Assessing Vascular Tone and Fluid Balance in Septic and Cardiogenic Shock: A Feasibility Study on Skin Water Loss as a Diagnostic Tool
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Measurement of Transepithelial Water Loss (TEWL)
2.3. Hemodynamic Evaluation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of variance |
| APACHE II | Acute Physiology and Chronic Health Evaluation II |
| BMI | Body mass index |
| DRKS | Deutsches Register Klinischer Studien (German Clinical Trials Register) |
| ICU | Intensive care unit |
| SD | Standard deviation |
| SEM | Standard error of the mean |
| SOFA | Sequential Organ Failure Assessment |
| SVRI | Systemic vascular resistance index |
| TEWL | Transepidermal (or transepithelial) water loss |
References
- Brunkhorst, F.M.; Weigand, M.A.; Pletz, M.; Gastmeier, P.; Lemmen, S.W.; Meier-Hellmann, A.; Ragaller, M.; Weyland, A.; Marx, G.; Bucher, M.; et al. S3 Guideline Sepsis-prevention, diagnosis, therapy, and aftercare: Long version. Med. Klin. Intensivmed. Notfallmedizin 2020, 115, 37–109. [Google Scholar] [CrossRef]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.; Van Regenmortel, N.; Saugel, B.; De Tavernier, B.; Van Gaal, P.J.; Joannes-Boyau, O.; Teboul, J.L.; Rice, T.W.; Mythen, M.; Monnet, X. Principles of fluid management and stewardship in septic shock: It is time to consider the four D’s and the four phases of fluid therapy. Ann. Intensive Care 2018, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Widiarti, W.; Multazam, C.; Octaviana, D.S.; Susilo, H.; Alsagaff, M.Y.; Wungu, C.D.K. Appropriateness of Fluid Therapy in Cardiogenic Shock Management: A Systematic Review of Current Evidence. Curr. Probl. Cardiol. 2024, 49, 102123. [Google Scholar] [CrossRef]
- Tehrani, B.N.; Truesdell, A.G.; Psotka, M.A.; Rosner, C.; Singh, R.; Sinha, S.S.; Damluji, A.A.; Batchelor, W.B. A Standardized and Comprehensive Approach to the Management of Cardiogenic Shock. Heart Fail. 2020, 8, 879–891. [Google Scholar] [CrossRef]
- Marx, G.; Schindler, A.W.; Mosch, C.; Albers, J.; Bauer, M.; Gnass, I.; Hobohm, C.; Janssens, U.; Kluge, S.; Kranke, P.; et al. Intravascular volume therapy in adults: Guidelines from the Association of the Scientific Medical Societies in Germany. Eur. J. Anaesthesiol. 2016, 33, 488–521. [Google Scholar] [CrossRef]
- Grünewald, M.; Heringlake, M. Solutions for Fluid Treatment and Outcome—An Update. Anasthesiol. Intensivmed. Notfallmedizin Schmerzther. AINS 2021, 56, 261–275. [Google Scholar] [CrossRef]
- Cox, P. Insensible water loss and its assessment in adult patients: A review. Acta Anaesthesiol. Scand. 1987, 31, 771–776. [Google Scholar] [CrossRef]
- Schneider, A.G.; Baldwin, I.; Freitag, E.; Glassford, N.; Bellomo, R. Estimation of fluid status changes in critically ill patients: Fluid balance chart or electronic bed weight? J. Crit. Care 2012, 27, 745.e7–745.e12. [Google Scholar] [CrossRef]
- Dąbrowska, A.K.; Spano, F.; Derler, S.; Adlhart, C.; Spencer, N.D.; Rossi, R.M. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res. Technol. 2018, 24, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Wild, J.; Jung, R.; Knopp, T.; Efentakis, P.; Benaki, D.; Grill, A.; Wegner, J.; Molitor, M.; Garlapati, V.; Rakova, N.; et al. Aestivation motifs explain hypertension and muscle mass loss in mice with psoriatic skin barrier defect. Acta Physiol. 2021, 232, e13628. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Bourcier, S.; Alves, M.; Galbois, A.; Baudel, J.L.; Margetis, D.; Bige, N.; Offenstadt, G.; Maury, E.; Guidet, B. Alteration of skin perfusion in mottling area during septic shock. Ann. Intensive Care 2013, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Galbois, A.; Bigé, N.; Pichereau, C.; Boëlle, P.-Y.; Baudel, J.-L.; Bourcier, S.; Maury, E.; Guidet, B.; Ait-Oufella, H. Exploration of skin perfusion in cirrhotic patients with septic shock. J. Hepatol. 2015, 62, 549–555. [Google Scholar] [CrossRef]
- Chen, J.Y.; Chew, K.S.; Mary, S.; Boder, P.; Bagordo, D.; Rossi, G.P.; Touyz, R.M.; Delles, C.; Rossitto, G. Skin-specific mechanisms of body fluid regulation in hypertension. Clin. Sci. 2023, 137, 239–250. [Google Scholar] [CrossRef]
- Wallace, A.B. The exposure treatment of burns. Lancet 1951, 257, 501–504. [Google Scholar] [CrossRef]
- Algiert-Zielińska, B.; Batory, M.; Skubalski, J.; Rotsztejn, H. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH. Int. J. Dermatol. 2017, 56, 1192–1197. [Google Scholar] [CrossRef]
- Mercurio, D.G.; Segura, J.H.; Demets, M.B.A.; Maia Campos, P.M.B.G. Clinical scoring and instrumental analysis to evaluate skin types. Clin. Exp. Dermatol. 2013, 38, 302–309. [Google Scholar] [CrossRef]
- Rosado, C.; Pinto, P.; Rodrigues, L.M. Comparative assessment of the performance of two generations of Tewameter: TM210 and TM300. Int. J. Cosmet. Sci. 2005, 27, 237–241. [Google Scholar] [CrossRef]
- Mensink, R.S.M.; Paans, W.; Renes, M.H.; Dieperink, W.; Blokzijl, F. Fluid balance versus weighing: A comparison in ICU patients: A single center observational study. PLoS ONE 2024, 19, e0299474. [Google Scholar] [CrossRef]
- Roos, A.N.; Westendorp, R.G.; Frölich, M.; Meinders, A.E. Weight changes in critically ill patients evaluated by fluid balances and impedance measurements. Crit. Care Med. 1993, 21, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Altemeier, W.A.; Cole, W. Septic shock. Ann. Surg. 1956, 143, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Lemoinne, S.; Boelle, P.Y.; Galbois, A.; Baudel, J.L.; Lemant, J.; Joffre, J.; Margetis, D.; Guidet, B.; Maury, E.; et al. Mottling score predicts survival in septic shock. Intensive Care Med. 2011, 37, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Merdji, H.; Bataille, V.; Curtiaud, A.; Bonello, L.; Roubille, F.; Levy, B.; Lim, P.; Schneider, F.; Khachab, H.; Dib, J.-C.; et al. Mottling as a prognosis marker in cardiogenic shock. Ann. Intensive Care 2023, 13, 80. [Google Scholar] [CrossRef]
- de Moura, E.B.; Amorim, F.F.; da Cruz Santana, A.N.; Kanhouche, G.; de Souza Godoy, L.G.; de Jesus Almeida, L.; Rodrigues, T.A.; da Silveira, C.D.G.; de Oliveira Maia, M. Skin mottling score as a predictor of 28-day mortality in patients with septic shock. Intensive Care Med. 2016, 42, 479–480. [Google Scholar] [CrossRef]
- Sivakorn, C.; Schultz, M.J.; Dondorp, A.M. How to monitor cardiovascular function in critical illness in resource-limited settings. Curr. Opin. Crit. Care 2021, 27, 274–281. [Google Scholar] [CrossRef]
- Misango, D.; Pattnaik, R.; Baker, T.; Dünser, M.W.; Dondorp, A.M.; Schultz, M.J. Hemodynamic Assessment and Support in Sepsis and Septic Shock in Resource-Limited Settings. In Sepsis Management in Resource-Limited Settings; Dondorp, A.M., Dünser, M.W., Schultz, M.J., Eds.; Springer: Cham, Switzerland, 2019; pp. 151–162. [Google Scholar]
- Schemmelmann, M.; Kelm, M.; Jung, C. The microcirculation in cardiogenic shock. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 802–809. [Google Scholar] [CrossRef]
- Bruno, R.R.; Wollborn, J.; Fengler, K.; Flick, M.; Wunder, C.; Allgäuer, S.; Thiele, H.; Schemmelmann, M.; Hornemann, J.; Moecke, H.M.E.; et al. Direct assessment of microcirculation in shock: A randomized-controlled multicenter study. Intensive Care Med. 2023, 49, 645–655, Correction in: Intensive Care Med. 2023, 49, 1279. https://doi.org/10.1007/s00134-023-07162-0. [Google Scholar] [CrossRef]
- Holley, A.D.; Dulhunty, J.; Udy, A.; Midwinter, M.; Lukin, B.; Stuart, J.; Boots, R.; Lassig-Smith, M.; Holley, R.B.; Paratz, J.; et al. Early Sequential Microcirculation Assessment In Shocked Patients as a Predictor of Outcome: A Prospective Observational Cohort Study. Shock 2021, 55, 581–586. [Google Scholar] [CrossRef]
- Bruno, R.R.; Hernandez, G.; Wollborn, J.; Saugel, B.; Jung, C. Microcirculation information in clinical decision making: Rome wasn’t built in a day. Intensive Care Med. 2023, 49, 1272–1273. [Google Scholar] [CrossRef]
- Monnet, X.; Saugel, B. Could resuscitation be based on microcirculation data? We are not sure. Intensive Care Med. 2018, 44, 950–953. [Google Scholar] [CrossRef]
- Legrand, M.; Ait-Oufella, H.; Ince, C. Could resuscitation be based on microcirculation data? Yes. Intensive Care Med. 2018, 44, 944–946. [Google Scholar] [CrossRef]


| Category | Parameter | |
|---|---|---|
| Patient Characteristics | Age (years ± SD) | 64.3 ± 9.3 |
| Female sex | 12.5% | |
| Body mass index (kg/m2 ± SD) | 26.24 ± 5.11 | |
| Cardiogenic shock | 37.5% | |
| Septic shock | 62.5% | |
| Comorbidities (%) | Hypertension | 50% |
| Diabetes mellitus | 25% | |
| Chronic kidney disease | 62.5% | |
| Chronic heart failure | 50% | |
| Chronic obstructive pulmonary disease | 25% | |
| Stroke | 12.5% | |
| Myocardial infarction | 25% | |
| Active skin disease | 0% | |
| Chronic liver disease | 12.5% | |
| Malignancy | 37.5% | |
| Smoking | 50% | |
| Dyslipoproteinemia | 62.5% | |
| Laboratory Parameters on ICU-admission | Leukocyte count (×109/L ± SD) | 14.84 ± 10.4 |
| Lymphocyte count (% ± SD) | 7.39 ± 7.8 | |
| Platelet count (×109/L ± SD) | 220.88 ± 141.8 | |
| Hemoglobine (g/dL) | 10.57 ± 2.27 | |
| Serum creatinine (mg/dL ± SD) | 1.83 ± 1.25 | |
| Total bilirubin (mg/dL ± SD) | 0.90 ± 0.61 | |
| Aspartate aminotransferase (mU/mL ± SD) | 194.63 ± 152.0 | |
| Alanine aminotransferase (mU/mL ± SD) | 93.13 ± 62.2 | |
| Lactate (mmol/L ± SD) | 3.46 ± 2.2 |
| Category | Parameter | |
|---|---|---|
| Laboratory Values during ICU stay | Lowest platelet count (×109/L ± SD) | 116.00 ± 83.6 |
| Peak serum creatinine (mg/dL ± SD) | 3.23 ± 2.5 | |
| Highest total bilirubin (mg/dL ± SD) | 1.99 ± 2.3 | |
| Highest C-reactive protein (mg/L ± SD) | 227.38 ± 60.9 | |
| Highest creatine kinase (U/L ± SD) | 1574.25 ± 1680.4 | |
| Highest troponin level (pg/mL ± SD) | 59,820.88 ± 142,115.2 | |
| Highest lactate (mmol/L ± SD) | 6.51 ± 4.2 | |
| Maximum vasopressor dose (μg/min ± SD) | 69.79 ± 72.0 | |
| Severity Scores | Maximum APACHE II score | 27 ± 8 |
| Maximum SOFA score | 12 ± 3 | |
| Clinical Course and Outcomes | Total duration of mechanical ventilation (h ± SD) | 167.40 ± 160.2 |
| Total ICU length of stay (h ± SD) | 245.65 ± 197.1 | |
| Total hospital length of stay (days ± SD) | 26.50 ± 15.8 | |
| Transferred alive from ICU (%) | 62.5% | |
| Discharged alive (%) | 62.5% |
| Septic Shock | Cardiogenic Shock | p-Value | ||
|---|---|---|---|---|
| 24 h-Fluid Intake | Parenteral (mL + SD) | 4581 ± 1337 | 3012 ± 715.1 | 0.001 |
| Enteral (mL + SD) | 136.6 ± 268.4 | 353.8 ± 371.8 | 0.11 | |
| Total (mL + SD) | 4718 ± 1412 | 3365 ± 898.9 | 0.01 | |
| 24 h-Fluid Excretion | Urine Volume (mL + SD) | 840.7 ± 872.7 | 896.9 ± 1176 | 0.89 |
| Ultrafiltrate (mL + SD) | 425.8 ± 584.7 | 1728 ± 1454 | 0.03 | |
| Formula-based Skin water loss (mL + SD) | 529.9 ± 196 | 494.2 ± 111.2 | 0.96 | |
| TEWL-based Skin water loss (mL + SD) | 383.6 ± 271.1 | 328 ± 214.5 | 0.61 | |
| Total (using Formula-based Skin WL) (mL + SD) | 1721 ± 652.8 | 2646 ± 1144 | 0.02 | |
| Total (using TEWL-based Skin WL) (mL + SD) | 1650 ± 678.6 | 2521 ± 1080 | 0.02 | |
| 24 h-Fluid Balance | Total (using Formula-based Skin WL) (mL + SD) | 2997 ± 1492 | 719.7 ± 1564 | 0.001 |
| Total (using TEWL-based Skin WL) (mL + SD) | 3068 ± 1428 | 844.6 ± 1502 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopp, S.; Sagoschen, I.; Karbach, S.H.; Russwurm, M.; Lurz, P.; Münzel, T.; Wild, J. Assessing Vascular Tone and Fluid Balance in Septic and Cardiogenic Shock: A Feasibility Study on Skin Water Loss as a Diagnostic Tool. Biomedicines 2025, 13, 2644. https://doi.org/10.3390/biomedicines13112644
Kopp S, Sagoschen I, Karbach SH, Russwurm M, Lurz P, Münzel T, Wild J. Assessing Vascular Tone and Fluid Balance in Septic and Cardiogenic Shock: A Feasibility Study on Skin Water Loss as a Diagnostic Tool. Biomedicines. 2025; 13(11):2644. https://doi.org/10.3390/biomedicines13112644
Chicago/Turabian StyleKopp, Sabrina, Ingo Sagoschen, Susanne Helena Karbach, Martin Russwurm, Philipp Lurz, Thomas Münzel, and Johannes Wild. 2025. "Assessing Vascular Tone and Fluid Balance in Septic and Cardiogenic Shock: A Feasibility Study on Skin Water Loss as a Diagnostic Tool" Biomedicines 13, no. 11: 2644. https://doi.org/10.3390/biomedicines13112644
APA StyleKopp, S., Sagoschen, I., Karbach, S. H., Russwurm, M., Lurz, P., Münzel, T., & Wild, J. (2025). Assessing Vascular Tone and Fluid Balance in Septic and Cardiogenic Shock: A Feasibility Study on Skin Water Loss as a Diagnostic Tool. Biomedicines, 13(11), 2644. https://doi.org/10.3390/biomedicines13112644

