Risk Stratification and Optimal Use of Implantable Cardioverter-Defibrillator Therapy in Primary Prevention of Sudden Cardiac Death in Genetic Cardiomyopathies, with Assessment of the Role of Genetic Variants in Guiding Therapeutic Decisions
Abstract
1. Introduction
2. Cardiomyopathies: Clinical Phenotypes and Genetic Determinants
2.1. Dilated Cardiomyopathy and Non-Dilated Left Ventricular Cardiomyopathy
2.2. Hypertrophic Cardiomyopathy
2.3. Arrhythmogenic Cardiomyopathy
2.4. Restrictive Cardiomyopathy
3. Mechanisms of Arrhythmogenesis in Cardiomyopathies
4. Non-Genetic Risk Stratification in Cardiomyopathy: The Role of CMR-Detected Myocardial Fibrosis
5. Evolving Risk Stratification: Genetic Modulation and Its Integration with Conventional Risk Factors
5.1. Dilated Cardiomyopathy: Risk Stratification Beyond Ejection Fraction
5.2. Non-Dilated Left Ventricular Cardiomyopathy: Lessons from Genotype and Related Cardiomyopathies
5.3. Hypertrophic Cardiomyopathy: Clinical Models Still over Genetics
5.4. Arrhythmogenic Cardiomyopathy: Limitations and Advances
5.5. Restrictive Cardiomyopathy: Managing Heterogeneity
| Cardiomyopathy Subtype | Key Genes/Variants | Risk Features | Risk Tools/ICD Implications |
|---|---|---|---|
| Dilated cardiomyopathy (DCM) | LMNA truncating (nonsense/frameshift) → high arrhythmic risk; some missense (exons 7–12) VUS [32,33,34]. PLN p.Arg14del (in-frame deletion) → malignant VAs, risk model validated [35,36]. FLNC truncating → VAs, remodeling; some missense alter splicing/aggregation [37,38,39]. TTN truncating (frameshift, nonsense, splice-site) → common, milder arrhythmic profile, recovery possible [40,41]. BAG3 p.Pro209Leu (missense) → early DCM, HF progression, VAs [23]. TAZ loss-of-function (frameshift, nonsense, splice-site, insertion/deletion) → Barth syndrome [16]. SCN5A missense → arrhythmic DCM [15]. | High risk irrespective of LVEF for LMNA, PLN, FLNC; TTN more favorable; BAG3 early HF; TAZ syndromic. | LMNA-risk VTA score [34]; PLN risk score [35]; genotype informs ICD beyond LVEF. |
| Non-dilated LV cardiomyopathy (NDLVC) | FLNC (truncating) → fibrosis, VAs [37]. DSP truncating → left-dominant ACM; missense in binding domains [44]. PLN p.Arg14del → VAs before dilation [36]. RBM20 missense (RS domain) → aggressive, early-onset, male predominance [45]. TMEM43 p.S358L → highly malignant [20]. DES (missense, splice-site) → fibrosis, arrhythmias [2]. | High VA/SCD risk, often with preserved LVEF; subepicardial LGE; male sex increases risk (RBM20). | PLN risk score [35]; ICD if NSVT, family SCD, or LGE (ESC 2023) [2]. |
| Hypertrophic cardiomyopathy (HCM) | MYBPC3 truncating (frameshift, nonsense, splice-site) → haploinsufficiency, later onset [47]. MYH7 missense (dominant-negative) → early, malignant [47,52]. TNNT2, TNNI3 (missense) → malignant arrhythmias without severe hypertrophy [52]. | MYBPC3: later/progressive; MYH7: early, higher arrhythmic risk; troponins: malignant arrhythmias. | Risk-SCD model [48]; HCM Risk-Kids [49]; PRIMaCY [2]; LGE role evolving [50]. |
| Arrhythmogenic cardiomyopathy (ACM) | PKP2 (truncating/missense) → frequent ARVC substrate [61]. DSP (truncating/missense) → left-dominant with fibrosis [44,60]. TMEM43 p.S358L (missense) → highly malignant, SCD first event [20]. PLN p.Arg14del founder mutation [21]. DES, JUP, DSG2, DSC2 [2]. | PKP2 frequent; DSP left-dominant subtype; TMEM43 malignant; PLN arrhythmogenic. | ARVC Risk Calculator [58,59]; DSP risk score [60]; ICD justified on genotype (e.g., TMEM43). |
| Restrictive cardiomyopathy (RCM) | TNNI3 (missense) → ↑ Ca2+ sensitivity, diastolic stiffness [63]. TNNT2 (missense) → restrictive physiology [63]. FLNC (truncating) → restrictive–arrhythmic [22,37]. DES (missense/splice-site) → conduction abnormalities [63]. BAG3 (incl. p.Pro209Leu) → myofibrillar myopathy [23]. Sarcomeric (MYH7, MYBPC3, ACTC1, TPM1, MYPN, MYL2/3) [2]. GLA loss-of-function (Fabry) [64]; TTR missense (ATTRv) [65]. | High mortality; >50% pediatric to Tx/death [62]. Fabry → VA risk; ATTRv → HF-driven mortality. | ICD only for unstable VAs; limited role in amyloidosis [65]; Fabry with VA risk [64]. |
6. Feasibility and Challenges of Genotype-Based ICD Trials
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACM | Arrhythmogenic cardiomyopathy |
| ARVC | Arrhythmogenic right ventricular cardiomyopathy |
| CMR | Cardiovascular magnetic resonance |
| DCM | Dilated cardiomyopathy |
| EPS | Electrophysiological study |
| GDMT | Guideline-directed medical therapy |
| HCM | Hypertrophic cardiomyopathy |
| HNDCM | Hypokinetic non-dilated cardiomyopathy |
| ICD | Implantable cardioverter defibrillator |
| LGE | Late gadolinium enhancement |
| LV | Left ventricle/Left ventricular |
| LVEF | Left ventricular ejection fraction |
| LVOTO | Left ventricle outflow tract obstruction |
| NDLVC | Non-dilated left ventricular cardiomyopathy |
| NSVT | Non-sustained ventricular tachycardia |
| P/LP | Pathogenic/likely pathogenic |
| RCM | Restrictive cardiomyopathy |
| RCT(s) | Randomized control trial(s) |
| RV | Right ventricle/Right ventricular |
| SCD | Sudden cardiac death |
| VA(s) | Ventricular arrhythmia(s) |
| VF | Ventricular fibrillation |
| VT | Ventricular tachycardia |
| VUS | Variants of uncertain significance |
References
- Corrado, D.; Link, M.S.; Schwartz, P.J. Implantable defibrillators in primary prevention of genetic arrhythmias. A shocking choice? Eur. Heart J. 2022, 43, 3029–3040. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [PubMed]
- Basso, C.; Thiene, G.; Corrado, D.; Buja, G.; Melacini, P.; Nava, A. Hypertrophic cardiomyopathy and sudden death in the young: Pathologic evidence of myocardial ischemia. Hum. Pathol. 2000, 31, 988–998. [Google Scholar] [CrossRef]
- Thiene, G.; Nava, A.; Corrado, D.; Rossi, L.; Pennelli, N. Right ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med. 1988, 318, 129–133. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Ackerman, M.J.; Antzelevitch, C.; Bezzina, C.R.; Borggrefe, M.; Cuneo, B.F.; Wilde, A.A.M. Inherited cardiac arrhythmias. Nat. Rev. Dis. Prim. 2020, 6, 58. [Google Scholar] [CrossRef]
- Corrado, D.; Zorzi, A.; Cerrone, M.; Rigato, I.; Mongillo, M.; Bauce, B.; Delmar, M. Relationship Between Arrhythmogenic Right Ventricular Cardiomyopathy and Brugada Syndrome: New Insights from Molecular Biology and Clinical Implications. Circ. Arrhythm. Electrophysiol. 2016, 9, e003631. [Google Scholar] [CrossRef]
- Corrado, D.; Anastasakis, A.; Basso, C.; Bauce, B.; Blomström-Lundqvist, C.; Bucciarelli-Ducci, C.; Cipriani, A.; De Asmundis, C.; Gandjbakhch, E.; Jiménez-Jáimez, J.; et al. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report. Int. J. Cardiol. 2024, 395, 131447. [Google Scholar] [CrossRef]
- Olde Nordkamp, L.R.A.; Postema, P.G.; Knops, R.E.; van Dijk, N.; Limpens, J.; Wilde, A.A.M.; de Groot, J.R. Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: A systematic review and meta-analysis of inappropriate shocks and complications. Heart Rhythm 2016, 13, 443–454. [Google Scholar] [CrossRef]
- Olde Nordkamp, L.R.A.; Wilde, A.A.M.; Tijssen, J.G.P.; Knops, R.E.; van Dessel, P.F.H.M.; de Groot, J.R. The ICD for primary prevention in patients with inherited cardiac diseases: Indications, use, and outcome: A comparison with secondary prevention. Circ. Arrhythm. Electrophysiol. 2013, 6, 91–100. [Google Scholar] [CrossRef]
- Brouwer, T.F.; Yilmaz, D.; Lindeboom, R.; Buiten, M.S.; Olde Nordkamp, L.R.A.; Schalij, M.J.; Wilde, A.A.; van Erven, L.; Knops, R.E. Long-Term Clinical Outcomes of Subcutaneous Versus Transvenous Implantable Defibrillator Therapy. J. Am. Coll. Cardiol. 2016, 68, 2047–2055. [Google Scholar] [CrossRef]
- Bettin, M.; Larbig, R.; Rath, B.; Fischer, A.; Frommeyer, G.; Reinke, F.; Köbe, J.; Eckardt, L. Long-Term Experience with the Subcutaneous Implantable Cardioverter-Defibrillator in Teenagers and Young Adults. JACC Clin. Electrophysiol. 2017, 3, 1499–1506. [Google Scholar] [CrossRef]
- Paldino, A.; Dal Ferro, M.; Stolfo, D.; Gandin, I.; Medo, K.; Graw, S.; Gigli, M.; Gagno, G.; Zaffalon, D.; Castrichini, M.; et al. Prognostic Prediction of Genotype vs Phenotype in Genetic Cardiomyopathies. J. Am. Coll. Cardiol. 2022, 80, 1981–1994. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.A.; Cook, S.A.; Seidman, J.G.; Seidman, C.E. Clinical and Mechanistic Insights into the Genetics of Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 68, 2871–2886. [Google Scholar] [CrossRef] [PubMed]
- McNair, W.P.; Sinagra, G.; Taylor, M.R.G.; Di Lenarda, A.; Ferguson, D.A.; Salcedo, E.E.; Slavov, D.; Zhu, X.; Caldwell, J.H.; Mestroni, L. SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J. Am. Coll. Cardiol. 2011, 57, 2160–2168. [Google Scholar] [CrossRef] [PubMed]
- Schlame, M.; Kelley, R.I.; Feigenbaum, A.; Towbin, J.A.; Heerdt, P.M.; Schieble, T.; Wanders, R.J.A.; DiMauro, S.; Blanck, T.J.J. Phospholipid abnormalities in children with Barth syndrome. J. Am. Coll. Cardiol. 2003, 42, 1994–1999. [Google Scholar] [CrossRef]
- Escobar-López, L.; Ochoa, J.P.; Mirelis, J.G.; Espinosa, M.Á.; Navarro, M.; Gallego-Delgado, M.; Barriales-Villa, R.; Robles-Mezcua, A.; Basurte-Elorz, M.T.; Gutiérrez García-Moreno, L.; et al. Association of Genetic Variants with Outcomes in Patients with Nonischemic Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2021, 78, 1682–1699. [Google Scholar] [CrossRef]
- Pelliccia, A.; Lemme, E.; Maestrini, V.; Di Paolo, F.M.; Pisicchio, C.; Di Gioia, G.; Caselli, S. Does Sport Participation Worsen the Clinical Course of Hypertrophic Cardiomyopathy? Circulation 2018, 137, 531–533. [Google Scholar] [CrossRef]
- Marcus, F.I.; McKenna, W.J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke, D.A.; Calkins, H.; Corrado, D.; Cox, M.G.P.J.; Daubert, J.P.; et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/Dysplasia: Proposed modification of the task force criteria. Circulation 2010, 121, 1533–1541. [Google Scholar] [CrossRef]
- Hodgkinson, K.A.; Howes, A.J.; Boland, P.; Shen, X.S.; Stuckless, S.; Young, T.-L.; Curtis, F.; Collier, A.; Parfrey, P.S.; Connors, S.P. Long-Term Clinical Outcome of Arrhythmogenic Right Ventricular Cardiomyopathy in Individuals with a p.S358L Mutation in TMEM43 Following Implantable Cardioverter Defibrillator Therapy. Circ. Arrhythmia Electrophysiol. 2016, 9, e003589. [Google Scholar] [CrossRef]
- van der Zwaag, P.A.; van Rijsingen, I.A.W.; Asimaki, A.; Jongbloed, J.D.H.; van Veldhuisen, D.J.; Wiesfeld, A.C.P.; Cox, M.G.P.J.; van Lochem, L.T.; de Boer, R.A.; Hofstra, R.M.W.; et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: Evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 2012, 14, 1199–1207. [Google Scholar] [CrossRef]
- Rapezzi, C.; Aimo, A.; Barison, A.; Emdin, M.; Porcari, A.; Linhart, A.; Keren, A.; Merlo, M.; Sinagra, G. Restrictive cardiomyopathy: Definition and diagnosis. Eur. Heart J. 2022, 43, 4679–4693. [Google Scholar] [CrossRef] [PubMed]
- Meister-Broekema, M.; Freilich, R.; Jagadeesan, C.; Rauch, J.N.; Bengoechea, R.; Motley, W.W.; Kuiper, E.F.E.; Minoia, M.; Furtado, G.V.; van Waarde, M.A.W.H.; et al. Myopathy-associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks. Nat. Commun. 2018, 9, 5342. [Google Scholar] [CrossRef]
- Lucas Laws, J.; Lancaster, M.C.; Shoemaker, M.B.; Stevenson, W.G.; Hung, R.R.; Wells, Q.; Brinkley, D.M.; Hughes, S.; Anderson, K.; Roden, D.; et al. Arrhythmias as Presentation of Genetic Cardiomyopathy. Circ. Res. 2022, 130, 1698–1722. [Google Scholar] [CrossRef]
- Sato, P.Y.; Musa, H.; Coombs, W.; Guerrero-Serna, G.; Patiño, G.A.; Taffet, S.M.; Isom, L.L.; Delmar, M. Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ. Res. 2009, 105, 523–526. [Google Scholar] [CrossRef]
- Watanabe, H.; Yang, T.; Stroud, D.M.; Lowe, J.S.; Harris, L.; Atack, T.C.; Wang, D.W.; Hipkens, S.B.; Leake, B.; Hall, L.; et al. Striking in vivo phenotype of a disease-associated human scn5a mutation producing minimal changes in vitro. Circulation 2011, 124, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Raymond-Paquin, A.; Nattel, S.; Wakili, R.; Tadros, R. Mechanisms and Clinical Significance of Arrhythmia-Induced Cardiomyopathy. Can. J. Cardiol. 2018, 34, 1449–1460. [Google Scholar] [CrossRef]
- Hookana, E.; Junttila, M.J.; Puurunen, V.-P.; Tikkanen, J.T.; Kaikkonen, K.S.; Kortelainen, M.-L.; Myerburg, R.J.; Huikuri, H.V. Causes of nonischemic sudden cardiac death in the current era. Heart Rhythm 2011, 8, 1570–1575. [Google Scholar] [CrossRef] [PubMed]
- Junttila, M.J.; Holmström, L.; Pylkäs, K.; Mantere, T.; Kaikkonen, K.; Porvari, K.; Kortelainen, M.-L.; Pakanen, L.; Kerkelä, R.; Myerburg, R.J.; et al. Primary Myocardial Fibrosis as an Alternative Phenotype Pathway of Inherited Cardiac Structural Disorders. Circulation 2018, 137, 2716–2726. [Google Scholar] [CrossRef]
- Gupta, S.; Ge, Y.; Singh, A.; Gräni, C.; Kwong, R.Y. Multimodality Imaging Assessment of Myocardial Fibrosis. JACC Cardiovasc. Imaging 2021, 14, 2457–2469. [Google Scholar] [CrossRef]
- Alba, A.C.; Foroutan, F.; Duero Posada, J.; Battioni, L.; Schofield, T.; Alhussein, M.; Agoritsas, T.; Spencer, F.A.; Guyatt, G. Implantable cardiac defibrillator and mortality in non-ischaemic cardiomyopathy: An updated meta-analysis. Heart 2018, 104, 230–236. [Google Scholar] [CrossRef]
- Wahbi, K.; Ben Yaou, R.; Gandjbakhch, E.; Anselme, F.; Gossios, T.; Lakdawala, N.K.; Stalens, C.; Sacher, F.; Babuty, D.; Trochu, J.-N.; et al. Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies. Circulation 2019, 140, 293–302. [Google Scholar] [CrossRef]
- Bhaskaran, A.; Ben Yaou, R.; Helms, A.S.; Fayssoil, A.; Richard, P.; Stojkovic, T.; Anselme, F.; Labombarda, F.; Chikhaoui, C.; De Sandre-Giovannoni, A.; et al. Location of LMNA variants and clinical outcomes in cardiomyopathy. JAMA Cardiol. 2025, 10, 896–903. [Google Scholar] [CrossRef]
- Rootwelt-Norberg, C.; Christensen, A.H.; Skjølsvik, E.T.; Chivulescu, M.; Vissing, C.R.; Bundgaard, H.; Aabel, E.W.; Bogsrud, M.P.; Hasselberg, N.E.; Lie, Ø.H.; et al. Timing of cardioverter-defibrillator implantation in patients with cardiac laminopathies—External validation of the LMNA-risk ventricular tachyarrhythmia calculator. Heart Rhythm 2023, 20, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Verstraelen, T.E.; Van Lint, F.H.M.; Bosman, L.P.; De Brouwer, R.; Proost, V.M.; Abeln, B.G.S.; Taha, K.; Zwinderman, A.H.; Dickhoff, C.; Oomen, T.; et al. Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction. Eur. Heart J. 2021, 42, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- Vafiadaki, E.; Chaudhari, I.; Soliman, K.M.; Eliopoulos, A.G.; Kranias, E.G.; Sanoudou, D. Genetic landscape of phospholamban cardiomyopathies. Front. Cell Dev. Biol. 2025, 13, 1626242. [Google Scholar] [CrossRef]
- Gigli, M.; Stolfo, D.; Graw, S.L.; Merlo, M.; Gregorio, C.; Nee Chen, S.; Dal Ferro, M.; Paldino, A.; De Angelis, G.; Brun, F.; et al. Phenotypic Expression, Natural History, and Risk Stratification of Cardiomyopathy Caused by Filamin C Truncating Variants. Circulation 2021, 144, 1600–1611. [Google Scholar] [CrossRef]
- Akhtar, M.M.; Lorenzini, M.; Pavlou, M.; Ochoa, J.P.; O’Mahony, C.; Restrepo-Cordoba, M.A.; Segura-Rodriguez, D.; Bermúdez-Jiménez, F.; Molina, P.; Cuenca, S.; et al. Association of Left Ventricular Systolic Dysfunction Among Carriers of Truncating Variants in Filamin C with Frequent Ventricular Arrhythmia and End-stage Heart Failure. JAMA Cardiol. 2021, 6, 891–901, Erratum in JAMA Cardiol. 2021, 6, 980. [Google Scholar] [CrossRef]
- Roldán-Sevilla, T.; Pérez-Serra, A.; Campuzano, O.; Sarquella-Brugada, G.; Cesar, S.; Arbelo, E. Missense mutations in the FLNC gene causing familial dilated cardiomyopathy. Circ. Genom. Precis. Med. 2019, 12, e002388. [Google Scholar] [CrossRef] [PubMed]
- van der Zwaag, P.A.; Van Rijsingen, I.A.W.; De Ruiter, R.; Nannenberg, E.A.; Groeneweg, J.A.; Post, J.G.; Hauer, R.N.W.; Van Gelder, I.C.; Van den Berg, M.P.; Van der Harst, P.; et al. Recurrent and founder mutations in the Netherlands: RBM20 mutations in cardiomyopathy. Neth. Heart J. 2013, 21, 286–293. [Google Scholar] [CrossRef]
- Herman, D.S.; Lam, L.; Taylor, M.R.G.; Wang, L.; Teekakirikul, P.; Christodoulou, D.; Conner, L.; DePalma, S.R.; McDonough, B.; Sparks, E.; et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012, 366, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Pontone, G.; Guaricci, A.I.; Andreini, D.; Solbiati, A.; Guglielmo, M.; Mushtaq, S.; Baggiano, A.; Beltrama, V.; Fusini, L.; Rota, C.; et al. Prognostic Benefit of Cardiac Magnetic Resonance over Transthoracic Echocardiography for the Assessment of Ischemic and Nonischemic Dilated Cardiomyopathy Patients Referred for the Evaluation of Primary Prevention Implantable Cardioverter-Defibrillator Therapy. Circ. Cardiovasc. Imaging 2016, 9, e004956. [Google Scholar] [PubMed]
- Klem, I.; Klein, M.; Khan, M.; Yang, E.Y.; Nabi, F.; Ivanov, A.; Bhatti, L.; Hayes, B.; Graviss, E.A.; Nguyen, D.T.; et al. Relationship of LVEF and Myocardial Scar to Long-Term Mortality Risk and Mode of Death in Patients with Nonischemic Cardiomyopathy. Circulation 2021, 143, 1343–1358. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.D.; Lakdawala, N.K.; Papoutsidakis, N.; Aubert, G.; Mazzanti, A.; McCanta, A.C.; Agarwal, P.P.; Arscott, P.; Dellefave-Castillo, L.M.; Vorovich, E.E.; et al. Desmoplakin cardiomyopathy, a novel phenotype of arrhythmogenic left ventricular cardiomyopathy: Natural history and genotype-phenotype correlations. Heart Rhythm 2020, 17, 1051–1061. [Google Scholar]
- van den Hoogenhof, M.M.G.; Beqqali, A.; Amin, A.S.; van der Made, I.; Aufiero, S.; Khan, M.A.F.; Schumacher, C.A.; Jansweijer, J.A.; van Spaendonck-Zwarts, K.Y.; Remme, C.A.; et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 2018, 138, 1330–1342. [Google Scholar] [CrossRef]
- Spirito, P.; Bellone, P.; Harris, K.M.; Bernabò, P.; Bruzzi, P.; Maron, B.J. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N. Engl. J. Med. 2000, 342, 1778–1785. [Google Scholar] [CrossRef]
- Ho, C.Y.; Day, S.M.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Jacoby, D.; Cirino, A.L.; Fox, J.C.; Lakdawala, N.K.; Ware, J.S.; et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation 2018, 138, 1387–1398. [Google Scholar] [CrossRef]
- O’Mahony, C.; Jichi, F.; Pavlou, M.; Monserrat, L.; Anastasakis, A.; Rapezzi, C.; Biagini, E.; Gimeno, J.R.; Limongelli, G.; McKenna, W.J.; et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD). Eur. Heart J. 2014, 35, 2010–2020. [Google Scholar] [CrossRef]
- Norrish, G.; Ding, T.; Field, E.; Ziółkowska, L.; Olivotto, I.; Limongelli, G.; Anastasakis, A.; Weintraub, R.; Biagini, E.; Ragni, L.; et al. Development of a Novel Risk Prediction Model for Sudden Cardiac Death in Childhood Hypertrophic Cardiomyopathy (HCM Risk-Kids). JAMA Cardiol. 2019, 4, 918–927. [Google Scholar] [CrossRef]
- Pan, J.A. Late Gadolinium Enhancement in Hypertrophic Cardiomyopathy: Is There More to It Than Size? JACC Cardiovasc. Imaging. 2024, 17(5), 625–627. [Google Scholar] [CrossRef]
- Leggit, J.C.; Whitaker, D. Diagnosis and Management of Hypertrophic Cardiomyopathy: Updated Guidelines From the ACC/AHA. Am. Fam. Physician 2022, 105, 207–209. [Google Scholar]
- Richard, P.; Charron, P.; Carrier, L.; Ledeuil, C.; Cheav, T.; Pichereau, C.; Benaiche, A.; Isnard, R.; Dubourg, O.; Burban, M.; et al. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 2003, 107, 2227–2232. [Google Scholar] [CrossRef]
- Gruner, C.; Ivanov, J.; Care, M.; Williams, L.; Moravsky, G.; Yang, H.; Laczay, B.; Siminovitch, K.; Woo, A.; Rakowski, H. Toronto Hypertrophic Cardiomyopathy Genotype Score for Prediction of a Positive Genotype in Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Genet. 2013, 6, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Bosman, L.P.; Sammani, A.; James, C.A.; Cadrin-Tourigny, J.; Calkins, H.; van Tintelen, J.P.; Hauer, R.N.W.; Asselbergs, F.W.; te Riele, A.S.J.M. Predicting arrhythmic risk in arrhythmogenic right ventricular cardiomyopathy: A systematic review and meta-analysis. Heart Rhythm 2018, 15, 1097–1107. [Google Scholar] [CrossRef]
- Corrado, D.; Wichter, T.; Link, M.S.; Hauer, R.N.W.; Marchlinski, F.E.; Anastasaki, A.; Bauce, B.; Basso, C.; Brunckhorst, C.; Tsatsopoulou, A.; et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: An international task force consensus statement. Eur. Heart J. 2015, 36, 3227–3237. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Hea. J. Am. Coll. Cardiol. 2018, 72, e91–e220. [Google Scholar] [CrossRef]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; de Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019, 16, e301–e372. [Google Scholar] [CrossRef] [PubMed]
- Cadrin-Tourigny, J.; Bosman, L.P.; Nozza, A.; Wang, W.; Tadros, R.; Bhonsale, A.; Bourfiss, M.; Fortier, A.; Lie, Ø.H.; Saguner, A.M.; et al. A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2019, 40, 1850–1858, Erratum in Eur. Heart J. 2022, 43, 2712. [Google Scholar] [CrossRef]
- Protonotarios, A.; Bariani, R.; Cappelletto, C.; Pavlou, M.; García-García, A.; Cipriani, A.; Protonotarios, I.; Rivas, A.; Wittenberg, R.; Graziosi, M.; et al. Importance of genotype for risk stratification in arrhythmogenic right ventricular cardiomyopathy using the 2019 ARVC risk calculator. Eur. Heart J. 2022, 43, 3053–3067, Erratum in Eur. Heart J. 2022, 43, 4373. [Google Scholar] [CrossRef]
- Carrick, R.T.; Gasperetti, A.; Protonotarios, A.; Murray, B.; Laredo, M.; van der Schaaf, I.; Dooijes, D.; Syrris, P.; Cannie, D.; Tichnell, C.; et al. A novel tool for arrhythmic risk stratification in desmoplakin gene variant carriers. Eur. Heart J. 2024, 45, 2968–2979, Erratum in Eur. Heart J. 2024, 45, 4597. [Google Scholar] [CrossRef]
- Bhonsale, A.; Groeneweg, J.A.; James, C.A.; Dooijes, D.; Tichnell, C.; Jongbloed, J.D.H.; Murray, B.; te Riele, A.S.J.M.; van den Berg, M.P.; Bikker, H.; et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur. Heart J. 2015, 36, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Blauwet, L.A.; Gertz, M.A. Restrictive cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 2017, 121, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, J.; Li, H.; Lin, Y. Genotype-Phenotype Associations with Restrictive Cardiomyopathy Induced by Pathogenic Genetic Mutations. Rev. Cardiovasc. Med. 2022, 23, 185. [Google Scholar] [CrossRef] [PubMed]
- Baig, S.; Edward, N.C.; Kotecha, D.; Liu, B.; Nordin, S.; Kozor, R.; Moon, J.C.; Geberhiwot, T.; Steeds, R.P. Ventricular arrhythmia and sudden cardiac death in Fabry disease: A systematic review of risk factors in clinical practice. EP Eur. 2018, 20, f153–f161. [Google Scholar] [CrossRef]
- Kristen, A.V.; Dengler, T.J.; Hegenbart, U.; Schonland, S.O.; Goldschmidt, H.; Sack, F.-U.; Voss, F.; Becker, R.; Katus, H.A.; Bauer, A. Prophylactic implantation of cardioverter-defibrillator in patients with severe cardiac amyloidosis and high risk for sudden cardiac death. Heart Rhythm 2008, 5, 235–240. [Google Scholar] [CrossRef]
- Moss, A.J.; Hall, W.J.; Cannom, D.S.; Daubert, J.P.; Higgins, S.L.; Klein, H.; Levine, J.H.; Saksena, S.; Waldo, A.L.; Wilber, D.; et al. Improved Survival with an Implanted Defibrillator in Patients with Coronary Disease at High Risk for Ventricular Arrhythmia. N. Engl. J. Med. 1996, 335, 1933–1940. [Google Scholar] [CrossRef]
- Moss, A.J.; Zareba, W.; Hall, W.J.; Klein, H.; Wilber, D.J.; Cannom, D.S.; Daubert, J.P.; Higgins, S.L.; Brown, M.W.; Andrews, M.L.; et al. Prophylactic Implantation of a Defibrillator in Patients with Myocardial Infarction and Reduced Ejection Fraction. N. Engl. J. Med. 2002, 346, 877–883. [Google Scholar] [CrossRef]
- Bardy, G.H.; Lee, K.L.; Mark, D.B.; Poole, J.E.; Packer, D.L.; Boineau, R.; Domanski, M.; Troutman, C.; Anderson, J.; Johnson, G.; et al. Amiodarone or an Implantable Cardioverter-Defibrillator for Congestive Heart Failure. N. Engl. J. Med. 2005, 352, 225–237, Erratum in N. Engl. J. Med. 2005, 352, 2146. [Google Scholar] [CrossRef]
- Kadish, A.; Dyer, A.; Daubert, J.P.; Quigg, R.; Estes, N.A.M.; Anderson, K.P.; Calkins, H.; Hoch, D.; Goldberger, J.; Shalaby, A.; et al. Prophylactic Defibrillator Implantation in Patients with Nonischemic Dilated Cardiomyopathy. N. Engl. J. Med. 2004, 350, 2151–2158. [Google Scholar] [CrossRef]
- Køber, L.; Thune, J.J.; Nielsen, J.C.; Haarbo, J.; Videbæk, L.; Korup, E.; Jensen, G.; Hildebrandt, P.; Steffensen, F.H.; Bruun, N.E.; et al. Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N. Engl. J. Med. 2016, 375, 1221–1230. [Google Scholar] [CrossRef]
- Elming, M.B.; Nielsen, J.C.; Haarbo, J.; Videbæk, L.; Korup, E.; Signorovitch, J.; Olesen, L.L.; Hildebrandt, P.; Steffensen, F.H.; Bruun, N.E.; et al. Age and outcomes of primary prevention implantable cardioverter-defibrillators in patients with nonischemic systolic heart failure. Circulation 2017, 136, 1772–1780. [Google Scholar] [CrossRef] [PubMed]
- Kolk, M.Z.H.; Ruipérez-Campillo, S.; Wilde, A.A.M.; Knops, R.E.; Narayan, S.M.; Tjong, F.V.Y. Prediction of sudden cardiac death using artificial intelligence: Current status and future directions. Heart Rhythm 2025, 22, 756–766. [Google Scholar] [CrossRef]
- Kim, Y.; Landstrom, A.P.; Shah, S.H.; Wu, J.C.; Seidman, C.E. Gene Therapy in Cardiovascular Disease: Recent Advances and Future Directions in Science: A Science Advisory from the American Heart Association. Circulation 2024, 150, e471–e480. [Google Scholar] [CrossRef]
- Van Linthout, S.; Stellos, K.; Giacca, M.; Bertero, E.; Cannata, A.; Carrier, L.; Garcia-Pavia, P.; Ghigo, A.; González, A.; Haugaa, K.H.; et al. State of the art and perspectives of gene therapy in heart failure. A scientific statement of the Heart Failure Association of the ESC, the ESC Council on Cardiovascular Genomics and the ESC Working Group on Myocardial & Pericardial Diseases. Eur. J. Heart Fail. 2025, 27, 5–25. [Google Scholar] [PubMed]
- Leyva, F.; Israel, C.W.; Singh, J. Declining Risk of Sudden Cardiac Death in Heart Failure: Fact or Myth? Circulation 2023, 147, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Study of Personalized Allocation of Defibrillators in Non-Ischemic Heart Failure (SPANISH-1). ClinicalTrials.gov Identifier: NCT06055504. Sponsor: Consorcio Centro de Investigación Biomédica en Red (CIBER). Status: Active—Recruiting. Available online: https://clinicaltrials.gov/study/NCT06055504 (accessed on 21 October 2025).
- Selvanayagam, J.B.; Hartshorne, T.; Billot, L.; Grover, S.; Hillis, G.S.; Jung, W.; Krum, H.; Prasad, S.; McGavigan, A.D. Cardiovascular Magnetic Resonance-GUIDEd management of mild to moderate left ventricular systolic dysfunction (CMR GUIDE): Study protocol for a randomized controlled trial. Ann. Noninvasive Electrocardiol. 2017, 22, e12420. [Google Scholar] [CrossRef]
- Cardiac Magnetic Resonance Guidance of Implantable Cardioverter Defibrillator Implantation in Non-ischaemic Dilated Cardiomyopathy (CMR-ICD-DZHK23). ClinicalTrials.gov (U.S. National Library of Medicine, Bethesda, MD, USA). Identifier: NCT04558723. Sponsor: German Centre for Cardiovascular Research (DZHK). Status: Recruiting. Available online: https://clinicaltrials.gov/study/NCT04558723 (accessed on 21 October 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruscio, E.; Scacciavillani, R.; Gurgoglione, F.L.; Pinnacchio, G.; Bencardino, G.; Perna, F.; Narducci, M.L.; Pelargonio, G.; Niccoli, G.; Locorotondo, G.; et al. Risk Stratification and Optimal Use of Implantable Cardioverter-Defibrillator Therapy in Primary Prevention of Sudden Cardiac Death in Genetic Cardiomyopathies, with Assessment of the Role of Genetic Variants in Guiding Therapeutic Decisions. Biomedicines 2025, 13, 2626. https://doi.org/10.3390/biomedicines13112626
Ruscio E, Scacciavillani R, Gurgoglione FL, Pinnacchio G, Bencardino G, Perna F, Narducci ML, Pelargonio G, Niccoli G, Locorotondo G, et al. Risk Stratification and Optimal Use of Implantable Cardioverter-Defibrillator Therapy in Primary Prevention of Sudden Cardiac Death in Genetic Cardiomyopathies, with Assessment of the Role of Genetic Variants in Guiding Therapeutic Decisions. Biomedicines. 2025; 13(11):2626. https://doi.org/10.3390/biomedicines13112626
Chicago/Turabian StyleRuscio, Eleonora, Roberto Scacciavillani, Filippo Luca Gurgoglione, Gaetano Pinnacchio, Gianluigi Bencardino, Francesco Perna, Maria Lucia Narducci, Gemma Pelargonio, Giampaolo Niccoli, Gabriella Locorotondo, and et al. 2025. "Risk Stratification and Optimal Use of Implantable Cardioverter-Defibrillator Therapy in Primary Prevention of Sudden Cardiac Death in Genetic Cardiomyopathies, with Assessment of the Role of Genetic Variants in Guiding Therapeutic Decisions" Biomedicines 13, no. 11: 2626. https://doi.org/10.3390/biomedicines13112626
APA StyleRuscio, E., Scacciavillani, R., Gurgoglione, F. L., Pinnacchio, G., Bencardino, G., Perna, F., Narducci, M. L., Pelargonio, G., Niccoli, G., Locorotondo, G., & Burzotta, F. (2025). Risk Stratification and Optimal Use of Implantable Cardioverter-Defibrillator Therapy in Primary Prevention of Sudden Cardiac Death in Genetic Cardiomyopathies, with Assessment of the Role of Genetic Variants in Guiding Therapeutic Decisions. Biomedicines, 13(11), 2626. https://doi.org/10.3390/biomedicines13112626

