The Role and Application of MAdCAM-1/α4β7-Induced Lymphocyte Migration in Inflammatory Enterohepatic Diseases
Abstract
1. Introduction
2. Structure and Expression of MAdCAM-1/α4β7
3. Activation of α4β7 and Binding to MAdCAM-1 Induces Lymphocyte Migration
3.1. T Cell
3.2. Migration of Lymphocytes Other than T Cells
3.2.1. B Cell
3.2.2. Eosinophil
3.2.3. Treg17 Cell
3.2.4. Non-Classical Monocytes
3.2.5. Innate Lymphoid Cell
4. MAdCAM-1/α4β7-Induced Lymphocyte Homing Excess in Inflammatory Enterohepatic Disease
4.1. Intestinal Diseases
4.2. Liver Diseases
4.2.1. Primary Sclerosing Cholangitis
4.2.2. Other Inflammatory Liver Diseases
4.2.3. Acute Liver Injury
4.3. Lymphocyte Migration-Associated Intestinal Microbiota and Metabolites
4.4. Others
| Intestinal Microbiota/Metabolites | Cells | Mechanisms | Refs. | 
|---|---|---|---|
| propanoic acid | Th1/Th17 cells | Propionate reduces migration of Th1 cells from the colon to the spleen in experimental EAU and induces Th17 retention in the ileum prior to the onset of uveitis | [82] | 
| SCFA | neutrophil | SCFA promote L-selectin expression on neutrophils to stimulate their migration | [80] | 
| butyric acid | Treg cell | Butyric acid promotes migration of gut-activated Treg cells (expressing α4β7, CCR9 and GPR15) to the pancreas and PLN | [79] | 
| butyric acid | ILC3 | Butyric acid regulates the localization of NKp46+ ILC3 in Peyer’s patch | [83] | 
| 7α,25-Dihydroxycholesterol(7α,25-OHC) | ILC3 | 7α,25-OHC and its receptor GPR183 mediate localization of CCR6+ LTi-like ILC3 to crypts, isolated lymphoid follicles | [84,85] | 
| tryptophan | ILC3 | Tryptophan may be able to enhance ILC3 migration through Ahr regulation of CCR6 | [86] | 
| 5-Hydroxyindoleacetic acid (5HIAA) | neutrophil | 5HIAA and its receptor GPR35 promote neutrophil aggregation to inflamed peritoneum, lymph nodes, skin and other sites | [87] | 
| lactic acid/ sodium lactate | T cell | Sodium lactate inhibits CD4+ T cell motility and lactate inhibits CD8+ T cell motility | [88] | 
| sarcosine | dendritic cell | Sarcosine increases migration of mouse and human dendritic cells through the CXC chemokine pathway | [89] | 
| ProstaglandinE2 (PGE2) | dendritic cell/ neutrophil | PGE2 induces dendritic cells expressing CCR7 to migrate to lymph nodes, inhibiting neutrophil activation and migration | [90] | 
| caprylic acid | T cell | caprylic acid increases L-selectin expression to stimulate lymphocyte rolling but does not affect lymphocyte adhesion | [81] | 
| Enterocloster LCA, UDCA | Treg17 cell | Enterocloster down-regulates MAdCAM-1 expression in PPs and MLN through accumulation of its metabolites LCA and UDCA, which in turn causes α4β7+ CD4+ Treg17 cells to leave the intestine and metastasize into tumor-draining lymph nodes | [45] | 
| Lactobacillus plantarum | / | Lactobacillus plantarum reduces MAdCAM-1, ICAM-1 and α4β7 expression and ameliorates histological damage in IL10−/− colitis mice | [75] | 
| UDCA | / | UDCA inhibits MAdCAM-1 expression in TNF-α-induced TSEC, bEnd.3 cells and MDR2−/−/DSS animal model | [78] | 
| cysteamine | / | Deamidation of cysteamine by VAP-1 induces up-regulation of MAdCAM-1 on hepatic endothelium | [34] | 
5. α4β7/MAdCAM-1 as a Drug Target in Inflammatory Enterohepatic Diseases
5.1. Monoclonal Antibody
5.2. Small Molecule Drug
6. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IBD | Inflammatory bowel disease | 
| UC | Ulcerative colitis | 
| CD | Crohn’s disease | 
| PSC | Primary sclerosing cholangitis | 
| NASH | Non-alcoholic steatohepatitis | 
| PSI | plexin-semaphorin-integrin | 
| RGD | Arginine-Glycine-Aspartic Acid | 
| IgSF | Immunoglobulin superfamily | 
| MAdCAM-1 | Mucosal address in adhesion molecule 1 | 
| ICAM | Intercellular adhesion molecule | 
| VCAM-1 | Vascular cell adhesion molecule | 
| PECAM-1 | Platelet/endothelial cell adhesion molecule | 
| HEV | High endothelial venule | 
| GALT | Gut-associated lymphoid tissues | 
| RAR | retinoic acid receptor | 
| RXR | retinoid X receptor | 
| RAREs | retinoic acid response elements | 
| PPs | Peyer’s patche | 
| MLN | Mesenteric lymph nodes | 
| DSS | Dextran Sulfate Sodium Salt | 
| OVA | Ovalbumin | 
| VAP1 | Vascular adhesion protein-1 | 
| MA | Methylamine | 
| RA | Retinoic acid | 
| EGID | eosinophilic gastrointestinal diseases | 
| CX3CR1 | CX3C chemokine receptor 1 | 
| CX3CL1 | CX3C chemokine ligand 1 | 
| ILCs | Innate lymphoid cells | 
| FDA | Food and Drug Administration | 
| PBC | Primary biliary cirrhosis | 
| CLD | Chronic liver diseases | 
| ASH | Alcoholic steatohepatitis | 
| ALF | Acute liver failure | 
| HCV | Viral hepatitis C | 
| HAI | hepatic activity index | 
| ConA | Concanavalin A | 
| LCA | Lithocholic acid | 
| UDCA | Ursodeoxycholic acid | 
| ICB | immune checkpoint inhibitor | 
| CDCA | Chenodeoxycholic acid | 
| TCDCA | Taurochenodeoxycholic acid | 
| PLN | Pancreatic lymph nodes | 
| SCFA | Short-chain fatty acids | 
| EAU | Experimental autoimmune uveitis | 
| CPs | Crypt plaques | 
| ILF | Lymphoid follicles | 
| 5HIAA | 5-Hydroxyindoleacetic acid | 
| PGE2 | Prostaglandin E2 | 
| ALP | Alkaline phosphatase | 
| HIV | human immunodeficiency virus | 
References
- Israelsen, M.; Francque, S.; Tsochatzis, E.A.; Krag, A. Steatotic liver disease. Lancet 2024, 404, 1761–1778. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, K.N.; LaRusso, N.F. Primary Sclerosing Cholangitis. N. Engl. J. Med. 2016, 375, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Huang, Z.; Xu, C.; Fu, H.; Wang, S.; Tian, J.; Rui, K. Regulation of intestinal tissue-resident memory T cells: A potential target for inflammatory bowel disease. Cell Commun. Signal. 2024, 22, 610. [Google Scholar] [CrossRef] [PubMed]
- Zundler, S.; Gunther, C.; Kremer, A.E.; Zaiss, M.M.; Rothhammer, V.; Neurath, M.F. Gut immune cell trafficking: Inter-organ communication and immune-mediated inflammation. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 50–64. [Google Scholar] [CrossRef]
- Kobayashi, M.; Hoshino, H.; Suzawa, K.; Sakai, Y.; Nakayama, J.; Fukuda, M. Two distinct lymphocyte homing systems involved in the pathogenesis of chronic inflammatory gastrointestinal diseases. Semin. Immunopathol. 2012, 34, 401–413. [Google Scholar] [CrossRef]
- Neurath, M.F. Current and emerging therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 269–278, Erratum in Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 688. [Google Scholar] [CrossRef]
- Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res. 2010, 339, 269–280. [Google Scholar] [CrossRef]
- Takada, Y.; Ye, X.; Simon, S. The integrins. Genome Biol. 2007, 8, 215. [Google Scholar] [CrossRef]
- Luo, B.; Carman, C.V.; Springer, T.A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 2007, 25, 619–647. [Google Scholar] [CrossRef]
- Lamb, C.A.; O’Byrne, S.; Keir, M.E.; Butcher, E.C. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. J. Crohn’s Colitis 2018, 12, S653–S668. [Google Scholar] [CrossRef]
- Soler, D.; Chapman, T.; Yang, L.; Wyant, T.; Egan, R.; Fedyk, E.R. The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J. Pharmacol. Exp. Ther. 2009, 330, 864–875. [Google Scholar] [CrossRef]
- de Krijger, M.; Wildenberg, M.E.; de Jonge, W.J.; Ponsioen, C.Y. Return to sender: Lymphocyte trafficking mechanisms as contributors to primary sclerosing cholangitis. J. Hepatol. 2019, 71, 603–615. [Google Scholar] [CrossRef]
- Carman, C.V.; Springer, T.A. Integrin avidity regulation: Are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 2003, 15, 547–556. [Google Scholar] [CrossRef]
- Hynes, R.O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Casasnovas, J.M.; Liu, J.H.; Briskin, M.J.; Springer, T.A.; Wang, J.H. The structure of immunoglobulin superfamily domains 1 and 2 of MAdCAM-1 reveals novel features important for integrin recognition. Structure 1998, 6, 793–801. [Google Scholar] [CrossRef]
- Newman, P.J. The biology of PECAM-1. J. Clin. Investig. 1997, 99, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, T.; Sasaki, M.; Ando, T.; Wada, T.; Tanaka, M.; Okamoto, Y.; Ebi, M.; Hirata, Y.; Murakami, K.; Mizoshita, T.; et al. Blockage of angiotensin II type 1 receptor regulates TNF-alpha-induced MAdCAM-1 expression via inhibition of NF-kappaB translocation to the nucleus and ameliorates colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G255–G266. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Baichwal, V.R. Induction of the gene encoding mucosal vascular addressin cell adhesion molecule 1 by tumor necrosis factor alpha is mediated by NF-kappa B proteins. Proc. Natl. Acad. Sci. USA 1995, 92, 3561–3565. [Google Scholar] [CrossRef]
- von Andrian, U.H.; Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 2003, 3, 867–878. [Google Scholar] [CrossRef]
- Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 2005, 5, 546–559. [Google Scholar] [CrossRef]
- Cybulsky, M.I.; Nourshargh, S.; Ley, K.; Laudanna, C. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 2007, 7, 678–689. [Google Scholar] [CrossRef]
- Vinogradova, O.; Velyvis, A.; Velyviene, A.; Hu, B.; Haas, T.; Plow, E.; Qin, J. A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 2002, 110, 587–597. [Google Scholar] [CrossRef]
- Zundler, S.; Becker, E.; Schulze, L.L.; Neurath, M.F. Immune cell trafficking and retention in inflammatory bowel disease: Mechanistic insights and therapeutic advances. Gut 2019, 68, 1688–1700. [Google Scholar] [CrossRef]
- Colucci, M.; Zumerle, S.; Bressan, S.; Gianfanti, F.; Troiani, M.; Valdata, A.; D’Ambrosio, M.; Pasquini, E.; Varesi, A.; Cogo, F.; et al. Retinoic acid receptor activation reprograms senescence response and enhances anti-tumor activity of natural killer cells. Cancer Cell 2024, 42, 646–661. [Google Scholar] [CrossRef]
- Dammes, N.; Goldsmith, M.; Ramishetti, S.; Dearling, J.; Veiga, N.; Packard, A.B.; Peer, D. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 2021, 16, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, C.; Li, Y.; Liu, Z.; Wang, J.; Zhang, Y.; Yan, Z.; Zhang, Y.; Li, G.; Chen, J. Distinct chemokines selectively induce HIV-1 gp120-integrin alpha4beta7 binding via triggering conformer-specific activation of alpha4beta7. Signal Transduct. Target. Ther. 2021, 6, 265. [Google Scholar] [CrossRef]
- Seidel, D.; Eickmeier, I.; Kuhl, A.A.; Hamann, A.; Loddenkemper, C.; Schott, E. CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice. Hepatology 2014, 59, 601–611. [Google Scholar] [CrossRef]
- Eksteen, B.; Grant, A.J.; Miles, A.; Curbishley, S.M.; Lalor, P.F.; Hubscher, S.G.; Briskin, M.; Salmon, M.; Adams, D.H. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J. Exp. Med. 2004, 200, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.H.; Eksteen, B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat. Rev. Immunol. 2006, 6, 244–251. [Google Scholar] [CrossRef]
- Eksteen, B.; Mora, J.R.; Haughton, E.L.; Henderson, N.C.; Lee Turner, L.; Villablanca, E.J.; Curbishley, S.M.; Aspinall, A.I.; von Andrian, U.H.; Adams, D.H. Gut Homing Receptors on CD8 T Cells Are Retinoic Acid Dependent and Not Maintained by Liver Dendritic or Stellate Cells. Gastroenterology 2009, 137, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Eickmeier, I.; Seidel, D.; Grun, J.R.; Derkow, K.; Lehnardt, S.; Kuhl, A.A.; Kuhl, A.A.; Hamann, A.; Schott, E. Influence of CD8 T cell priming in liver and gut on the enterohepatic circulation. J. Hepatol. 2014, 60, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Johnston, B.; Lee, S.S.; Bullard, D.C.; Smith, C.W.; Beaudet, A.L.; Kubes, P. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Investig. 1997, 99, 2782–2790. [Google Scholar] [CrossRef] [PubMed]
- Liaskou, E.; Karikoski, M.; Reynolds, G.M.; Lalor, P.F.; Weston, C.J.; Pullen, N.; Salmi, M.; Jalkanen, S.; Adams, D.H. Regulation of mucosal addressin cell adhesion molecule 1 expression in human and mice by vascular adhesion protein 1 amine oxidase activity. Hepatology 2011, 53, 661–672. [Google Scholar] [CrossRef]
- Trivedi, P.J.; Tickle, J.; Vesterhus, M.N.; Eddowes, P.J.; Bruns, T.; Vainio, J.; Parker, R.; Smith, D.; Liaskou, E.; Thorbjørnsen, L.W.; et al. Vascular adhesion protein-1 is elevated in primary sclerosing cholangitis, is predictive of clinical outcome and facilitates recruitment of gut-tropic lymphocytes to liver in a substrate-dependent manner. Gut 2018, 67, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Schippers, A.; Kochut, A.; Pabst, O.; Frischmann, U.; Clahsen, T.; Tenbrock, K.; Muller, W.; Wagner, N. beta7 integrin controls immunogenic and tolerogenic mucosal B cell responses. Clin. Immunol. 2012, 144, 87–97. [Google Scholar] [CrossRef]
- Kuklin, N.A.; Rott, L.; Feng, N.; Conner, M.E.; Wagner, N.; Muller, W.; Greenberg, H.B. Protective intestinal anti-rotavirus B cell immunity is dependent on alpha 4 beta 7 integrin expression but does not require IgA antibody production. J. Immunol. 2001, 166, 1894–1902. [Google Scholar] [CrossRef]
- Schippers, A.; Leuker, C.; Pabst, O.; Kochut, A.; Prochnow, B.; Gruber, A.D.; Leung, E.; Krissansen, G.W.; Wagner, N.; Muller, W. Mucosal addressin cell-adhesion molecule-1 controls plasma-cell migration and function in the small intestine of mice. Gastroenterology 2009, 137, 924–933. [Google Scholar] [CrossRef]
- Tang, M.L.; Steeber, D.A.; Zhang, X.Q.; Tedder, T.F. Intrinsic differences in L-selectin expression levels affect T and B lymphocyte subset-specific recirculation pathways. J. Immunol. 1998, 10, 5113–5132. [Google Scholar] [CrossRef]
- Stevens, S.K.; Weissman, I.L.; Butcher, E.C. Differences in the migration of B and T lymphocytes: Organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition. J. Immunol. 1982, 128, 844–851. [Google Scholar] [CrossRef]
- Lee, M.; Kiefel, H.; LaJevic, M.D.; Macauley, M.S.; Kawashima, H.; O’Hara, E.; Pan, J.; Paulson, J.C.; Butcher, E.C. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat. Immunol. 2014, 15, 982–995, Erratum in Nat. Immunol. 2015, 16, 214. [Google Scholar] [CrossRef]
- Brandt, E.B.; Zimmermann, N.; Muntel, E.E.; Yamada, Y.; Pope, S.M.; Mishra, A.; Hogan, S.P.; Rothenberg, M.E. The alpha4bbeta7-integrin is dynamically expressed on murine eosinophils and involved in eosinophil trafficking to the intestine. Clin. Exp. Allergy 2006, 36, 543–553. [Google Scholar] [CrossRef]
- Olbrich, C.L.; Simerly, L.; de Zoeten, E.F.; Furuta, G.T.; Spencer, L.A. Climbing New Mountains: How Antibodies Blocking alpha4beta7 Integrins Tamed Eosinophilic Inflammation of the Intestinal Tract. Dig. Dis. Sci. 2019, 64, 2068–2071. [Google Scholar] [CrossRef] [PubMed]
- Kluger, M.A.; Melderis, S.; Nosko, A.; Goerke, B.; Luig, M.; Meyer, M.C.; Turner, J.; Meyer-Schwesinger, C.; Wegscheid, C.; Tiegs, G.; et al. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int. 2016, 89, 158–166. [Google Scholar] [CrossRef]
- Bhaskaran, N.; Faddoul, F.; Paes Da Silva, A.; Jayaraman, S.; Schneider, E.; Mamileti, P.; Weinberg, A.; Pandiyan, P. IL-1beta-MyD88-mTOR Axis Promotes Immune-Protective IL-17A (+) Foxp3 (+) Cells During Mucosal Infection and Is Dysregulated with Aging. Front. Immunol. 2020, 11, 595936. [Google Scholar] [CrossRef]
- Fidelle, M.; Rauber, C.; Alves, C.S.C.; Tian, A.L.; Lahmar, I.; de La Varende, A.M.; Zhao, L.; Thelemaque, C.; Lebhar, I.; Messaoudene, M.; et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 2023, 380, eabo2296. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Li, Z.; Lv, S.; Wang, R.; Hua, W.; Wu, H.; Dai, L. Persistent Inflammation and Non-AIDS Comorbidities During ART: Coming of the Age of Monocytes. Front. Immunol. 2022, 13, 820480. [Google Scholar] [CrossRef] [PubMed]
- Schleier, L.; Wiendl, M.; Heidbreder, K.; Binder, M.; Atreya, R.; Rath, T.; Becker, E.; Schulz-Kuhnt, A.; Stahl, A.; Schulze, L.L.; et al. Non-classical monocyte homing to the gut via α4β7 integrin mediates macrophage-dependent intestinal wound healing. Gut 2020, 69, 252–263. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Zhang, B.; Zhai, Y.; Wen, L.; Cheng, G.; Zhao, Z. The role of innate lymphoid cells in kidney disease. Cytokine Growth Factor Rev. 2025, 85, 146–157. [Google Scholar] [CrossRef]
- Kim, M.H.; Taparowsky, E.J.; Kim, C.H. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity 2015, 43, 107–119. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef]
- Baffy, G. Potential mechanisms linking gut microbiota and portal hypertension. Liver Int. 2019, 39, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, H.; Yao, Y.; Zhang, X.; Guan, Y.; Zheng, F. CD4 (+) T cell activation and inflammation in NASH-related fibrosis. Front. Immunol. 2022, 13, 967410. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.A.; Uppada, S.; Achkar, I.W.; Hashem, S.; Yadav, S.K.; Shanmugakonar, M.; Al-Naemi, H.A.; Haris, M.; Uddin, S. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front. Physiol. 2018, 9, 1942. [Google Scholar] [CrossRef]
- Picarella, D.; Hurlbut, P.; Rottman, J.; Shi, X.; Butcher, E.; Ringler, D.J. Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J. Immunol. 1997, 158, 2099–2106. [Google Scholar] [CrossRef]
- Bachmann, C.; Klibanov, A.L.; Olson, T.S.; Sonnenschein, J.R.; Rivera-Nieves, J.; Cominelli, F.; Ley, K.F.; Lindner, J.R.; Pizarro, T.T. Targeting mucosal addressin cellular adhesion molecule (MAdCAM)-1 to noninvasively image experimental Crohn’s disease. Gastroenterology 2006, 130, 8–16. [Google Scholar] [CrossRef]
- Poole, R.M. Vedolizumab: First global approval. Drugs 2014, 74, 1293–1303. [Google Scholar] [CrossRef]
- Wyant, T.; Leach, T.; Sankoh, S.; Wang, Y.; Paolino, J.; Pasetti, M.F.; Feagan, B.G.; Parikh, A. Vedolizumab affects antibody responses to immunisation selectively in the gastrointestinal tract: Randomised controlled trial results. Gut 2014, 64, 77–83. [Google Scholar] [CrossRef]
- Akhtar, H.J.; Nguyen, T.M.; Ma, C.; Jairath, V. Vedolizumab for the Treatment of Noninflammatory Bowel Disease Related Enteropathy. Clin. Gastroenterol. Hepatol. 2022, 20, e614–e623. [Google Scholar] [CrossRef]
- Weismuller, T.J.; Trivedi, P.J.; Bergquist, A.; Imam, M.; Lenzen, H.; Ponsioen, C.Y.; Holm, K.; Gotthardt, D.; Farkkila, M.A.; Marschall, H.U.; et al. Patient Age, Sex, and Inflammatory Bowel Disease Phenotype Associate with Course of Primary Sclerosing Cholangitis. Gastroenterology 2017, 152, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, J.O.; Nielsen, O.H.; Andersson, M.; Ainsworth, M.A.; Ytting, H.; Belard, E.; Jess, T. Inflammatory bowel disease with primary sclerosing cholangitis: A Danish population-based cohort study 1977–2011. Liver Int. 2018, 38, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, E.K.; Jorgensen, K.K.; Kaveh, F.; Holm, K.; Hamm, D.; Olweus, J.; Melum, E.; Chung, B.K.; Eide, T.J.; Lundin, K.E.; et al. Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. J. Hepatol. 2017, 66, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Ponsioen, C.Y.; Kuiper, H.; Ten, K.F.; van Milligen, D.W.M.; van Deventer, S.J.; Tytgat, G.N. Immunohistochemical analysis of inflammation in primary sclerosing cholangitis. Eur. J. Gastroenterol. Hepatol. 1999, 11, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.J.; Lalor, P.F.; Hubscher, S.G.; Briskin, M.; Adams, D.H. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology 2001, 33, 1065–1072. [Google Scholar] [CrossRef]
- Hillan, K.J.; Hagler, K.E.; MacSween, R.N.M.; Ryan, A.M.; Renz, M.E.; Chiu, H.H.; Ferrier, R.K.; Bird, G.L.; Dhillon, A.P.; Ferrell, L.D.; et al. Expression of the mucosal vascular addressin, MAdCAM-1, in inflammatory liver disease. Liver 1999, 19, 509–518. [Google Scholar] [CrossRef]
- de Krijger, M.; Visseren, T.; Wildenberg, M.E.; Hooijer, G.; Verstegen, M.; van der Laan, L.; de Jonge, W.J.; Verheij, J.; Ponsioen, C.Y. Characterization of gut-homing molecules in non-endstage livers of patients with primary sclerosing cholangitis and inflammatory bowel disease. J. Transl. Autoimmun. 2020, 3, 100054. [Google Scholar] [CrossRef]
- Graham, J.J.; Mukherjee, S.; Yuksel, M.; Sanabria, M.R.; Si, T.; Huang, Z.; Huang, X.; Abu Arqoub, H.; Patel, V.; McPhail, M.; et al. Aberrant hepatic trafficking of gut-derived T cells is not specific to primary sclerosing cholangitis. Hepatology 2022, 75, 518–530. [Google Scholar] [CrossRef]
- Rai, R.P.; Liu, Y.; Iyer, S.S.; Liu, S.; Gupta, B.; Desai, C.; Kumar, P.; Smith, T.; Singhi, A.D.; Nusrat, A.; et al. Blocking integrin α4β7-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis. J. Hepatol. 2020, 73, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Drescher, H.K.; Schippers, A.; Clahsen, T.; Sahin, H.; Noels, H.; Hornef, M.; Wagner, N.; Trautwein, C.; Streetz, K.L.; Kroy, D.C. beta (7)-Integrin and MAdCAM-1 play opposing roles during the development of non-alcoholic steatohepatitis. J. Hepatol. 2017, 66, 1251–1264. [Google Scholar] [CrossRef] [PubMed]
- Ala, A.; Brown, D.; Khan, K.; Standish, R.; Odin, J.A.; Fiel, M.I.; Schiano, T.D.; Hillan, K.J.; Rahman, S.A.; Hodgson, H.J.F.; et al. Mucosal Addressin Cell Adhesion Molecule (MAdCAM-1) Expression Is Upregulated in the Cirrhotic Liver and Immunolocalises to the Peribiliary Plexus and Lymphoid Aggregates. Dig. Dis. Sci. 2013, 58, 2528–2541. [Google Scholar]
- Gupta, B.; Rai, R.P.; Pal, P.B.; Rossmiller, D.; Chaudhary, S.; Chiaro, A.; Seaman, S.; Singhi, A.D.; Liu, S.; Monga, S.P.; et al. Selective Targeting of alpha (4) beta (7)/MAdCAM-1 Axis Suppresses Fibrosis Progression by Reducing Proinflammatory T Cell Recruitment to the Liver. Cells 2024, 13, 756. [Google Scholar] [CrossRef]
- Tsuda, M.; Ambrosini, Y.M.; Zhang, W.; Yang, G.X.; Ando, Y.; Rong, G.; Tsuneyama, K.; Sumida, K.; Shimoda, S.; Bowlus, C.L.; et al. Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology 2011, 54, 1293–1302. [Google Scholar] [CrossRef]
- Schippers, A.; Hubel, J.; Heymann, F.; Clahsen, T.; Eswaran, S.; Schleputz, S.; Pullen, R.; Gassler, N.; Tenbrock, K.; Tacke, F.; et al. MAdCAM-1/alpha4beta7 Integrin-Mediated Lymphocyte/Endothelium Interactions Exacerbate Acute Immune-Mediated Hepatitis in Mice. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1227–1250. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, J.; Ran, Z. Crosstalk between the gut and the liver via susceptibility loci: Novel advances in inflammatory bowel disease and autoimmune liver disease. Clin. Immunol. 2017, 175, 115–123. [Google Scholar] [CrossRef]
- Fu, S.; Ni, T.; Zhang, M.; Ren, D.; Feng, Y.; Yao, N.; Zhang, X.; Wang, R.; Xu, W.; Yang, N.; et al. Cholinergic Anti-inflammatory Pathway Attenuates Acute Liver Failure Through Inhibiting MAdCAM1/alpha4beta7-mediated Gut-derived Proinflammatory Lymphocytes Accumulation. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Chen, H.; Ma, Y.; Zhou, Y.; Zhang, M.; Zhang, P.; Qin, H. Lactobacillus plantarum Prevents the Upregulation of Adhesion Molecule Expression in an Experimental Colitis Model. Dig. Dis. Sci. 2010, 55, 2505–2513. [Google Scholar] [CrossRef]
- Laurans, L.; Mouttoulingam, N.; Chajadine, M.; Lavelle, A.; Diedisheim, M.; Bacquer, E.; Creusot, L.; Suffee, N.; Esposito, B.; Melhem, N.J.; et al. An obesogenic diet increases atherosclerosis through promoting microbiota dysbiosis-induced gut lymphocyte trafficking into the periphery. Cell Rep. 2023, 42, 113350. [Google Scholar] [CrossRef]
- Han, B.; Lv, X.; Liu, G.; Li, S.; Fan, J.; Chen, L.; Huang, Z.; Lin, G.; Xu, X.; Huang, Z.; et al. Gut microbiota-related bile acid metabolism-FXR/TGR5 axis impacts the response to anti-alpha4beta7-integrin therapy in humanized mice with colitis. Gut Microbes 2023, 15, 2232143. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.Y.; Shearn, C.T.; Orlicky, D.J.; Battista, K.D.; Alexeev, E.E.; Cartwright, I.M.; Lanis, J.M.; Kostelecky, R.E.; Ju, C.; Colgan, S.P.; et al. Bile acids modulate colonic MAdCAM-1 expression in a murine model of combined cholestasis and colitis. Mucosal Immunol. 2021, 14, 479–490. [Google Scholar] [CrossRef]
- Jacob, N.; Jaiswal, S.; Maheshwari, D.; Nallabelli, N.; Khatri, N.; Bhatia, A.; Bal, A.; Malik, V.; Verma, S.; Kumar, R.; et al. Butyrate induced Tregs are capable of migration from the GALT to the pancreas to restore immunological tolerance during type-1 diabetes. Sci. Rep. 2020, 10, 19120. [Google Scholar] [CrossRef]
- Vinolo, M.A.; Rodrigues, H.G.; Hatanaka, E.; Hebeda, C.B.; Farsky, S.H.; Curi, R. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin. Sci. 2009, 117, 331–338. [Google Scholar] [CrossRef]
- Tsuzuki, Y.; Miura, S.; Kurose, I.; Suematsu, M.; Higuchi, H.; Shigematsu, T.; Kimura, H.; Serizawa, H.; Hokari, R.; Akiba, Y.; et al. Enhanced lymphocyte interaction in postcapillary venules of Peyer’s patches during fat absorption in rats. Gastroenterology 1997, 112, 813–825. [Google Scholar] [CrossRef]
- Nakamura, Y.K.; Janowitz, C.; Metea, C.; Asquith, M.; Karstens, L.; Rosenbaum, J.T.; Lin, P. Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Sci. Rep. 2017, 7, 11745. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, B.H.; Kiyono, H.; Jang, Y.S. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer’s patches. Sci. Rep. 2017, 7, 3980. [Google Scholar] [CrossRef]
- Emgard, J.; Kammoun, H.; Garcia-Cassani, B.; Chesne, J.; Parigi, S.M.; Jacob, J.M.; Cheng, H.W.; Evren, E.; Das, S.; Czarnewski, P.; et al. Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation. Immunity 2018, 48, 120–132. [Google Scholar] [CrossRef]
- Willinger, T. Metabolic Control of Innate Lymphoid Cell Migration. Front. Immunol. 2019, 10, 2010. [Google Scholar] [CrossRef]
- Qiu, J.; Heller, J.J.; Guo, X.; Chen, Z.M.; Fish, K.; Fu, Y.X.; Zhou, L. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 2012, 36, 92–104. [Google Scholar] [CrossRef]
- De Giovanni, M.; Tam, H.; Valet, C.; Xu, Y.; Looney, M.R.; Cyster, J.G. GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell 2022, 185, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Haas, R.; Smith, J.; Rocher-Ros, V.; Nadkarni, S.; Montero-Melendez, T.; D’Acquisto, F.; Bland, E.J.; Bombardieri, M.; Pitzalis, C.; Perretti, M.; et al. Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol. 2015, 13, e1002202. [Google Scholar] [CrossRef] [PubMed]
- Dastmalchi, F.; Karachi, A.; Yang, C.; Azari, H.; Sayour, E.J.; Dechkovskaia, A.; Vlasak, A.L.; Saia, M.E.; Lovaton, R.E.; Mitchell, D.A.; et al. Sarcosine promotes trafficking of dendritic cells and improves efficacy of anti-tumor dendritic cell vaccines via CXC chemokine family signaling. J. Immunother. Cancer 2019, 7, 321. [Google Scholar] [CrossRef] [PubMed]
- Agard, M.; Asakrah, S.; Morici, L.A. PGE (2) suppression of innate immunity during mucosal bacterial infection. Front. Cell. Infect. Microbiol. 2013, 3, 45. [Google Scholar] [CrossRef]
- Pang, X.; He, X.; Qiu, Z.; Zhang, H.; Xie, R.; Liu, Z.; Gu, Y.; Zhao, N.; Xiang, Q.; Cui, Y. Targeting integrin pathways: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2023, 8, 1. [Google Scholar] [CrossRef]
- Mitroulis, I.; Alexaki, V.I.; Kourtzelis, I.; Ziogas, A.; Hajishengallis, G.; Chavakis, T. Leukocyte integrins: Role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 2015, 147, 123–135. [Google Scholar] [CrossRef]
- Leonardi, C.L.; Papp, K.A.; Gordon, K.B.; Menter, A.; Feldman, S.R.; Caro, I.; Walicke, P.A.; Compton, P.G.; Gottlieb, A.B. Extended efalizumab therapy improves chronic plaque psoriasis: Results from a randomized phase III trial. J. Am. Acad. Dermatol. 2005, 52, 425–433. [Google Scholar] [CrossRef]
- Weger, W. Current status and new developments in the treatment of psoriasis and psoriatic arthritis with biological agents. Br. J. Pharmacol. 2010, 160, 810–820. [Google Scholar] [CrossRef]
- Keating, G.M. Lifitegrast Ophthalmic Solution 5%: A Review in Dry Eye Disease. Drugs 2017, 77, 201–208. [Google Scholar] [CrossRef]
- Pavlick, K.P.; Ostanin, D.V.; Furr, K.L.; Laroux, F.S.; Brown, C.M.; Gray, L.; Kevil, C.G.; Grisham, M.B. Role of T-cell-associated lymphocyte function-associated antigen-1 in the pathogenesis of experimental colitis. Int. Immunol. 2006, 18, 389–398. [Google Scholar] [CrossRef]
- Palmen, M.J.; Dijkstra, C.D.; van der Ende, M.B.; Pena, A.S.; van Rees, E.P. Anti-CD11b/CD18 antibodies reduce inflammation in acute colitis in rats. Clin. Exp. Immunol. 1995, 101, 351–356. [Google Scholar] [CrossRef]
- Tang, M.; Jiang, Y.; Jia, H.; Patpur, B.K.; Yang, B.; Li, J.; Yang, C. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease. Artif. Cells Nanomed. Biotechnol. 2020, 48, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Henderson, N.C.; Arnold, T.D.; Katamura, Y.; Giacomini, M.M.; Rodriguez, J.D.; McCarty, J.H.; Pellicoro, A.; Raschperger, E.; Betsholtz, C.; Ruminski, P.G.; et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 2013, 19, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Quan, J.; Feng, J.; Zhang, Q.; Xu, Y.; Liu, J.; Huang, W.; Liu, J.; Tian, L. High glucose regulates LN expression in human liver sinusoidal endothelial cells through ROS/integrin alphavbeta3 pathway. Environ. Toxicol. Pharmacol. 2016, 42, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Rokugawa, T.; Konishi, H.; Ito, M.; Iimori, H.; Nagai, R.; Shimosegawa, E.; Shimosegawa, E.; Hatazawa, J.; Abe, K. Evaluation of hepatic integrin alphavbeta3 expression in non-alcoholic steatohepatitis (NASH) model mouse by (18) F-FPP-RGD (2) PET. EJNMMI Res. 2018, 8, 40. [Google Scholar] [CrossRef]
- Hiroyama, S.; Rokugawa, T.; Ito, M.; Iimori, H.; Morita, I.; Maeda, H.; Fujisawa, K.; Matsunaga, K.; Shimosegawa, E.; Abe, K. Quantitative evaluation of hepatic integrin alpha(v)beta(3) expression by positron emission tomography imaging using (18) F-FPP-RGD (2) in rats with non-alcoholic steatohepatitis. EJNMMI Res. 2020, 10, 118. [Google Scholar] [CrossRef]
- Guo, Q.; Furuta, K.; Lucien, F.; Gutierrez Sanchez, L.H.; Hirsova, P.; Krishnan, A.; Kabashima, A.; Pavelko, K.D.; Madden, B.; Alhuwaish, H.; et al. Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. J. Hepatol. 2019, 71, 1193–1205. [Google Scholar] [CrossRef]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.; Sandborn, W.J.; Van, A.G.; Axler, J.; Kim, H.-J.; Danese, S.; et al. Vedolizumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Hanauer, S.; Colombel, J.; Sands, B.E.; Lukas, M.; Fedorak, R.N.; Lee, S.; Bressler, B.; et al. Vedolizumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2013, 369, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.D.; Chapman, R.W.; Keshav, S.; Montano-Loza, A.J.; Mason, A.L.; Kremer, A.E.; Vetter, M.; de Krijger, M.; Ponsioen, C.Y.; Trivedi, P.; et al. Effects of Vedolizumab in Patients With Primary Sclerosing Cholangitis and Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2020, 18, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Goldin, E.; Gordon, F.H.; Malchow, H.A.; Rask-Madsen, J.; Rutgeerts, P.; Vyhnálek, P.; Zádorová, Z.; Palmer, T.; Donoghue, S. Natalizumab for Active Crohn’s Disease. N. Engl. J. Med. 2003, 1, 24–32. [Google Scholar] [CrossRef]
- Berger, J.R. Natalizumab and progressive multifocal leucoencephalopathy. Ann. Rheum. Dis. 2006, 65 (Suppl. S3), iii48–iii53. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Cyrille, M.; Hansen, M.B.; Feagan, B.G.; Loftus, E.V.; Rogler, G.; Vermeire, S.; Cruz, M.L.; Yang, J.; Boedigheimer, M.J.; et al. Efficacy and Safety of Abrilumab in a Randomized, Placebo-Controlled Trial for Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2019, 156, 946–957. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Hart, A.; Bossuyt, P.; Long, M.; Allez, M.; Juillerat, P.; Armuzzi, A.; Loftus, E.V., Jr.; Ostad-Saffari, E.; Scalori, A.; et al. Etrolizumab as induction and maintenance therapy for ulcerative colitis in patients previously treated with tumour necrosis factor inhibitors (HICKORY): A phase 3, randomised, controlled trial. Lancet Gastroenterol. Hepatol. 2022, 7, 128–140. [Google Scholar] [CrossRef]
- Rubin, D.T.; Dotan, I.; DuVall, A.; Bouhnik, Y.; Radford-Smith, G.; Higgins, P.; Mishkin, D.S.; Arrisi, P.; Scalori, A.; Oh, Y.S.; et al. Etrolizumab versus adalimumab or placebo as induction therapy for moderately to severely active ulcerative colitis (HIBISCUS): Two phase 3 randomised, controlled trials. Lancet Gastroenterol. Hepatol. 2022, 7, 17–27. [Google Scholar] [CrossRef]
- Danese, S.; Colombel, J.F.; Lukas, M.; Gisbert, J.P.; D’Haens, G.; Hayee, B.; Panaccione, R.; Kim, H.S.; Reinisch, W.; Tyrrell, H.; et al. Etrolizumab versus infliximab for the treatment of moderately to severely active ulcerative colitis (GARDENIA): A randomised, double-blind, double-dummy, phase 3 study. Lancet Gastroenterol. Hepatol. 2022, 7, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Danese, S.; Sandborn, W.J.; Schreiber, S.; Hanauer, S.; D’Haens, G.; Nagy, P.; Thakur, M.; Bliss, C.; Cataldi, F.; et al. Efficacy and Safety of the Anti-Mucosal Addressin Cell Adhesion Molecule-1 Antibody Ontamalimab in Patients with Moderate-to-Severe Ulcerative Colitis or Crohn’s Disease. J. Crohn’s Colitis 2024, 18, 708–719. [Google Scholar] [CrossRef]
- Slack, R.J.; Macdonald, S.; Roper, J.A.; Jenkins, R.G.; Hatley, R. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 2022, 21, 60–78. [Google Scholar] [CrossRef]
- Sands, B.E.; Schreiber, S.; Danese, S.; Kierkus, J.; Abhyankar, B.; Choi, M.Y.; Soo, C.; Wu, Y.; Sun, F.; Lee, D.; et al. A Phase 2 Study of MORF-057, an Oral alpha4beta7 Integrin Inhibitor in Moderately to Severely Active Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2025, in press.
- Matsuoka, K.; Watanabe, M.; Ohmori, T.; Nakajima, K.; Ishida, T.; Ishiguro, Y.; Kanke, K.; Kobayashi, K.; Hirai, F.; Watanabe, K.; et al. AJM300 (carotegrast methyl), an oral antagonist of alpha4-integrin, as induction therapy for patients with moderately active ulcerative colitis: A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Gastroenterol. Hepatol. 2022, 7, 648–657. [Google Scholar] [CrossRef]
- Dhillon, S. Carotegrast Methyl: First Approval. Drugs 2022, 82, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Mattheakis, L.C.; Modi, N.B.; Pugatch, D.; Bressler, B.; Lee, S.; Bhandari, R.; Kanwar, B.; Shames, R.; D’Haens, G.; et al. PTG-100, an Oral alpha4beta7 Antagonist Peptide: Preclinical Development and Phase 1 and 2a Studies in Ulcerative Colitis. Gastroenterology 2021, 161, 1853–1864. [Google Scholar] [CrossRef]
- FDA-Approved Drugs: NATALIZUMAB. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=125104 (accessed on 19 February 2025).
- FDA-Approved Drugs: VEDOLIZUMAB. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=125476 (accessed on 19 February 2025).
- Habtezion, A.; Nguyen, L.P.; Hadeiba, H.; Butcher, E.C. Leukocyte Trafficking to the Small Intestine and Colon. Gastroenterology 2016, 150, 340–354. [Google Scholar] [CrossRef]
- Takeda, A.; Sasaki, N.; Miyasaka, M. The molecular cues regulating immune cell trafficking. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 183–195. [Google Scholar] [CrossRef]
- Bonfanti, E.; Bracco, C.; Biancheri, P.; Falcetta, A.; Badinella, M.M.; Melchio, R.; Fenoglio, L. Fever During Anti-integrin Therapy: New Immunodeficiency. Eur. J. Case Rep. Intern. Med. 2020, 7, 1288. [Google Scholar]
- Fedyk, E.R.; Wyant, T.; Yang, L.; Csizmadia, V.; Burke, K.; Yang, H.; Kadambi, V.J. Exclusive antagonism of the α4β7 integrin by vedolizumab confirms the gut-selectivity of this pathway in primates. Inflamm. Bowel Dis. 2012, 18, 2107–2119. [Google Scholar] [CrossRef]
- Kapila, N.; Flocco, G.; Shen, B.; Esfeh, J.M. The Use of Vedolizumab in Patients with Concomitant Cirrhosis and Crohn’s Disease. Cureus 2018, 10, e3080. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Hu, Y.; Li, S.; Cai, Z.; Li, C.; Qin, W.; Zhang, G. Protective Effects of GalNac-Modified Red Blood Cell-Derived Extracellular Vesicles Against Liver Diseases. Int. J. Nanomed. 2025, 20, 8993–9017. [Google Scholar] [CrossRef]
- Fei, B.; Zhao, Y.; Wang, J.; Wen, P.; Li, J.; Tanaka, M.; Wang, Z.; Li, S. Leveraging adrenergic receptor blockade for enhanced nonalcoholic fatty liver disease treatment via a biomimetic nanoplatform. J. Nanobiotechnol. 2024, 22, 591. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Zhang, S.; Han, S.; Qiu, B.; Lu, Y.; Huang, W.; Li, F.; Chen, D.; Berglund, B.; Xiao, H.; et al. The Role of Dihydroresveratrol in Enhancing the Synergistic Effect of Ligilactobacillus salivarius Li01 and Resveratrol in Ameliorating Colitis in Mice. Research 2022, 2022, 9863845. [Google Scholar] [CrossRef]
- Guzzo, C.; Ichikawa, D.; Park, C.; Phillips, D.; Liu, Q.; Zhang, P.; Kwon, A.; Miao, H.; Lu, J.; Rehm, C.; et al. Virion incorporation of integrin alpha4beta7 facilitates HIV-1 infection and intestinal homing. Sci. Immunol. 2017, 2, eaam7341. [Google Scholar] [CrossRef]
- Ansari, A.A.; Reimann, K.A.; Mayne, A.E.; Takahashi, Y.; Stephenson, S.T.; Wang, R.; Wang, X.; Li, J.; Price, A.A.; Little, D.M.; et al. Blocking of alpha4beta7 gut-homing integrin during acute infection leads to decreased plasma and gastrointestinal tissue viral loads in simian immunodeficiency virus-infected rhesus macaques. J. Immunol. 2011, 186, 1044–1059. [Google Scholar] [CrossRef] [PubMed]
- Sneller, M.C.; Clarridge, K.E.; Seamon, C.; Shi, V.; Zorawski, M.D.; Justement, J.S.; Blazkova, J.; Huiting, E.D.; Proschan, M.A.; Mora, J.R.; et al. An open-label phase 1 clinical trial of the anti-α4β7 monoclonal antibody vedolizumab in HIV-infected individuals. Sci. Transl. Med. 2019, 11, eaax3447. [Google Scholar] [CrossRef]
- Liu, Q.; Lusso, P. Integrin alpha4beta7 in HIV-1 infection: A critical review. J. Leukoc. Biol. 2020, 108, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Grove, R.A.; Shackelford, S.; Sopper, S.; Pirruccello, S.; Horrigan, J.; Havrdova, E.; Gold, M.; Graff, O. Leukocyte counts in cerebrospinal fluid and blood following firategrast treatment in subjects with relapsing forms of multiple sclerosis. Eur. J. Neurol. 2013, 20, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Cortijo, J.; Sanz, M.; Iranzo, A.; Montesinos, J.L.; Nabah, Y.N.A.; Alfón, J.; Gómez, L.A.; Merlos, M.; Morcillo, E.J. A small molecule, orally active, alpha4beta1/alpha4beta7 dual antagonist reduces leukocyte infiltration and airway hyper-responsiveness in an experimental model of allergic asthma in Brown Norway rats. Br. J. Pharmacol. 2006, 147, 661. [Google Scholar] [CrossRef] [PubMed]
- Dattoli, S.D.; Baiula, M.; De Marco, R.; Bedini, A.; Anselmi, M.; Gentilucci, L.; Spampinato, S. DS-70, a novel and potent alpha(4) integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br. J. Pharmacol. 2018, 175, 3891–3910. [Google Scholar] [CrossRef] [PubMed]




| Diseases | Cohort/Model | Main Effects | Ref. | 
|---|---|---|---|
| PSC | 5 patients with PSC | Antibodies against MAdCAM-1 (10G3), α4β7 (ACT-1) blocked the adhesion of peripheral blood lymphocytes to MAdCAM-1-transfected CHO cells, to the hepatic portal vein, and the hepatic blood sinusoids | [63] | 
| 16 patients with PSC who underwent liver transplantation | 14/16 cases with positive immunohistochemical MAdCAM-1 staining | [63] | |
| Liver biopsy of 9 patients with PSC | α4β7+ T lymphocyte infiltration was significantly higher than in patients with non-inflammatory liver disease | [62] | |
| 5 patients with PSC who underwent liver transplantation | 5/5 cases with positive immunohistochemical MAdCAM-1 staining | [64] | |
| Liver biopsy of 7 patients with Long-term PSC | The H-score of immunohistochemical MAdCAM-1 staining was significantly higher than that of the control. The proportion of β7-positive T cells in the liver was increased and positively correlated with PSC disease duration | [65] | |
| NASH | Western diet-fed F11r−/− mice were administered mAbs targeting α4β7 and MAdCAM-1 | Amelioration of hepatic inflammation and fibrosis observed in histopathology. Significant reduction in serum ALT and AST levels, inflammatory factors such as TNF-α, and liver fibrosis indicators such as Acta2. | [67] | 
| Western diet-fed F11r−/− mice | α4β7+ CD4+ T cells exhibited increased accumulation in peripheral blood, Peyer’s patches, colonic lamina propria, and liver tissues, accompanied by elevated MAdCAM-1 expression in both colon and liver compared to WT mice | [67] | |
| Liver biopsy of 5 patients with NASH | Immunohistochemical analysis revealed a larger MAdCAM-1-positive area in the livers of NASH patients compared to controls, with significant upregulation of MAdCAM-1, ITGA4, and ITGB7 mRNA levels | [67] | |
| MAdCAM-1-deficient mice were fed high-fat diet or methionine-choline deficient diet | MAdCAM-1 deficiency ameliorates liver injury and fibrosis by enhancing antioxidant and anti-inflammatory immune response | [68] | |
| Cirrhosis | CCL4-induced mice were administered mAbs targeting α4β7 and MAdCAM-1 | Protected against liver injury and inhibited the progression of fibrosis, reduced serum ALT, AST levels, the positive staining of Sirius red, and the expression of liver fibrosis indicator Col1a2, and so on | [70] | 
| CCL4-induced mice | α4β7+ CD4+ T cells were markedly accumulated In the liver tissues, accompanied by enhanced immunopositivity of MAdCAM-1 and α4β7 compared to WT mice. The mRNA levels of MAdCAM-1, ITGA4, and ITGB7 were significantly upregulated | [70] | |
| 10 patients with NASH-related and 10 patients with ASH-related cirrhosis who underwent liver transplantation | Stronger immunopositivity for α4β7 compared to controls | [70] | |
| 28 patients with cirrhosis who underwent liver transplantation | 27/28 cases with positive immunohistochemical MAdCAM-1 staining, with significant upregulation of MAdCAM-1 mRNA level | [69] | |
| 24 patients with PBC | The frequency of CD45ROhigh CD57+ CD8high subpopulations expressing α4β7 in the peripheral blood of PBC patients was significantly higher than that of controls | [71] | |
| Liver biopsy of 21 patients with PBC and 5 patients with PBC who underwent liver transplantation | 15/21 cases with positive immunohistochemical MAdCAM-1 staining, 5/5 cases with positive immunohistochemical MAdCAM-1 staining | [64] | |
| 11 patients with PBC who underwent liver transplantation | 7/11 cases with positive immunohistochemical MAdCAM-1 staining | [63] | |
| Acute Immune-Mediated Hepatitis | ConA-induced mice | The area of positive immunofluorescence staining and mRNA level of MAdCAM-1 in liver tissue were significantly higher than those in WT mice | [72] | 
| ConA-induced MAdCAM-1−/− and β7−/− mice | Reducing the production of pro-inflammatory mediators, such as IFN-γ, resulted in liver tissue necrosis, hepatocyte apoptosis, and serum ALT levels, which were significantly lower than those of WT mice after receiving ConA | [72] | |
| ALF | LPS/D-GalN-induced mice | MAdCAM-1 mRNA and protein levels in serum and liver tissue were significantly higher than those in WT mice. Higher aggregates ofα4β7+ CD4+ T cells in liver tissue of ALF mice. | [74] | 
| 12 patients with ALF | Exhibited a significantly higher level of serum MAdCAM1, more area of MAdCAM-1, β7 positive staining in liver tissue compared with healthy controls | [74] | |
| HCV | Liver biopsy of 30 patients with HCV | 20/30 cases with positive immunohistochemical MAdCAM-1 staining | [64] | 
| Autoimmune hepatitis | 10 patients with autoimmune hepatitis who underwent liver transplantation | 7/10 cases with positive immunohistochemical MAdCAM-1 staining | [63] | 
| Drug Name | Disease | Efficacy | Safety | Limitations | 
|---|---|---|---|---|
| Natalizumab | CD | Primary endpoint (clinical remission at Week 6) was not met; however, positive signals were observed at multiple time points | Generally well-tolerated | The short-term (12-week) study design precluded assessment of long-term risks, such as progressive multifocal leukoencephalopathy | 
| Vedolizumab | UC | Clinical response significantly higher at Wk6 (47.1% vs. 25.5%); remission at Wk52 significantly higher (41.8%/44.8% vs. 15.9%) | Generally well-tolerated | Optimal induction duration and minimum effective dose not determined | 
| CD | Significantly higher clinical remission vs. placebo at Wk6 (14.5% vs. 6.8%) and Wk52 (39.0%/36.4% vs. 21.6%) in maintenance responders | Higher incidence of serious AEs (24.4% vs. 15.3%) | Optimal patient population not defined; combination therapy effects not assessed | |
| PSC | Biochemical response in a subset of patients (20.6%); effective for concomitant IBD | Significant liver biochemical worsening in some patients | Retrospective design; lack of control group; UDCA use post-baseline unclear | |
| Etrolizumab | UC | Significant induction of remission at Wk 14 (18.5% vs. 6.3%) | Generally well-tolerated | Lack of statistically significant efficacy in the maintenance phase | 
| CD | Significant improvement in clinical remission (35% vs. 24%) and endoscopic improvement (24% vs. 12%) at Week 66 vs. placebo. No significant benefit during induction | Generally well-tolerated | mITT analysis; potentially underestimated placebo response; unusually long study duration; premature closure of induction cohort 3 | |
| Abrilumab | UC | Unadjusted remission rates at Week 8 were significantly higher with abrilumab (13.3%, 12.7%) than placebo (4.3%) | Generally well-tolerated | Dosing errors; short-term study; limited subgroup analysis by prior TNF antagonist exposure | 
| Ontamalimab | UC | Significantly higher clinical remission vs. placebo at Wk 12 (29.8%/29.5% vs. 15.8%/12.5%) and Wk 52 (53.5%/40.2% vs. 8.2%/12.8%) | Generally well-tolerated | Clinical development program prematurely discontinued | 
| AJM300 | UC | Clinical response rate significantly higher with AJM300 vs. placebo at Week 8 (45% vs. 21%) | Generally well-tolerated | Limited sample size/retreatment cycles; severe/refractory UC populations not evaluated; open-label retreatment phase | 
| PTG-100 | UC | Primary endpoint (remission at Wk12) not met initially | Generally well-tolerated | limited sample size; initial primary endpoint failure; results interpreted with caution. | 
| MORF-057 | UC | At Week 12, mean reduction from baseline in RHI score was −6.4; 22.9% of participants achieved RHI remission (score ≤ 3) | Generally well-tolerated | Small sample size; high dropout rate; lack of placebo control | 
| Drug Name | Mechanism of Action | Disease | Approval/ Phase | Primary Developer/ Company | Source | 
|---|---|---|---|---|---|
| Natalizumab | Humanized IgG4 anti-α4 integrin subunit mAb | CD | Licensed in USA | Biogen Idec | https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=125104 [119] (accessed on 19 February 2025) | 
| Vedolizumab | Humanized IgG1 anti-α4β7 integrin dimer mAb | CD/UC | Licensed | Takeda | https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=125476 [120] (accessed on 19 February 2025) | 
| Etrolizumab | Humanized IgG1 anti-β7 integrin subunit mAb | UC/CD | Phase III | Roche | UC: NCT02165215 NCT02100696 CD: NCT02394028 | 
| Abrilumab | Human IgG2 anti-α4β7 integrin dimer mAb | CD/UC | Phase II | Amgen | CD: NCT01696396 UC: NCT01694485 | 
| Ontamalimab | Human IgG2 anti-MAdCMA-1 mAb | UC | Phase III | Takeda | NCT03290781 | 
| AJM300 | α4 integrin subunit antagonist | UC | Phase III | Meiji Seika Pharma/ EA Pharma | NCT03531892 | 
| PTG-100 | α4β7 integrin-specific peptide | UC | Phase IIb | Protagonist Therapeutics | NCT02895100 | 
| MORF-057 | small molecule α4β7 integrin inhibitor | UC/CD | Phase II | Morphic Therapeutic/ Eli Lilly | UC: NCT05291689 NCT05611671 CD: NCT06226883 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Pan, Y.; Mao, A.; Zhao, Y.; Liu, Q.; Hu, Y. The Role and Application of MAdCAM-1/α4β7-Induced Lymphocyte Migration in Inflammatory Enterohepatic Diseases. Biomedicines 2025, 13, 2659. https://doi.org/10.3390/biomedicines13112659
Yu C, Pan Y, Mao A, Zhao Y, Liu Q, Hu Y. The Role and Application of MAdCAM-1/α4β7-Induced Lymphocyte Migration in Inflammatory Enterohepatic Diseases. Biomedicines. 2025; 13(11):2659. https://doi.org/10.3390/biomedicines13112659
Chicago/Turabian StyleYu, Chuchu, Yuqing Pan, Aojie Mao, Yu Zhao, Qiaohong Liu, and Yiyang Hu. 2025. "The Role and Application of MAdCAM-1/α4β7-Induced Lymphocyte Migration in Inflammatory Enterohepatic Diseases" Biomedicines 13, no. 11: 2659. https://doi.org/10.3390/biomedicines13112659
APA StyleYu, C., Pan, Y., Mao, A., Zhao, Y., Liu, Q., & Hu, Y. (2025). The Role and Application of MAdCAM-1/α4β7-Induced Lymphocyte Migration in Inflammatory Enterohepatic Diseases. Biomedicines, 13(11), 2659. https://doi.org/10.3390/biomedicines13112659
 
        

 
                         
       