie, D.; Bourreille, A.; Branche, J.; Allez, M.; Bouhnik, Y.; Filippi, J.; Zerbib, F.; Savoye, G.; Nachury, M.; Moreau, J.; et al. Ciclosporin versus Infliximab in Patients with Severe Ulcerative Colitis Refractory to Intravenous Steroids: A Parallel, Open-Label Randomised Controlled Trial. Lancet 2012, 380, 1909–1915. [Google Scholar] [CrossRef]
- Sands, B.E.; Peyrin-Biroulet, L.; Loftus, E.V.; Danese, S.; Colombel, J.-F.; Törüner, M.; Jonaitis, L.; Abhyankar, B.; Chen, J.; Rogers, R.; et al. Vedolizumab versus Adalimumab for Moderate-to-Severe Ulcerative Colitis. N. Engl. J. Med. 2019, 381, 1215–1226. [Google Scholar] [CrossRef]
- Sands, B.E.; Irving, P.M.; Hoops, T.; Izanec, J.L.; Gao, L.-L.; Gasink, C.; Greenspan, A.; Allez, M.; Danese, S.; Hanauer, S.B.; et al. Ustekinumab versus Adalimumab for Induction and Maintenance Therapy in Biologic-Naive Patients with Moderately to Severely Active Crohn’s Disease: A Multicentre, Randomised, Double-Blind, Parallel-Group, Phase 3b Trial. Lancet 2022, 399, 2200–2211. [Google Scholar] [CrossRef]
- Hanauer, S.B.; Sands, B.E.; Schreiber, S.; Danese, S.; Kłopocka, M.; Kierkuś, J.; Kulynych, R.; Gonciarz, M.; Sołtysiak, A.; Smoliński, P.; et al. Subcutaneous Infliximab (CT-P13 SC) as Maintenance Therapy for Inflammatory Bowel Disease: Two Randomized Phase 3 Trials (LIBERTY). Gastroenterology 2024, 167, 919–933. [Google Scholar] [CrossRef]
- Buisson, A.; Nachury, M.; Reymond, M.; Yzet, C.; Wils, P.; Payen, L.; Laugie, M.; Manlay, L.; Mathieu, N.; Pereira, B.; et al. Effectiveness of Switching From Intravenous to Subcutaneous Infliximab in Patients With Inflammatory Bowel Diseases: The REMSWITCH Study. Clin. Gastroenterol. Hepatol. 2023, 21, 2338–2346.e3. [Google Scholar] [CrossRef]
- Bokemeyer, B.; Hlavaty, T.; Allez, M.; Selema, P.; Moosavi, S.; Cadatal, M.J.; Fowler, H.; Mueller, M.; Liau, K.F.; Gisbert, J.P. Real-World Observational Cohort Study of Treatment Patterns and Safety Outcomes of Infliximab Biosimilar CT-P13 for the Treatment of Inflammatory Bowel Disease (CONNECT-IBD). Expert Opin. Biol. Ther. 2023, 23, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Motoya, S.; Watanabe, K.; Hisamatsu, T.; Nakase, H.; Yoshimura, N.; Ishida, T.; Kato, S.; Nakagawa, T.; Esaki, M.; et al. Adalimumab Monotherapy and a Combination with Azathioprine for Crohn’s Disease: A Prospective, Randomized Trial. J. Crohn′s Colitis 2016, 10, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Feuerstein, J.D.; Ho, E.Y.; Shmidt, E.; Singh, H.; Falck-Ytter, Y.; Sultan, S.; Terdiman, J.P.; American Gastroenterological Association Institute Clinical Guidelines Committee. AGA Clinical Practice Guidelines on the Medical Management of Moderate to Severe Luminal and Perianal Fistulizing Crohn’s Disease. Gastroenterology 2021, 160, 2496–2508. [Google Scholar] [CrossRef]
- Singh, S.; Loftus, E.V.; Limketkai, B.N.; Haydek, J.P.; Agrawal, M.; Scott, F.I.; Ananthakrishnan, A.N.; AGA Clinical Guidelines Committee. AGA Living Clinical Practice Guideline on Pharmacological Management of Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2024, 167, 1307–1343. [Google Scholar] [CrossRef] [PubMed]
- Rutgeerts, P.; Feagan, B.G.; Marano, C.W.; Padgett, L.; Strauss, R.; Johanns, J.; Adedokun, O.J.; Guzzo, C.; Zhang, H.; Colombel, J.-F.; et al. Randomised Clinical Trial: A Placebo-Controlled Study of Intravenous Golimumab Induction Therapy for Ulcerative Colitis. Aliment. Pharmacol. Ther. 2015, 42, 504–514. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Lee, S.D.; Randall, C.; Gutierrez, A.; Schwartz, D.A.; Ambarkhane, S.; Kayhan, C.; Pierre-Louis, B.; Schreiber, S.; Lichtenstein, G.R. Long-Term Safety and Efficacy of Certolizumab Pegol in the Treatment of Crohn’s Disease: 7-Year Results from the PRECiSE 3 Study. Aliment. Pharmacol. Ther. 2014, 40, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, S.; Faggiani, I.; Errico, C.; D’Amico, F.; Parigi, T.L.; Danese, S.; Ungaro, F. Translational Characterization of Immune Pathways in Inflammatory Bowel Disease: Insights for Targeted Treatments. Expert. Rev. Clin. Immunol. 2025, 21, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Zhou, J.; Wang, Z.; Liu, D.; Zhang, H.; Xie, S.; Wu, K. Epidemiology, Pathogenesis, Diagnosis, and Treatment of Inflammatory Bowel Disease: Insights from the Past Two Years. Chin. Med. J. 2025, 138, 763–776. [Google Scholar] [CrossRef]
- Schmitt, H.; Billmeier, U.; Dieterich, W.; Rath, T.; Sonnewald, S.; Reid, S.; Hirschmann, S.; Hildner, K.; Waldner, M.J.; Mudter, J.; et al. Expansion of IL-23 Receptor Bearing TNFR2+ T Cells Is Associated with Molecular Resistance to Anti-TNF Therapy in Crohn’s Disease. Gut 2019, 68, 814–828. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Chapman, J.C.; Colombel, J.-F.; Caprioli, F.; D’Haens, G.; Ferrante, M.; Schreiber, S.; Atreya, R.; Danese, S.; Lindsay, J.O.; et al. Risankizumab versus Ustekinumab for Moderate-to-Severe Crohn’s Disease. N. Engl. J. Med. 2024, 391, 213–223. [Google Scholar] [CrossRef]
- Sands, B.E.; D’Haens, G.; Clemow, D.B.; Irving, P.M.; Johns, J.T.; Gibble, T.H.; Abreu, M.T.; Lee, S.D.; Hisamatsu, T.; Kobayashi, T.; et al. Three-Year Efficacy and Safety of Mirikizumab Following 152 Weeks of Continuous Treatment for Ulcerative Colitis: Results From the LUCENT-3 Open-Label Extension Study. Inflamm. Bowel Dis. 2025, 31, 1876–1890. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Allegretti, J.R.; Danese, S.; Germinaro, M.; Baker, T.; Alvarez, Y.; Jörgens, S.; Jiang, L.; Zhang, H.; Hisamatsu, T.; et al. OP10 Efficacy and Safety of Subcutaneous Guselkumab Induction Therapy in Patients with Ulcerative Colitis: Results through Week 12 from the Phase 3 ASTRO Study. J. Crohn’s Colitis 2025, 19, i19–i20. [Google Scholar] [CrossRef]
- Panaccione, R.; Feagan, B.G.; Afzali, A.; Rubin, D.T.; Reinisch, W.; Panés, J.; Danese, S.; Hisamatsu, T.; Terry, N.A.; Salese, L.; et al. Efficacy and Safety of Intravenous Induction and Subcutaneous Maintenance Therapy with Guselkumab for Patients with Crohn’s Disease (GALAXI-2 and GALAXI-3): 48-Week Results from Two Phase 3, Randomised, Placebo and Active Comparator-Controlled, Double-Blind, Triple-Dummy Trials. Lancet 2025, 406, 358–375. [Google Scholar] [CrossRef]
- Wyant, T.; Fedyk, E.; Abhyankar, B. An Overview of the Mechanism of Action of the Monoclonal Antibody Vedolizumab. J. Crohn’s Colitis 2016, 10, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Zezos, P.; Kabakchiev, B.; Weizman, A.V.; Nguyen, G.C.; Narula, N.; Croitoru, K.; Steinhart, A.H.; Silverberg, M.S. Ulcerative Colitis Patients Continue to Improve Over the First Six Months of Vedolizumab Treatment: 12-Month Clinical and Mucosal Healing Effectiveness. J. Can. Assoc. Gastroenterol. 2020, 3, 74–82. [Google Scholar] [CrossRef]
- Eriksson, C.; Rundquist, S.; Lykiardopoulos, V.; Udumyan, R.; Karlén, P.; Grip, O.; Söderman, C.; Almer, S.; Hertervig, E.; Marsal, J.; et al. Real-World Effectiveness of Vedolizumab in Inflammatory Bowel Disease: Week 52 Results from the Swedish Prospective Multicentre SVEAH Study. Ther. Adv. Gastroenterol. 2021, 14, 17562848211023386. [Google Scholar] [CrossRef] [PubMed]
- Biemans, V.B.C.; van der Meulen-de Jong, A.E.; van der Woude, C.J.; Löwenberg, M.; Dijkstra, G.; Oldenburg, B.; de Boer, N.K.H.; van der Marel, S.; Bodelier, A.G.L.; Jansen, J.M.; et al. Ustekinumab for Crohn’s Disease: Results of the ICC Registry, a Nationwide Prospective Observational Cohort Study. J. Crohn’s Colitis 2020, 14, 33–45. [Google Scholar] [CrossRef]
- Narula, N.; Peerani, F.; Meserve, J.; Kochhar, G.; Chaudrey, K.; Hartke, J.; Chilukuri, P.; Koliani-Pace, J.; Winters, A.; Katta, L.; et al. Vedolizumab for Ulcerative Colitis: Treatment Outcomes from the VICTORY Consortium. Am. J. Gastroenterol. 2018, 113, 1345. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Feagan, B.G.; Rutgeerts, P.; Colombel, J.-F.; Sandborn, W.J.; Sy, R.; D’Haens, G.; Ben-Horin, S.; Xu, J.; Rosario, M.; et al. Effects of Vedolizumab Induction Therapy for Patients with Crohn’s Disease in Whom Tumor Necrosis Factor Antagonist Treatment Failed. Gastroenterology 2014, 147, 618–627.e3. [Google Scholar] [CrossRef]
- Dulai, P.S.; Singh, S.; Jiang, X.; Peerani, F.; Narula, N.; Chaudrey, K.; Whitehead, D.; Hudesman, D.; Lukin, D.; Swaminath, A.; et al. The Real-World Effectiveness and Safety of Vedolizumab for Moderate-Severe Crohn’s Disease: Results From the US VICTORY Consortium. Am. J. Gastroenterol. 2016, 111, 1147–1155. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Baert, F.; Danese, S.; Krznarić, Ž.; Kobayashi, T.; Yao, X.; Chen, J.; Rosario, M.; Bhatia, S.; Kisfalvi, K.; et al. Efficacy and Safety of Vedolizumab Subcutaneous Formulation in a Randomized Trial of Patients With Ulcerative Colitis. Gastroenterology 2020, 158, 562–572.e12. [Google Scholar] [CrossRef]
- Vermeire, S.; D’Haens, G.; Baert, F.; Danese, S.; Kobayashi, T.; Loftus, E.V.; Bhatia, S.; Agboton, C.; Rosario, M.; Chen, C.; et al. Efficacy and Safety of Subcutaneous Vedolizumab in Patients With Moderately to Severely Active Crohn’s Disease: Results From the VISIBLE 2 Randomised Trial. J. Crohn’s Colitis 2022, 16, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, L.; Lerner, M.; Bixler, S.; Crossman, M.; Schlain, B.; Simon, K.; Pace, A.; Cheung, A.; Chen, L.L.; Berman, M.; et al. Anti-JC Virus Antibodies: Implications for PML Risk Stratification. Ann. Neurol. 2010, 68, 295–303. [Google Scholar] [CrossRef]
- Targan, S.R.; Feagan, B.G.; Fedorak, R.N.; Lashner, B.A.; Panaccione, R.; Present, D.H.; Spehlmann, M.E.; Rutgeerts, P.J.; Tulassay, Z.; Volfova, M.; et al. Natalizumab for the Treatment of Active Crohn’s Disease: Results of the ENCORE Trial. Gastroenterology 2007, 132, 1672–1683. [Google Scholar] [CrossRef]
- Gubatan, J.; Keyashian, K.; Rubin, S.J.S.; Wang, J.; Buckman, C.A.; Sinha, S. Anti-Integrins for the Treatment of Inflammatory Bowel Disease: Current Evidence and Perspectives. Clin. Exp. Gastroenterol. 2021, 14, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Kitsou, K.; Kokkotis, G.; Rivera-Nieves, J.; Bamias, G. Targeting the Sphingosine-1-Phosphate Pathway: New Opportunities in Inflammatory Bowel Disease Management. Drugs 2024, 84, 1179–1197. [Google Scholar] [CrossRef]
- Sands, B.E.; Schreiber, S.; Blumenstein, I.; Chiorean, M.V.; Ungaro, R.C.; Rubin, D.T. Clinician’s Guide to Using Ozanimod for the Treatment of Ulcerative Colitis. J. Crohn’s Colitis 2023, 17, 2012–2025. [Google Scholar] [CrossRef]
- Fudman, D.I.; McConnell, R.A.; Ha, C.; Singh, S. Modern Advanced Therapies for Inflammatory Bowel Diseases: Practical Considerations and Positioning. Clin. Gastroenterol. Hepatol. 2025, 23, 454–468. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Hanauer, S.; Vermeire, S.; Ghosh, S.; Liu, W.J.; Petersen, A.; Charles, L.; Huang, V.; Usiskin, K.; et al. Long-Term Efficacy and Safety of Ozanimod in Moderately to Severely Active Ulcerative Colitis: Results From the Open-Label Extension of the Randomized, Phase 2 TOUCHSTONE Study. J. Crohn’s Colitis 2021, 15, 1120–1129. [Google Scholar] [CrossRef]
- Cohen, N.A.; Choi, D.; Garcia, N.; Choi, N.K.; Picker, E.; Krugliak Cleveland, N.; Cohen, R.D.; Dalal, S.R.; Pekow, J.; Rubin, D.T. Real World Clinical Effectiveness and Safety of Ozanimod in the Treatment of Ulcerative Colitis: 1-Year Follow-Up from a Tertiary Center. Dig. Dis. Sci. 2024, 69, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Schreiber, S.; Afzali, A.; Rieder, F.; Hyams, J.; Kollengode, K.; Pearlman, J.; Son, V.; Marta, C.; Wolf, D.C.; et al. Ozanimod as a Novel Oral Small Molecule Therapy for the Treatment of Crohn’s Disease: The YELLOWSTONE Clinical Trial Program. Contemp. Clin. Trials 2022, 122, 106958. [Google Scholar] [CrossRef]
- Martinez-Molina, C.; González-Suárez, B. Etrasimod: Modulating Sphingosine-1-Phosphate Receptors to Treat Ulcerative Colitis. J. Clin. Med. 2025, 14, 3890. [Google Scholar] [CrossRef]
- Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Janus Kinases in Immune Cell Signaling. Immunol. Rev. 2009, 228, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Salas, A.; Hernandez-Rocha, C.; Duijvestein, M.; Faubion, W.; McGovern, D.; Vermeire, S.; Vetrano, S.; Vande Casteele, N. JAK-STAT Pathway Targeting for the Treatment of Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 323–337. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Song, B.; Xiong, Y.; Wang, J.; Chen, D. Targeting JAK/STAT Signaling Pathways in Treatment of Inflammatory Bowel Disease. Inflamm. Res. 2021, 70, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Winthrop, K.L.; Melmed, G.Y.; Vermeire, S.; Long, M.D.; Chan, G.; Pedersen, R.D.; Lawendy, N.; Thorpe, A.J.; Nduaka, C.I.; Su, C. Herpes Zoster Infection in Patients With Ulcerative Colitis Receiving Tofacitinib. Inflamm. Bowel Dis. 2018, 24, 2258–2265. [Google Scholar] [CrossRef]
- Panés, J.; Sandborn, W.J.; Schreiber, S.; Sands, B.E.; Vermeire, S.; D’Haens, G.; Panaccione, R.; Higgins, P.D.R.; Colombel, J.-F.; Feagan, B.G.; et al. Tofacitinib for Induction and Maintenance Therapy of Crohn’s Disease: Results of Two Phase IIb Randomised Placebo-Controlled Trials. Gut 2017, 66, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Benucci, M.; Damiani, A.; Infantino, M.; Manfredi, M.; Lari, B.; Grossi, V.; Gobbi, F.L.; Sarzi-Puttini, P. Cardiovascular Safety, Cancer and Jak-Inhibitors: Differences to Be Highlighted. Pharmacol. Res. 2022, 183, 106359. [Google Scholar] [CrossRef]
- Dowty, M.E.; Lin, T.H.; Jesson, M.I.; Hegen, M.; Martin, D.A.; Katkade, V.; Menon, S.; Telliez, J.-B. Janus Kinase Inhibitors for the Treatment of Rheumatoid Arthritis Demonstrate Similar Profiles of in Vitro Cytokine Receptor Inhibition. Pharmacol. Res. Perspect. 2019, 7, e00537. [Google Scholar] [CrossRef]
- Peña-Cearra, A.; Song, D.; Castelo, J.; Palacios, A.; Lavín, J.L.; Azkargorta, M.; Elortza, F.; Fuertes, M.; Pascual-Itoiz, M.A.; Barriales, D.; et al. Mitochondrial Dysfunction Promotes Microbial Composition That Negatively Impacts on Ulcerative Colitis Development and Progression. NPJ Biofilms Microbiomes 2023, 9, 74. [Google Scholar] [CrossRef]
- Pabst, O.; Slack, E. IgA and the Intestinal Microbiota: The Importance of Being Specific. Mucosal Immunol. 2020, 13, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Tursi, A.; Brandimarte, G.; Papa, A.; Giglio, A.; Elisei, W.; Giorgetti, G.M.; Forti, G.; Morini, S.; Hassan, C.; Pistoia, M.A.; et al. Treatment of Relapsing Mild-to-Moderate Ulcerative Colitis with the Probiotic VSL#3 as Adjunctive to a Standard Pharmaceutical Treatment: A Double-Blind, Randomized, Placebo-Controlled Study. Am. J. Gastroenterol. 2010, 105, 2218–2227. [Google Scholar] [CrossRef]
- Sood, A.; Midha, V.; Makharia, G.K.; Ahuja, V.; Singal, D.; Goswami, P.; Tandon, R.K. The Probiotic Preparation, VSL#3 Induces Remission in Patients with Mild-to-Moderately Active Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2009, 7, 1202–1209.e1. [Google Scholar] [CrossRef]
- Zorzi, F.; Monteleone, I.; Sarra, M.; Calabrese, E.; Marafini, I.; Cretella, M.; Sedda, S.; Biancone, L.; Pallone, F.; Monteleone, G. Distinct Profiles of Effector Cytokines Mark the Different Phases of Crohn’s Disease. PLoS ONE 2013, 8, e54562. [Google Scholar] [CrossRef]
- Battat, R.; Chang, J.T.; Loftus, E.V.; Sands, B.E. IBD Matchmaking: Rational Combination Therapy. Clin. Gastroenterol. Hepatol. 2025, 23, 469–479. [Google Scholar] [CrossRef]
- Feng, Z.; Kang, G.; Wang, J.; Gao, X.; Wang, X.; Ye, Y.; Liu, L.; Zhao, J.; Liu, X.; Huang, H.; et al. Breaking through the Therapeutic Ceiling of Inflammatory Bowel Disease: Dual-Targeted Therapies. Biomed. Pharmacother. 2023, 158, 114174. [Google Scholar] [CrossRef]
- Ahmed, W.; Galati, J.; Kumar, A.; Christos, P.J.; Longman, R.; Lukin, D.J.; Scherl, E.; Battat, R. Dual Biologic or Small Molecule Therapy for Treatment of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2022, 20, e361–e379. [Google Scholar] [CrossRef]
- Alayo, Q.A.; Fenster, M.; Altayar, O.; Glassner, K.L.; Llano, E.; Clark-Snustad, K.; Patel, A.; Kwapisz, L.; Yarur, A.J.; Cohen, B.L.; et al. Systematic Review With Meta-Analysis: Safety and Effectiveness of Combining Biologics and Small Molecules in Inflammatory Bowel Disease. Crohns Colitis 360 2022, 4, otac002. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Makovich, Z.; Mhaskar, R.; Coughlin, E.; Seminerio-Diehl, J. Exploring Dual-Targeted Therapy in the Management of Moderate to Severe Inflammatory Bowel Disease: A Retrospective Study. Crohn′s Colitis 360 2025, 7, otae057. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, R.; Murali, A.; Etchegaray, A.; Swe, E.; An, Y.-K.; Begun, J. Upadacitinib and Vedolizumab Combination Therapy for the Management of Refractory Ulcerative Colitis and Crohn’s Disease. Intest. Res. 2025, 23, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Kozarek, R.; Spainhour, J.; Barish, C.F.; Becker, S.; Goldberg, L.; Katz, S.; Goldblum, R.; Harrigan, R.; Hilton, D.; et al. Safety and Tolerability of Concurrent Natalizumab Treatment for Patients with Crohn’s Disease Not in Remission While Receiving Infliximab. Inflamm. Bowel Dis. 2007, 13, 2–11. [Google Scholar] [CrossRef]
- Feagan, B.G.; Sands, B.E.; Sandborn, W.J.; Germinaro, M.; Vetter, M.; Shao, J.; Sheng, S.; Johanns, J.; Panés, J.; VEGA Study Group. Guselkumab plus Golimumab Combination Therapy versus Guselkumab or Golimumab Monotherapy in Patients with Ulcerative Colitis (VEGA): A Randomised, Double-Blind, Controlled, Phase 2, Proof-of-Concept Trial. Lancet Gastroenterol. Hepatol. 2023, 8, 307–320. [Google Scholar] [CrossRef]
- Colombel, J.-F.; Ungaro, R.C.; Sands, B.E.; Siegel, C.A.; Wolf, D.C.; Valentine, J.F.; Feagan, B.G.; Neustifter, B.; Kadali, H.; Nazarey, P.; et al. Vedolizumab, Adalimumab, and Methotrexate Combination Therapy in Crohn’s Disease (EXPLORER). Clin. Gastroenterol. Hepatol. 2024, 22, 1487–1496.e12. [Google Scholar] [CrossRef]
- Goessens, L.; Colombel, J.-F.; Outtier, A.; Ferrante, M.; Sabino, J.; Judge, C.; Saeidi, R.; Rabbitt, L.; Armuzzi, A.; Domenech, E.; et al. Safety and Efficacy of Combining Biologics or Small Molecules for Inflammatory Bowel Disease or Immune-Mediated Inflammatory Diseases: A European Retrospective Observational Study. United Eur. Gastroenterol. J. 2021, 9, 1136–1147. [Google Scholar] [CrossRef]
- Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; et al. The Treatment-Naive Microbiome in New-Onset Crohn’s Disease. Cell Host Microbe 2014, 15, 382–392. [Google Scholar] [CrossRef]
- Fujimoto, T.; Imaeda, H.; Takahashi, K.; Kasumi, E.; Bamba, S.; Fujiyama, Y.; Andoh, A. Decreased Abundance of Faecalibacterium Prausnitzii in the Gut Microbiota of Crohn’s Disease. J. Gastroenterol. Hepatol. 2013, 28, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Nishida, A.; Fujimoto, T.; Fujii, M.; Shioya, M.; Imaeda, H.; Inatomi, O.; Bamba, S.; Sugimoto, M.; Andoh, A. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn’s Disease. Digestion 2016, 93, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Xu, X.; Ma, J.; Zhou, M.; Xu, C.; Huang, X.; Xu, F.; Wang, Z.; Shi, H.; Zhang, S. Gut Microbiome Signatures Predict 5-ASA Efficacy in Ulcerative Colitis. iScience 2025, 28, 112568. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, Z.; Kang, D.; Feng, Z.; Li, G.; Sun, M.; Liu, Z.; Wu, W.; Fang, L. Distinct Alterations of Fecal Microbiota Refer to the Efficacy of Adalimumab in Crohn’s Disease. Front. Pharmacol. 2022, 13, 913720. [Google Scholar] [CrossRef]
- Ventin-Holmberg, R.; Eberl, A.; Saqib, S.; Korpela, K.; Virtanen, S.; Sipponen, T.; Salonen, A.; Saavalainen, P.; Nissilä, E. Bacterial and Fungal Profiles as Markers of Infliximab Drug Response in Inflammatory Bowel Disease. J. Crohn’s Colitis 2021, 15, 1019–1031. [Google Scholar] [CrossRef]
- Massaro, C.A.; Meade, S.; Lemarié, F.L.; Kaur, G.; Bressler, B.; Rosenfeld, G.; Leung, Y.; Williams, A.-J.; Lunken, G. Gut Microbiome Predictors of Advanced Therapy Response in Crohn’s Disease: Protocol for the OPTIMIST Prospective, Longitudinal, Observational Pilot Study in Canada. BMJ Open 2025, 15, e094280. [Google Scholar] [CrossRef] [PubMed]
- Jongsma, M.M.E.; Costes, L.M.M.; Tindemans, I.; Cozijnsen, M.A.; Raatgreep, R.H.C.; van Pieterson, M.; Li, Y.; Escher, J.C.; de Ridder, L.; Samsom, J.N. Serum Immune Profiling in Paediatric Crohn’s Disease Demonstrates Stronger Immune Modulation With First-Line Infliximab Than Conventional Therapy and Pre-Treatment Profiles Predict Clinical Response to Both Treatments. J. Crohn’s Colitis 2023, 17, 1262–1277. [Google Scholar] [CrossRef]
- Martin, J.C.; Chang, C.; Boschetti, G.; Ungaro, R.; Giri, M.; Grout, J.A.; Gettler, K.; Chuang, L.-S.; Nayar, S.; Greenstein, A.J.; et al. Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell 2019, 178, 1493–1508.e20. [Google Scholar] [CrossRef]
- Abreu, M.T.; Davies, J.M.; Quintero, M.A.; Delmas, A.; Diaz, S.; Martinez, C.D.; Venables, T.; Reich, A.; Crynen, G.; Deshpande, A.R.; et al. Transcriptional Behavior of Regulatory T Cells Predicts IBD Patient Responses to Vedolizumab Therapy. Inflamm. Bowel Dis. 2022, 28, 1800–1812. [Google Scholar] [CrossRef]
- Cannarozzi, A.L.; Latiano, A.; Massimino, L.; Bossa, F.; Giuliani, F.; Riva, M.; Ungaro, F.; Guerra, M.; Brina, A.L.D.; Biscaglia, G.; et al. Inflammatory Bowel Disease Genomics, Transcriptomics, Proteomics and Metagenomics Meet Artificial Intelligence. United Eur. Gastroenterol. J. 2024, 12, 1461–1480. [Google Scholar] [CrossRef] [PubMed]
- Dotti, I.; Salas, A. Potential Use of Human Stem Cell-Derived Intestinal Organoids to Study Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2018, 24, 2501–2509. [Google Scholar] [PubMed]
- Kawamoto, A.; Nagata, S.; Anzai, S.; Takahashi, J.; Kawai, M.; Hama, M.; Nogawa, D.; Yamamoto, K.; Kuno, R.; Suzuki, K.; et al. Ubiquitin D Is Upregulated by Synergy of Notch Signalling and TNF-α in the Inflamed Intestinal Epithelia of IBD Patients. J. Crohn’s Colitis 2019, 13, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Crawford, M.S.; McCole, D.F. JAK-STAT Pathway Regulation of Intestinal Permeability: Pathogenic Roles and Therapeutic Opportunities in Inflammatory Bowel Disease. Pharmaceuticals 2021, 14, 840. [Google Scholar] [CrossRef]
- Hammerhøj, A.; Chakravarti, D.; Sato, T.; Jensen, K.B.; Nielsen, O.H. Organoids as Regenerative Medicine for Inflammatory Bowel Disease. iScience 2024, 27, 110118. [Google Scholar] [CrossRef]
- Lucafò, M.; Muzzo, A.; Marcuzzi, M.; Giorio, L.; Decorti, G.; Stocco, G. Patient-Derived Organoids for Therapy Personalization in Inflammatory Bowel Diseases. World J. Gastroenterol. 2022, 28, 2636–2653. [Google Scholar] [CrossRef]

| Agent | Clinical Trial | N° of Patients | Study Period | Outcomes | 
|---|---|---|---|---|
| Infliximab | ACT1 [6] | Placebo (n = 121) IFX 5 mg/kg (n = 121) IFX 10 mg/kg (n = 122) | 8 weeks | Clinical response: 69% IFX 5 mg/kg vs. 61% IFX 10 mg/kg vs. 29% placebo Mucosal healing: 62% IFX 5 mg/kg vs. 60% IFX 10 mg/kg vs. 33% placebo | 
| Adalimumab | ULTRA-I [7] | Placebo (n = 130) ADA 160/80 mg (n = 130) | 8 weeks | Clinical remission: 18% ADA 160/80 mg vs. 9% placebo | 
| ULTRA-II [8] | Placebo (n = 260) ADA 40 mg q2w (n = 258) | 52 weeks | Clinical remission: 17% ADA 160/80 vs. 8% placebo | |
| Golimumab | PURSUIT-SC [9] | Placebo (n = 251) GOL 200/100 mg (n = 253) | 6 weeks | Clinical remission: 18% GOL 200/100 mg vs. 6% placebo | 
| PURSUIT-M [10] | Placebo (n = 154) GOL 100 mg q4w (n = 151) | 54 weeks | Maintained clinical response: 50% GOL 100 mg q4w vs. 23% placebo | |
| Ustekinumab | UNIFI [11] | Placebo (n = 319) UST 130 mg (n = 320) UST 6 mg/kg (n = 322) | 8 weeks | Clinical remission: 16% UST 130 mg vs. 15.5% UST 6 mg/kg vs. 5% placebo | 
| Risankizumab | INSPIRE [12] | Placebo (n = 325) RIS 1200 mg (n = 652) | 12 weeks | Clinical remission: 20% RIS 1200 mg vs. 6% placebo | 
| COMMAND [13] | Placebo (n = 183) RIS 180 mg (n = 179) | 52 weeks | Clinical remission: 40% RIS 180 mg vs. 25% placebo | |
| Mirikizumab | LUCENT-1 [14] | Placebo (n = 294) MIRI 300 mg (n = 868) | 12 weeks | Clinical remission: 24% MIRI 300 mg vs. 13% placebo | 
| LUCENT-2 [14] | Placebo (n = 179) MIRI 200 mg (n = 365) | 40 weeks | Clinical remission: 50% MIRI 200 mg vs. 25% placebo | |
| Guselkumab | QUASAR Induction [15] | Placebo (n = 280) GUS 200 mg (n = 421) | 12 weeks | Clinical remission: 23% GUS 200 mg vs. 8% placebo | 
| QUASAR maintenance [15] | Placebo (n = 190) GUS 200 mg e4w (n = 190) GUS 100 mg e8w (n = 188) | 44 weeks | Clinical remission: 50% GUS 200 mg e4w vs. 45% GUS 100 mg e8w vs. 19% placebo | |
| Vedolizumab | GEMINI 1 [16] | Placebo (n = 161) VEDO 300 mg (n = 374) | 6 weeks | Clinical response: 47% VEDO 300 mg vs. 25% placebo | 
| Ozanimod | TRUE NORTH [17] | Placebo (n = 216) OZA 0.92 mg (n = 429) | 10 weeks | Clinical remission: 18% OZA 0.92 mg vs. 6% placebo | 
| Etrasimod | ELEVATE UC-12 [18] | Placebo (n = 116) ETR 2 mg (n = 238) | 12 weeks | Clinical remission: 25% ETR vs. 15% placebo | 
| Tofacitinib | OCTAVE Induction [19] | Placebo (n = 138) TOFA 10 mg BID (n = 476) | 8 weeks | Clinical remission: 18.5% TOFA 10 mg BID vs. 8% placebo | 
| OCTAVE Sustain [19] | Placebo (n = 198) TOFA 10 mg BID (n = 197) | 52 weeks | Clinical remission: 41% TOFA 10 mg vs. 11% placebo | |
| Upadacitinib | U-ACHIEVE Induction [20] | Placebo (n = 238) UPA45 mg (n = 236) | 8 weeks | Clinical remission: 25% UPA 45 mg vs. 5% placebo | 
| U-ACHIEVE maintenance [20] | Placebo (n = 223) UPA 15 mg (n = 225) UPA 30 mg (n = 233) | 52 weeks | Clinical remission: 42% UPA 15 mg vs. 52% UPA 30 mg vs. 12% placebo | |
| Filgotinib | SELECTION A [21] | Placebo (n = 137) FIL 200 mg (n = 245) | 10 weeks | Clinical remission: 26% FIL 200 mg vs. 15% placebo | 
| SELECTION B [21] | Placebo (n = 142) FIL 200 mg (n = 262) | 10 weeks | Clinical remission: 11.5% FIL 200 mg vs. 4% placebo | |
| SELECTION maintenance [21] | Placebo (n = 93) FIL 200 mg (n = 301) | 58 weeks | Clinical remission: 37% FIL 200 mg vs. 11% placebo | 
| Agent | Clinical Trial | N of Patients | Study Period | Outcomes | 
|---|---|---|---|---|
| Infliximab | ACCENT-1 [22] | Placebo (n = 110) IFX 5 mg/kg (n = 113) IFX 10 mg/kg (n = 112) | 30 weeks | Clinical remission: 39% IFX 5 mg q8w vs. 45% IFX 10 mg q8w vs. 21% placebo | 
| SONIC [23] | AZA (n = 170) 30.0 IFX 5 mg/kg (n = 169) IFX+AZA (n = 169) | 50 weeks | Clinical remission: IFX+AZA 57% vs. IFX 44% vs. AZA 30% | |
| Adalimumab | CLASSIC-I [24] | Placebo (n = 74) ADA 40/20 mg (n = 75) ADA 80/40 mg (n = 75) ADA 160/80 mg (n = 76) | 4 weeks | Clinical remission: 36% ADA 160/80 mg vs. 12% placebo vs. 24% ADA 80/40 mg vs. 18% 40/20 mg | 
| CLASSIC-II (maintenance) [25] | Placebo (n = 18) ADA 40 mg q2w (n = 19) 79/79 ADA 40 mg weekly (n = 18) | 56 weeks | Clinical remission: 79% ADA q4w vs. 83% weekly vs. 44% placebo | |
| GAIN [26] | Placebo (n = 166) Ada 160/80 mg (n = 159) | 4 weeks | Clinical remission: 21% ADA 160/80 mg vs. 7% placebo | |
| EXTEND [27] | ADA induction/placebo (n = 65) ADA 40 eow (n = 64) | 52 weeks | Mucosal healing: 24% ADA vs. 0% placebo | |
| Certolizumab | PRECiSE 1 [28] | Placebo (n = 331) CER 400 mg (n = 331) | 4 weeks | Clinical response: 35% CER 400 mg vs. 27% placebo | 
| PRECiSE 2 [29] | Placebo (n = 331) CER 400 mg q4w (n = 331) | 26 weeks | Clinical response: 48% CER 400 mg q4w vs. 29% placebo | |
| Ustekinumab | UNITI [30] | Placebo (n = 210) UST 6 mg/kg (n = 209) | 8 weeks | Clinical remission: 34% UST 6 mg/kg vs. 6.5% placebo | 
| Risankizumab | ADVANCE [31] | Placebo (n = 175) RISA 600 mg iv (n = 336) RISA 1200 mg iv (n = 339) | 12 weeks | Clinical remission: 45% RISA vs. 2% placebo | 
| MOTIVATE [31] | Placebo (n = 187) RISA 600 mg iv (n = 191) RISA 1200 mg iv (n = 191) | Clinical remission: 42% RISA vs. 19% placebo | ||
| FORTIFY [32] | Placebo (n = 164) RISA 180 mg sc (n = 157) RISA 360 mg sc (n = 141 | 52 weeks | Clinical remission: 55% RISA 180 mg vs. 52% RISA 360 mg vs. 41% placebo | |
| Mirikizumab | VIVID-1 [33] | Placebo (n = 199) MIRI 900/300 mg (n = 579) USTE 6 mg/kg-90 mg (n = 287) | 52 weeks | Clinical remission: 45% MIRI vs. 20% placebo | 
| Guselkumab | GRAVITI [34] | Placebo (n = 117) GUS 400/100 mg (n = 115) GUS 400/200 mg (n = 115) | 12 weeks | Clinical remission: 56% GUS 400/200 mg vs. 54% GUS 400/100 vs. 21% placebo | 
| Vedolizumab | GEMINI 2 [35] | Placebo (n = 148) VDZ 300 mg (n = 220) | 6 weeks | Clinical remission: 14.5% VDZ 300 mg vs. 7% placebo | 
| 52 weeks | Clinical remission: 39% VDX 300 mg vs. 22% placebo | |||
| Natalizumab | ENACT-1 (induction) [36] | Placebo (n = 181) NAT 300 mg (n = 724) | 10 weeks | Clinical response: 56% NAT vs. 49% placebo | 
| ENACT-2 (maintenance) [36] | Placebo (n = 169) NAT 300 mg e4w (n = 170) | 36 weeks | Clinical response: 61% NAT 300 mg vs. 28% placebo | |
| Upadacitinib | U-EXCEL [37] | Placebo (n = 176) UPA 45 mg (n = 350) | 12 weeks | Clinical remission: 49.5% UPA 45 mg vs. 29% placebo | 
| U-ENDURE [37] | Placebo (n = 165) UPA 30 mg (n = 168) UPA 15 mg (n = 169) | 52 weeks | Clinical remission: 48% UPA 30 mg vs. 37% UPA 15 mg 15% placebo | 
| Trial | Arms | N° of Patients | Study Period | Outcomes | 
|---|---|---|---|---|
| VARSITY [43] | Vedolizumab vs. Adalimumab in moderate-to-severe UC | 769 (383 VEDO, 386 ADA) | 52 weeks | Clinical remission: 31% VEDO vs. 22.5% ADA Endoscopic improvement: 40% VEDO vs. 28% ADA | 
| SEAVUE [44] | Adalimumab vs. Ustekinumab in moderate-to-severe CD | 386 (195 ADA, 191 UST) | 52 weeks | Clinical remission: 61% ADA vs. 65% UST Endoscopic remission: 35% ADA vs. 36% UST | 
| CYSIF [42] | Infliximab vs. Cyclosporine in steroid-refractory ASUC | 115 (58 cyclosporine, 57 IFX) | 98 days | Colectomy rate: 41% IFX vs. 48% CYC (not statistically significant). No meaningful difference in quality of life. | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laffusa, A.; Burti, C.; Viganò, C.; Poggi, F.; Grieco, L.; Occhipinti, V.; Greco, S.; Orlando, S. Inflammatory Bowel Disease: Understanding Therapeutic Effects of Distinct Molecular Inhibitors as the Key to Current and Future Advanced Therapeutic Strategies. Biomedicines 2025, 13, 2667. https://doi.org/10.3390/biomedicines13112667
Laffusa A, Burti C, Viganò C, Poggi F, Grieco L, Occhipinti V, Greco S, Orlando S. Inflammatory Bowel Disease: Understanding Therapeutic Effects of Distinct Molecular Inhibitors as the Key to Current and Future Advanced Therapeutic Strategies. Biomedicines. 2025; 13(11):2667. https://doi.org/10.3390/biomedicines13112667
Chicago/Turabian StyleLaffusa, Alice, Cesare Burti, Chiara Viganò, Francesca Poggi, Laura Grieco, Vincenzo Occhipinti, Salvatore Greco, and Stefania Orlando. 2025. "Inflammatory Bowel Disease: Understanding Therapeutic Effects of Distinct Molecular Inhibitors as the Key to Current and Future Advanced Therapeutic Strategies" Biomedicines 13, no. 11: 2667. https://doi.org/10.3390/biomedicines13112667
APA StyleLaffusa, A., Burti, C., Viganò, C., Poggi, F., Grieco, L., Occhipinti, V., Greco, S., & Orlando, S. (2025). Inflammatory Bowel Disease: Understanding Therapeutic Effects of Distinct Molecular Inhibitors as the Key to Current and Future Advanced Therapeutic Strategies. Biomedicines, 13(11), 2667. https://doi.org/10.3390/biomedicines13112667
 
        
 
                                                
 
       