Artificial Intelligence-Guided Molecular Determinants of PI3K Pathway Alterations in Early-Onset Colorectal Cancer Among High-Risk Groups Receiving FOLFOX
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Patient Selection
2.2. Treatment Classification
2.3. PI3K Pathway Alteration Definition
2.4. Statistical Analysis
3. Results
3.1. Clinical and Demographic Profile of the Study Cohorts
3.2. Comparative Genomic Analysis by Age and Ancestry
3.3. Prevalence of PI3K Pathway Alterations by Age, Ancestry, and FOLFOX Treatment Status
3.4. Mutational Landscape
3.4.1. PI3K Pathway Alterations in Early-Onset Hispanic/Latino CRC
3.4.2. PI3K Pathway Alterations in Late-Onset Hispanic/Latino CRC
3.4.3. PI3K Pathway Alterations in Early-Onset Non-Hispanic White CRC
3.4.4. PI3K Pathway Alterations in Late-Onset Non-Hispanic White CRC
3.5. AI-Enabled Data Interrogation and Pre-Statistical Insights
4. Discussion
4.1. Ancestry- and Age-Specific Alteration Patterns
4.2. Impact of FOLFOX Chemotherapy on PI3K Alterations
4.3. Cross-Population Insights and Clinical Implications
4.4. AI-Guided Precision Oncology
4.5. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Patel, S.G.; Karlitz, J.J.; Yen, T.; Lieu, C.H.; Boland, C.R. The rising tide of early-onset colorectal cancer: A comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol. Hepatol. 2022, 7, 262–274. [Google Scholar] [CrossRef]
- Gandini, A.; Taieb, J.; Blons, H.; Netter, J.; Laurent-Puig, P.; Gallois, C. Early-Onset colorectal Cancer: From the laboratory to the clinic. Cancer Treat. Rev. 2024, 130, 102821. [Google Scholar] [CrossRef]
- Mauri, G.; Sartore-Bianchi, A.; Russo, A.G.; Marsoni, S.; Bardelli, A.; Siena, S. Early-onset colorectal cancer in young individuals. Mol. Oncol. 2019, 13, 109–131. [Google Scholar] [CrossRef]
- Meng, L.; Thapa, R.; Delgado, M.G.; Gomez, M.F.; Ji, R.; Knepper, T.C.; Hubbard, J.M.; Wang, X.; Permuth, J.B.; Kim, R.D.; et al. Association of Age with Treatment-Related Adverse Events and Survival in Patients with Metastatic Colorectal Cancer. JAMA Netw. Open 2023, 6, e2320035. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Ihionkhan, E.; Stoffel, E.M.; Kupfer, S.S. Disparities in Early-Onset Colorectal Cancer. Cells 2021, 10, 1018. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Wehner, M.R.; Matrisian, L.M.; Nead, K.T. Estimated Projection of US Cancer Incidence and Death to 2040. JAMA Netw. Open 2021, 4, e214708. [Google Scholar] [CrossRef]
- Santucci, C.; Mignozzi, S.; Alicandro, G.; Pizzato, M.; Malvezzi, M.; Negri, E.; Jha, P.; La Vecchia, C. Trends in cancer mortality under age 50 in 15 upper-middle and high-income countries. J. Natl. Cancer Inst. 2025, 117, 747–760. [Google Scholar] [CrossRef]
- Sinicrope, F.A. Increasing Incidence of Early-Onset Colorectal Cancer. N. Engl. J. Med. 2022, 386, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, A.; Woodhouse, M.; Gupta, S. Colorectal cancer is a leading cause of cancer incidence and mortality among adults younger than 50 years in the USA: A SEER-based analysis with comparison to other young-onset cancers. J. Investig. Med. 2017, 65, 311–315. [Google Scholar] [CrossRef]
- Perea, J.; Martí-Gallostra, M.; García-Rodríguez, A.; Vidal-Tocino, R.; Alcázar, J.A.; López-Rojo, I.; García, S.E.; Hurtado, E.; Jiménez, L.M.; Álvaro, E.; et al. Immigrant Health and Early-Onset Colorectal Cancer Disparities: Results from the Spanish Early-Onset Colorectal Cancer Consortium. JCO Glob. Oncol. 2024, 10, e2400393. [Google Scholar] [CrossRef]
- Hamilton, D.a.F. Matthew Hayes-Bautista David Hsu Paul 2025, U.S. Latino GDP Report; The Latino GDP Project, Community Partners; California Lutheran University: Los Angeles, CA, USA, 2025. [Google Scholar]
- Alshenaifi, J.Y.; Vetere, G.; Maddalena, G.; Yousef, M.; White, M.G.; Shen, J.P.; Vilar, E.; Parseghian, C.; Dasari, A.; Morris, V.K.; et al. Mutational and co-mutational landscape of early onset colorectal cancer. Biomarkers 2025, 30, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Antelo, M.; Balaguer, F.; Shia, J.; Shen, Y.; Hur, K.; Moreira, L.; Cuatrecasas, M.; Bujanda, L.; Giraldez, M.D.; Takahashi, M.; et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS ONE 2012, 7, e45357. [Google Scholar] [CrossRef]
- Lieu, C.H.; Golemis, E.A.; Serebriiskii, I.G.; Newberg, J.; Hemmerich, A.; Connelly, C.; Messersmith, W.A.; Eng, C.; Eckhardt, S.G.; Frampton, G.; et al. Comprehensive Genomic Landscapes in Early and Later Onset Colorectal Cancer. Clin. Cancer Res. 2019, 25, 5852–5858. [Google Scholar] [CrossRef]
- Storandt, M.H.; Shi, Q.; Eng, C.; Lieu, C.; George, T.; Stoppler, M.C.; Mauer, E.; Yilma, B.; Fragkogianni, S.; Teslow, E.A.; et al. Genomic Landscapes of Early-Onset Versus Average-Onset Colorectal Cancer Populations. Cancers 2025, 17, 836. [Google Scholar] [CrossRef]
- Tang, J.; Peng, W.; Tian, C.; Zhang, Y.; Ji, D.; Wang, L.; Jin, K.; Wang, F.; Shao, Y.; Wang, X.; et al. Molecular characteristics of early-onset compared with late-onset colorectal cancer: A case controlled study. Int. J. Surg. 2024, 110, 4559–4570. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, G.A.; Greten, T.F.; Bonilla, C.M. Unveiling Disparities: Analyzing Hispanic Inclusion in Liver Cancer Research Databases in the United States. J. Racial Ethn. Health Disparit. 2024. [Google Scholar] [CrossRef] [PubMed]
- Monge, C.; Greten, T.F. Underrepresentation of Hispanics in clinical trials for liver cancer in the United States over the past 20 years. Cancer Med. 2024, 13, e6814. [Google Scholar] [CrossRef]
- Zavala, V.A.; Bracci, P.M.; Carethers, J.M.; Carvajal-Carmona, L.; Coggins, N.B.; Cruz-Correa, M.R.; Davis, M.; de Smith, A.J.; Dutil, J.; Figueiredo, J.C.; et al. Cancer health disparities in racial/ethnic minorities in the United States. Br. J. Cancer 2021, 124, 315–332. [Google Scholar] [CrossRef]
- Monge, C.; Waldrup, B.; Carranza, F.G.; Velazquez-Villarreal, E. WNT and TGF-Beta Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Populations. Cancers 2024, 16, 3903. [Google Scholar] [CrossRef] [PubMed]
- Monge, C.; Waldrup, B.; Carranza, F.G.; Velazquez-Villarreal, E. Ethnicity-Specific Molecular Alterations in MAPK and JAK/STAT Pathways in Early-Onset Colorectal Cancer. Cancers 2025, 17, 1093. [Google Scholar] [CrossRef] [PubMed]
- Monge, C.; Waldrup, B.; Manjarrez, S.; Carranza, F.G.; Velazquez-Villarreal, E. Detecting PI3K and TP53 Pathway Disruptions in Early-Onset Colorectal Cancer Among Hispanic/Latino Patients. Cancer Med. 2025, 14, e70791. [Google Scholar] [CrossRef] [PubMed]
- Sabapathy, K.; Lane, D.P. Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 2018, 15, 13–30. [Google Scholar] [CrossRef]
- O’Reilly, M.; Linehan, A.; Krstic, A.; Kolch, W.; Sheahan, K.; Winter, D.C.; Mc Dermott, R. Oncotherapeutic Strategies in Early Onset Colorectal Cancer. Cancers 2023, 15, 552. [Google Scholar] [CrossRef]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct. Target. Ther. 2023, 8, 92. [Google Scholar] [CrossRef]
- Morris, V.K.; Kennedy, E.B.; Baxter, N.N.; Benson, A.B., 3rd; Cercek, A.; Cho, M.; Ciombor, K.K.; Cremolini, C.; Davis, A.; Deming, D.A.; et al. Treatment of Metastatic Colorectal Cancer: ASCO Guideline. J. Clin. Oncol. 2023, 41, 678–700. [Google Scholar] [CrossRef]
- Chua, W.; Goldstein, D.; Lee, C.K.; Dhillon, H.; Michael, M.; Mitchell, P.; Clarke, S.J.; Iacopetta, B. Molecular markers of response and toxicity to FOLFOX chemotherapy in metastatic colorectal cancer. Br. J. Cancer 2009, 101, 998–1004. [Google Scholar] [CrossRef]
- Oh, H.J.; Bae, J.M.; Wen, X.; Jung, S.; Kim, Y.; Kim, K.J.; Cho, N.-Y.; Kim, J.H.; Han, S.-W.; Kim, T.-Y.; et al. p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy. Br. J. Cancer 2019, 120, 797–805. [Google Scholar] [CrossRef]
- Russo, A.; Bazan, V.; Iacopetta, B.; Kerr, D.; Soussi, T.; Gebbia, N. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: Influence of tumor site, type of mutation, and adjuvant treatment. J. Clin. Oncol. 2005, 23, 7518–7528. [Google Scholar] [CrossRef]
- Yang, E.W.; Velazquez-Villarreal, E. AI-HOPE: An AI-driven conversational agent for enhanced clinical and genomic data integration in precision medicine research. Bioinformatics 2025, 41, btaf359. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, E.W.; Waldrup, B.; Velazquez-Villarreal, E. From Mutation to Prognosis: AI-HOPE-PI3K Enables Artificial Intelligence Agent-Driven Integration of PI3K Pathway Data in Colorectal Cancer Precision Medicine. Int. J. Mol. Sci. 2025, 26, 6487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Waldrup, B.; Carranza, F.; Jin, Y.; Amzaleg, Y.; Postel, M.; Craig, D.W.; Carpten, J.D.; Salhia, B.; Ricker, C.N.; Culver, J.O.; et al. Integrative multi-omics profiling of colorectal cancer from a Hispanic/Latino cohort of patients. medRxiv 2024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carranza, F.G.; Waldrup, B.; Jin, Y.; Amzaleg, Y.; Postel, M.; Craig, D.W.; Carpten, J.D.; Salhia, B.; Hernandez, D.; Gutierrez, N.; et al. Assessment of MYC Gene and WNT Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Patients Using Integrated Multi-Omics Approaches. medRxiv 2025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carranza, F.G.; Diaz, F.C.; Ninova, M.; Velazquez-Villarreal, E. Current state and future prospects of spatial biology in colorectal cancer. Front. Oncol. 2024, 14, 1513821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saberzadeh-Ardestani, B.; Liu, Z.; Stein, M.I.; Sherman, W.A.; Trussoni, C.E.; Abbott, C.W.; Yan, D.; Smith, S.; Shanmugam, K.; Graham, R.P.; et al. Spatially Resolved, Multiregion Proteomics for Prediction of Immunotherapy Outcome in Deficient Mismatch Repair Metastatic Colorectal Cancer. Clin. Cancer Res. 2025, 31, 1783–1795. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, K.; Huang, H.; Hu, Z.; Zhu, Y.; Yao, Y.; Wang, Y.; Chen, J.; Li, Y.; Li, D.; Wei, P. Prognostic and therapeutic implications related to glycosylation profiles of cancer-associated fibroblasts in colorectal cancer: Insights from single-cell and bulk transcriptomics. Funct. Integr. Genom. 2025, 25, 169. [Google Scholar] [CrossRef] [PubMed]


| Clinical Feature | H/L Cohort n (%) | NHW Cohort n (%) |
|---|---|---|
| Age Onset & Treatment | ||
| Early-Onset Colorectal Cancer | 125 (46.9%) | 677 (30.1%) |
| Late-Onset Colorectal Cancer | 141 (53%) | 1572 (69.9%) |
| Sample Type | ||
| Primary Tumor | 266(100%) | 2249 (100%) |
| Sex | ||
| Male | 158 (59.4%) | 1267 (56.3%) |
| Female | 108 (40.6%) | 982 (43.7%) |
| Sample Type | ||
| Primary Tumor | 266 (100.0%) | 2249 (100.0%) |
| Stage at Diagnosis | ||
| Stage 1–3 | 156 (58.6%) | 1236 (55.0%) |
| Stage 4 | 108 (40.6%) | 1005 (44.7%) |
| NA | 2 (0.8%) | 8 (0.4%) |
| Ethnicity | ||
| Hispanic/Latinos (H/L) | 266 (100%) | 0 (0.0%) |
| Non-Hispanic Whites (NHW) | 0 (0.0%) | 2249 (100.0%) |
| (a) | ||||||
| Gene | Early-Onset Hispanic/Latino Treated with FOLFOX n (%) | Early-Onset Hispanic/Latino Not Treated with FOLFOX n (%) | p-Value | Late-Onset Hispanic/Latino Treated with FOLFOX n (%) | Late-Onset Hispanic/Latino Not Treated with FOLFOX n (%) | p-Value |
| INPP4B Mutation | ||||||
| Present | 0 (0.0%) | 5 (9.6%) | 0.01108 | 1 (1.1%) | 0 (0.0%) | 1 |
| Absent | 73 (100.0%) | 47 (90.4%) | 90 (98.9%) | 50 (100.0%) | ||
| PPP2R1A Mutation | ||||||
| Present | 0 (0.0%) | 4 (7.7%) | 0.02793 | 0 (0.0%) | 2 (4.0%) | 0.1241 |
| Absent | 73 (100.0%) | 48 (92.3%) | 91 (100.0%) | 48 (96.0%) | ||
| RICTOR Mutation | ||||||
| Present | 0 (0.0%) | 2 (3.8%) | 0.1711 | 0 (0.0%) | 4 (8.0%) | 0.0146 |
| Absent | 73 (100.0%) | 50 (96.2%) | 91 (100.0%) | 46 (92.0%) | ||
| (b) | ||||||
| Gene | Early-Onset NHW Treated with FOLFOX n (%) | Early-Onset NHW Not Treated with FOLFOX n (%) | p-Value | Late-Onset NHW Treated with FOLFOX n (%) | Late-Onset NHW Not Treated with FOLFOX n (%) | p-Value |
| AKT2 Mutation | ||||||
| Present | 2 (0.5%) | 2 (0.7%) | 1 | 6 (0.7%) | 12 (1.8%) | 0.05296 |
| Absent | 373 (99.5%) | 300 (99.3%) | 913 (99.3%) | 641 (98.2%) | ||
| AKT3 Mutation | ||||||
| Present | 3 (0.8%) | 9 (3.0%) | 0.04069 | 9 (1.0%) | 12 (1.8%) | 0.2158 |
| Absent | 372 (99.2%) | 293 (97.0%) | 910 (99.0%) | 641 (98.2%) | ||
| MTOR Mutation | ||||||
| Present | 16 (4.3%) | 19 (6.3%) | 0.3134 | 41 (4.5%) | 51 (7.8%) | 0.007398 |
| Absent | 359 (95.7%) | 283 (93.7%) | 878 (95.5%) | 602 (92.2%) | ||
| (c) | ||||||
| Clinical Feature | Early-Onset Hispanic/Latino Treated with FOLFOX n (%) | Early-Onset NHW Treated with FOLFOX n (%) | p-Value | Early-Onset Hispanic/Latino Not Treated with FOLFOX n (%) | Early-Onset NHW Not Treated with FOLFOX n (%) | p-Value |
| INPP4B Mutation | ||||||
| Present | 0 (0.0%) | 5 (1.3%) | 1 | 5 (9.6%) | 3 (1%) | 0.002262 |
| Absent | 73 (100.0%) | 373 (99.2%) | 47 (92.3%) | 299 (99%) | ||
| PIK3R2 Mutation | ||||||
| Present | 5 (6.8%) | 6 (1.6%) | 0.02521 | 1 (1.9%) | 8 (2.6%) | 1 |
| Absent | 68 (93.2%) | 369 (98.4%) | 51 (98.1%) | 294 (97.4%) | ||
| TSC1 Mutation | ||||||
| Present | 2 (2.7%) | 7 (1.9%) | 0.6445 | 6 (11.5%) | 10 (3.3%) | 0.02282 |
| Absent | 71 (97.3%) | 368 (98.1%) | 46 (88.5%) | 292 (96.7%) | ||
| RPTOR Mutation | ||||||
| Present | 2 (2.7%) | 10 (2.7%) | 1 | 4 (7.7%) | 6 (2.0%) | 0.04426 |
| Absent | 71 (97.3%) | 365 (97.3%) | 48 (92.3%) | 296 (98.0%) | ||
| (a) | ||||||
| Pathway Alterations | Early-Onset Hispanic/Latino Treated with FOLFOX n (%) | Early-Onset Hispanic/Latino Not Treated with FOLFOX n (%) | p-Value | Late-Onset Hispanic/Latino Treated with FOLFOX n (%) | Late-Onset Hispanic/Latino Not Treated with FOLFOX n (%) | p-Value |
| PI3K Alterations Present | 26 (35.6%) | 23 (44.2%) | 0.4316 | 40 (44.0%) | 18 (36.0%) | 0.4596 |
| PI3K Alterations Absent | 47 (64.4%) | 29 (55.8%) | 51 (56.0%) | 32 (64.0%) | ||
| (b) | ||||||
| Pathway Alterations | Early-Onset NHW Treated with FOLFOX n (%) | Early-Onset NHW Not Treated with FOLFOX n (%) | p-Value | Late-Onset NHW Treated with FOLFOX n (%) | Late-Onset NHW Not Treated with FOLFOX n (%) | p-Value |
| PI3K Alterations Present | 124 (33.1%) | 105 (34.8%) | 0.7014 | 336 (36.6%) | 266 (40.7%) | 0.1042 |
| PI3K Alterations Absent | 251 (66.9%) | 197 (65.2%) | 583 (63.4%) | 387 (59.3%) | ||
| (c) | ||||||
| Pathway Alterations | Early-Onset Hispanic/Latino Treated with FOLFOX n (%) | Early-Onset NHW Treated with FOLFOX n (%) | p-Value | Early-Onset Hispanic/Latino Not Treated with FOLFOX n (%) | Early-Onset NHW Not Treated with FOLFOX n (%) | p-Value |
| PI3K Alterations Present | 26 (35.6%) | 124 (33.1%) | 0.7743 | 23 (44.2%) | 105 (34.8%) | 0.2479 |
| PI3K Alterations Absent | 47 (64.4%) | 251 (66.9%) | 29 (55.8%) | 197 (65.2%) | ||
| (d) | ||||||
| Pathway Alterations | Late-Onset Hispanic/Latino Treated with FOLFOX n (%) | Late-Onset NHW Treated with FOLFOX n (%) | p-Value | Late-Onset Hispanic/Latino Not Treated with FOLFOX n (%) | Late-Onset NHW Not Treated with FOLFOX n (%) | p-Value |
| PI3K Alterations Present | 40 (44.0%) | 336 (36.6%) | 0.2012 | 18 (36.0%) | 266 (40.7%) | 0.6114 |
| PI3K Alterations Absent | 51 (56.0%) | 583 (63.4%) | 32 (64.0%) | 387 (59.3%) | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz, F.C.; Waldrup, B.; Carranza, F.G.; Manjarrez, S.; Velazquez-Villarreal, E. Artificial Intelligence-Guided Molecular Determinants of PI3K Pathway Alterations in Early-Onset Colorectal Cancer Among High-Risk Groups Receiving FOLFOX. Biomedicines 2025, 13, 2630. https://doi.org/10.3390/biomedicines13112630
Diaz FC, Waldrup B, Carranza FG, Manjarrez S, Velazquez-Villarreal E. Artificial Intelligence-Guided Molecular Determinants of PI3K Pathway Alterations in Early-Onset Colorectal Cancer Among High-Risk Groups Receiving FOLFOX. Biomedicines. 2025; 13(11):2630. https://doi.org/10.3390/biomedicines13112630
Chicago/Turabian StyleDiaz, Fernando C., Brigette Waldrup, Francisco G. Carranza, Sophia Manjarrez, and Enrique Velazquez-Villarreal. 2025. "Artificial Intelligence-Guided Molecular Determinants of PI3K Pathway Alterations in Early-Onset Colorectal Cancer Among High-Risk Groups Receiving FOLFOX" Biomedicines 13, no. 11: 2630. https://doi.org/10.3390/biomedicines13112630
APA StyleDiaz, F. C., Waldrup, B., Carranza, F. G., Manjarrez, S., & Velazquez-Villarreal, E. (2025). Artificial Intelligence-Guided Molecular Determinants of PI3K Pathway Alterations in Early-Onset Colorectal Cancer Among High-Risk Groups Receiving FOLFOX. Biomedicines, 13(11), 2630. https://doi.org/10.3390/biomedicines13112630

