Photothermal Combination Therapy for Metastatic Breast Cancer: A New Strategy and Future Perspectives
Abstract
1. Introduction
2. Pathophysiology of Metastatic Breast Cancer
3. Mechanism of Photothermal Therapy
4. Targeting Metastatic Sites Using PTT
4.1. Synthesis of Photothermal Agents
4.2. Surface Functionalization for Targeting
4.3. NIR Irradiation and Heat Generation
4.4. Systemic Administration
5. Treatment of Breast Cancer Metastasis
5.1. Lung Metastasis of Breast Cancer
5.2. Liver Metastasis of Breast Cancer
5.3. Brain Metastasis of Breast Cancer
5.4. Bone Metastasis of Breast Cancer
5.5. Post-Surgical Therapy of Breast Cancers with PTT and Immunotherapy
6. Clinical Translation and Challenges
6.1. Biosafety, Biodistribution, and Clearance
6.2. Immune Response and Toxicity Evaluation
6.3. Regulatory Considerations
6.4. Current Clinical Trials of PTT in Metastatic Breast Cancer
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Minarrieta, L.; Annis, M.G.; Audet-Delage, Y.; Kuasne, H.; Pacis, A.; St-Louis, C.; Nowakowski, A.; Biondini, M.; Khacho, M.; Park, M.; et al. Mitochondrial elongation impairs breast cancer metastasis. Sci. Adv. 2024, 10, eadm8212. [Google Scholar] [CrossRef]
- Mei, W.; Tabrizi, S.F.; Godina, C.; Lovisa, A.F.; Isaksson, K.; Jernström, H.; Tavazoie, S.F. A commonly inherited human PCSK9 germline variant drives breast cancer metastasis via LRP1 receptor. Cell 2025, 188, 371–389.e28. [Google Scholar] [CrossRef]
- Lee, G.; Wong, C.; Cho, A.; West, J.J.; Crawford, A.J.; Russo, G.C.; Si, B.R.; Kim, J.; Hoffner, L.; Jang, C.; et al. E-Cadherin Induces Serine Synthesis to Support Progression and Metastasis of Breast Cancer. Cancer Res. 2024, 84, 2820–2835. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Newman, L.A.; Freedman, R.A.; Smith, R.A.; Star, J.; Jemal, A.; Siegel, R.L. Breast cancer statistics. CA Cancer J. Clin. 2024, 74, 477–495. [Google Scholar] [CrossRef]
- Park, H.-B.; An, E.-K.; Kim, S.-J.; Ryu, D.; Zhang, W.; Pack, C.-G.; Kim, H.; Kwak, M.; Im, W.; Ryu, J.-H.; et al. Anti-PD-L1 Antibody Fragment Linked to Tumor-Targeting Lipid Nanoparticle Can Eliminate Cancer and Its Metastasis via Photoimmunotherapy. ACS Nano 2024, 18, 33366–33380. [Google Scholar] [CrossRef]
- Yuan, H.; Qiu, C.; Wang, X.; Wang, P.; Yi, L.; Peng, X.; Xu, X.; Huang, W.; Bai, Y.; Wei, J.; et al. Engineering Semiconducting Polymeric Nanoagonists Potentiate cGAS-STING Pathway Activation and Elicit Long Term Memory Against Recurrence in Breast Cancer. Adv. Mater. 2025, 37, e2406662. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, L.; Lan, J.; Wu, Y.; Yang, S.; Zhang, T.; Ding, Y. Illuminating the fight against breast cancer: Preparation and visualized photothermal therapy of hyaluronic acid coated ZIF-8 loading with indocyanine green and cryptotanshinone for triple-negative breast cancer. Mater. Today Bio 2024, 28, 101200. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Baroni, S.; Paroni, G.; Violatto, M.B.; Moscatiello, G.Y.; Panini, N.; Russo, L.; Fiordaliso, F.; Colombo, L.; Diomede, L.; et al. Thermal effects and biological response of breast and pancreatic cancer cells undergoing gold nanorod-assisted photothermal therapy. J. Photochem. Photobiol. B Biol. 2024, 259, 112993. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Hou, Y.; Yunlong, W.; Feng, X. Immunomodulatory effects of photothermal therapy in breast cancer: Advances and challenges. Front. Immunol. 2025, 16, 1544693. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Yang, S.; Ju, L.; Wang, J.; Yang, Y.; Zhang, L.; Cui, L. Cell membrane camouflaged Cu-doped mesoporous polydopamine for combined CT/PTT/CDT synergistic treatment of breast cancer. Biomed. Pharmacother. 2024, 180, 117539. [Google Scholar] [CrossRef]
- Zheng, D.; Yan, J.; Liu, X.; Zhang, Z.; Jin, A.; Zhao, Y.; Bai, L.; Quan, M.; Qi, X.; Fu, B.; et al. Artesunate Nanoplatform Targets the Serine–MAPK Axis in Cancer-Associated Fibroblasts to Reverse Photothermal Resistance in Triple-Negative Breast Cancer. Adv. Mater. 2025, 37, e2502617. [Google Scholar] [CrossRef]
- Khaniabadi, P.M.; Shahbazi-Gahrouei, D.; Aziz, A.A.; Dheyab, M.A.; Khaniabadi, B.M.; Mehrdel, B.; Jameel, M.S. Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: A potential PTT-MRI bimodal agent for herceptin positive breast cancer. Photodiagnosis and photodynamic therapy. 2020, 31, 101896. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sha, T.; Li, J.; Luo, H.; Liu, A.; Liang, H.; Qiang, J.; Li, L.; Whittaker, A.K.; Yang, B.; et al. Turning foes to friends: Advanced “in situ nanovaccine” with dual immunoregulation for enhanced immunotherapy of metastatic triple-negative breast cancer. Bioact. Mater. 2024, 39, 612–629. [Google Scholar] [CrossRef] [PubMed]
- Kanelli, M.; Bardhan, N.M.; Sarmadi, M.; Eshaghi, B.; Alsaiari, S.K.; Rothwell, W.T.; Pardeshi, A.; Varshney, D.; De Fiesta, D.C.; Mak, H.; et al. A Machine Learning-Optimized System for Pulsatile, Photo- and Chemotherapeutic Treatment Using Near-Infrared Responsive MoS2-Based Microparticles in a Breast Cancer Model. ACS Nano 2024, 18, 30433–30447. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.B.; Gao, J.; Li, X.; Thangaraju, M.; Panda, S.S.; Lokeshwar, B.L. Cytotoxic Autophagy: A Novel Treatment Paradigm against Breast Cancer Using Oleanolic Acid and Ursolic Acid. Cancers 2024, 16, 3367. [Google Scholar] [CrossRef]
- Gao, H.; Li, H.; Shao, S.; Tan, L.; Wang, Y.; Li, D.; Zhang, W.; Zhu, T.; Liu, G.; Meng, X. Self-enhanced PTX@HSA-HA loaded functionalized injectable hydrogel for effective local chemo-photothermal therapy in breast cancer. Carbohydr. Polym. 2024, 345, 122569. [Google Scholar] [CrossRef]
- Li, Z.; Lan, J.; Liu, L.; Wang, Y.; Chen, L.; Zeng, R.; Gu, D.; Hu, R.; Zhang, T.; Ding, Y. Versatile Thermo-Sensitive liposomes with HSP inhibition and Anti-Inflammation for synergistic Chemo-Photothermal to inhibit breast cancer metastasis. Int. J. Pharm. 2024, 664, 124583. [Google Scholar] [CrossRef]
- Lei, W.; Wang, Y.; Zheng, T.; Wu, Q.; Wen, H.; Sun, T.; Liu, J.; Xie, Z. NIR-II photothermal therapy combined with activatable immunotherapy against the recurrence and metastasis of orthotopic triple-negative breast cancer. Nanoscale 2025, 17, 6815–6826. [Google Scholar] [CrossRef]
- Wang, M.; Yi, H.; Zheng, Q.; Guo, L.; Zhan, Z.; Younis, M.R.; Jin, C.; Zhang, D.-Y. Carminic acid/ferric ion self assembled multienzyme mimetic nanodrug with concurrent photothermal/anti-inflammatory activity to prevent breast cancer metastasis. Mater. Today Bio 2025, 33, 102028. [Google Scholar] [CrossRef]
- Qi, Y.; Lv, S.; Xie, C.; Du, S.; Yao, J. Dual-phase nanoscissors disrupt vasculature-breast cancer stem cell crosstalk for breast cancer treatment. J. Control. Release 2024, 377, 781–793. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, H.; Xu, W.; Jiang, G.-Q. Recent advances in photothermal therapy-based multifunctional nanoplatforms for breast cancer. Front. Chem. 2022, 10, 1024177. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int. J. Nanomed. 2024, 19, 1867–1886. [Google Scholar] [CrossRef]
- Joun, I.; Nixdorf, S.; Deng, W. Advances in lipid-based nanocarriers for breast cancer metastasis treatment. Front. Med. Technol. 2022, 4, 893056. [Google Scholar] [CrossRef]
- Ashkarran, A.A.; Lin, Z.; Rana, J.; Bumpers, H.; Sempere, L.; Mahmoudi, M. Impact of Nanomedicine in Women’s Metastatic Breast Cancer. Small 2024, 20, e2301385. [Google Scholar] [CrossRef]
- Khorasani, A.; Shahbazi-Gahrouei, D.; Safari, A. Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics 2023, 13, 833. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hu, C.; Gao, H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv. Drug Deliv. Rev. 2021, 178, 113909. [Google Scholar] [CrossRef]
- Safari, A.; Sarikhani, A.; Shahbazi-Gahrouei, D.; Alamzadeh, Z.; Beik, J.; Dezfuli, A.S.; Mahabadi, V.P.; Tohfeh, M.; Shakeri-Zadeh, A. Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagnosis Photodyn. Ther. 2020, 32, 102061. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Jiang, Z.; Wang, M.; Ma, L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv. Drug Deliv. Rev. 2022, 180, 114034. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, H.; Dai, M.; Yu, H.; Hu, Y.; Cheng, L.; Wang, H.; Chen, Q.; Tan, M.; Guo, Y.; et al. A PTT-Induced Feed-Back Carbon Nanosystem for Enhanced Breast Cancer Therapy by Extracellular Matrix Remodeling. Nano Lett. 2025, 25, 3180–3190. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, L.; Xu, X.; Jia, R.; Zhu, S.; Zhang, Q.; Cheng, G.; Wu, B.; Liu, Z.; Tong, X.; et al. Cuproptosis-based layer-by-layer silk fibroin nanoplatform-loaded PD-L1 siRNA combining photothermal and chemodynamic therapy against metastatic breast cancer. Mater. Today Bio 2024, 29, 101298. [Google Scholar] [CrossRef]
- Zhang, N.; Ping, W.; Suo, M.; Zhang, Z.; Zhang, W.; Zhang, T.; Ning, S.; Tang, B.Z. Biomimetic Nanosystem Loading Aggregation-Induced Emission Luminogens and SO2 Prodrug for Inhibiting Insufficient Photothermal Therapy-Induced Breast Cancer Recurrence and Metastasis. Adv. Sci. 2024, 11, e2405575. [Google Scholar] [CrossRef]
- Zhuang, H.; Wang, R.; Qi, Y.; Liu, Y.; Xiong, H.; Yao, J. Nanocoated bacteria with H2S generation-triggered self-amplified photothermal and photodynamic effect for breast cancer therapy. J. Control. Release 2024, 373, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Ingle, J.; Basu, S. Mitochondria Targeted AIE Probes for Cancer Phototherapy. ACS Omega 2023, 8, 8925–8935. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Ma, Q.; Zhang, C.; He, X.; Wang, Q.; Wu, Y.; Qin, K.; Liao, F.; Zhou, P.; Xu, P.; et al. A novel nanomedicine for osteosarcoma treatment: Triggering ferroptosis through GSH depletion and inhibition for enhanced synergistic PDT/PTT therapy. J. Nanobiotechnology 2025, 23, 323. [Google Scholar] [CrossRef]
- Kong, C.; Xu, B.; Qiu, G.; Wei, M.; Zhang, M.; Bao, S.; Tang, J.; Li, L.; Liu, J. Multifunctional Nanoparticles-Mediated PTT/PDT Synergistic Immune Activation and Antitumor Activity Combined with Anti-PD-L1 Immunotherapy for Breast Cancer Treatment. Int. J. Nanomed. 2022, 17, 5391–5411. [Google Scholar] [CrossRef]
- Yoo, S.W.; Oh, G.; Ahn, J.C.; Chung, E. Non-Oncologic Applications of Nanomedicine-Based Phototherapy. Biomedicines 2021, 9, 113. [Google Scholar] [CrossRef]
- Li, C.; Cheng, Y.; Li, D.; An, Q.; Zhang, W.; Zhang, Y.; Fu, Y. Antitumor Applications of Photothermal Agents and Photothermal Synergistic Therapies. Int. J. Mol. Sci. 2022, 23, 7909. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, L.; Zhu, Q.; Feng, Y.; Wu, M. Recent Advances in Second Near-Infrared Region (NIR-II) Fluorophores and Biomedical Applications. Front. Chem. 2021, 9, 750404. [Google Scholar] [CrossRef]
- Zhu, S.; Yung, B.C.; Chandra, S.; Niu, G.; Antaris, A.L.; Chen, X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018, 8, 4141–4151. [Google Scholar] [CrossRef]
- Sun, A.; Guo, H.; Gan, Q.; Yang, L.; Liu, Q.; Xi, L. Evaluation of visible NIR-I and NIR-II light penetration for photoacoustic imaging in rat organs. Opt. Express 2020, 28, 9002–9013. [Google Scholar] [CrossRef]
- Qu, J.; Golovynska, I.; Liu, J.; Qu, J.; Golovynskyi, S. Optical Transparency Windows in Near-Infrared and Short-Wave Infrared for the Skin, Skull, and Brain: Fluorescence Bioimaging Using PbS Quantum Dots. J. Biophotonics 2024, 17, e202400171. [Google Scholar] [CrossRef]
- Wang, P.; Chen, B.; Zhan, Y.; Wang, L.; Luo, J.; Xu, J.; Zhan, L.; Li, Z.; Liu, Y.; Wei, J. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics 2022, 14, 2279. [Google Scholar] [CrossRef]
- Sekhri, P.; Ledezma, D.K.; Shukla, A.; Sweeney, E.E.; Fernandes, R. The Thermal Dose of Photothermal Therapy Generates Differential Immunogenicity in Human Neuroblastoma Cells. Cancers 2022, 14, 1447. [Google Scholar] [CrossRef]
- Nam, J.; Son, S.; Ochyl, L.J.; Kuai, R.; Schwendeman, A.; Moon, J.J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Liu, X.; Yu, J.; Bai, X.; Wu, X.; Guo, X.; Liu, Z.; Liu, X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front. Immunol. 2022, 13, 955920. [Google Scholar] [CrossRef] [PubMed]
- Overchuk, M.; Weersink, R.A.; Wilson, B.C.; Zheng, G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano 2023, 17, 7979–8003. [Google Scholar] [CrossRef]
- Kwon, S.; Jung, S.; Baek, S.H. Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants 2023, 12, 924. [Google Scholar] [CrossRef]
- Mu, M.; Chen, B.; Li, H.; Fan, R.; Yang, Y.; Zhou, L.; Han, B.; Zou, B.; Chen, N.; Guo, G. Augmented the sensitivity of photothermal-ferroptosis therapy in triple-negative breast cancer through mitochondria-targeted nanoreactor. J. Control. Release 2024, 375, 733–744. [Google Scholar] [CrossRef]
- Osaki, T.; Ueda, M.; Hirohara, S.; Obata, M. Micelle-encapsulated IR783 for enhanced photothermal therapy in mouse breast cancer. Photodiagnosis Photodyn. Ther. 2024, 49, 104340. [Google Scholar] [CrossRef] [PubMed]
- Khajuria, A.; Alajangi, H.K.; Sharma, A.; Kaur, H.; Sharma, P.; Negi, S.; Kumari, L.; Trivedi, M.; Yadav, A.K.; Kumar, R.; et al. Theranostics: Aptamer-assisted carbon nanotubes as MRI contrast and photothermal agent for breast cancer therapy. Nanoscale Res. Lett. 2024, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wang, K.; Wang, M.; Liu, R.; Song, H.; Li, N.; Lu, Q.; Zhang, W.; Du, Y.; Yang, W.; et al. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 2019, 206, 1–12. [Google Scholar] [CrossRef]
- Xing, G.; Yu, X.; Zhang, Y.; Sheng, S.; Jin, L.; Zhu, D.; Mei, L.; Dong, X.; Lv, F. Macrophages-Based Biohybrid Microrobots for Breast Cancer Photothermal Immunotherapy by Inducing Pyroptosis. Small 2024, 20, e2305526. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Z.; Yu, H.; Chen, X.; Feng, B.; Cui, Z.; Lin, B.; Yin, Q.; Zhang, Z.; Chen, C.; et al. Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials 2014, 35, 8374–8384. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Rao, Y.; Hu, J.; Luo, Z.; Chen, C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. Adv. Mater. 2025, 37, e2305140. [Google Scholar] [CrossRef]
- Zhang, Z.; Lo, H.; Zhao, X.; Li, W.; Wu, K.; Zeng, F.; Li, S.; Sun, H. Mild photothermal/radiation therapy potentiates ferroptosis effect for ablation of breast cancer via MRI/PA imaging guided all-in-one strategy. J. Nanobiotechnology 2023, 21, 150. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Huang, Y.; Huang, Z.; Jiang, Y.; Sun, X.; Shen, Y.; Chu, W.; Zhao, C. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J. Control. Release 2017, 264, 76–88. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Y.; Fan, Y.; Lu, W.; Wei, Y.; Wu, J.; Ruan, B.; Wan, Z.; Zhao, Y.; Xie, K.; et al. Biomimetic nanoplatforms for combined DDR2 inhibition and photothermal therapy in dense breast cancer treatment. Biomaterials 2025, 324, 123497. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Stangl, S.; Hernandez-Schnelzer, A.; Wang, F.; Kafshgari, M.H.; Dezfouli, A.B.; Multhoff, G. Functionalized Hybrid Iron Oxide–Gold Nanoparticles Targeting Membrane Hsp70 Radiosensitize Triple-Negative Breast Cancer Cells by ROS-Mediated Apoptosis. Cancers 2023, 15, 1167. [Google Scholar] [CrossRef]
- Sun, P.; Qu, F.; Zhang, C.; Cheng, P.; Li, X.; Shen, Q.; Li, D.; Fan, Q. NIR-II Excitation Phototheranostic Platform for Synergistic Photothermal Therapy/Chemotherapy/Chemodynamic Therapy of Breast Cancer Bone Metastases. Adv. Sci. 2022, 9, e2204718. [Google Scholar] [CrossRef]
- Li, J.; Hu, H.; Jiang, Z.; Chen, S.; Pan, Y.; Guo, Q.; Xing, Q.; Jing, Z.; Hu, Y.; Wang, L. Near-infrared-induced IR780-loaded PLGA nanoparticles for photothermal therapy to treat breast cancer metastasis in bones. RSC Adv. 2019, 9, 35976–35983. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Z.; Chang, C.-C.; Chen, Y.-C.; Zhang, Q.; Zhang, X.-D.; Andreou, C.; Pang, J.; Liu, Z.-X.; Wang, D.-Y.; et al. Near-Infrared Phototheranostic Iron Pyrite Nanocrystals Simultaneously Induce Dual Cell Death Pathways via Enhanced Fenton Reactions in Triple-Negative Breast Cancer. ACS Nano 2023, 17, 4261–4278. [Google Scholar] [CrossRef]
- Varzandeh, M.; Karbasi, M.; Labbaf, S.; Varshosaz, J.; Esmaeil, N.; Birang, R. Synthesis of a covalently linked bismuthene–graphene heterostructure loaded with mitomycin C for combined radio-thermo-chemotherapy of triple-negative breast cancer. J. Mater. Chem. B 2025, 13, 7769–7784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, H.; Xie, Z.; Du, J.; Jin, C. Hyaluronic acid-functionalized supramolecular nanophotosensitizers for targeted photoimmunotherapy of triple-negative breast cancer. J. Nanobiotechnology 2024, 22, 777. [Google Scholar] [CrossRef]
- Tan, X.; Wang, Y.; Long, L.; Chen, H.; Qu, L.; Cao, X.; Li, H.; Chen, Z.; Luo, S.; Shi, C. A theranostic photosensitizer-conjugated albumin co-loading with resiquimod for cancer-targeted imaging and robust photo-immunotherapy. Pharmacol. Res. 2024, 210, 107489. [Google Scholar] [CrossRef]
- Cai, Y.; Lv, Z.; Chen, X.; Jin, K.; Mou, X. Recent advances in biomaterials based near-infrared mild photothermal therapy for biomedical application: A review. Int. J. Biol. Macromol. 2024, 278, 134746. [Google Scholar] [CrossRef]
- Xiang, C.; Ding, Q.; Jiang, T.; Liu, Y.; Li, C.; Yang, X.; Jia, J.; Xiang, J.; Wang, Y.; Zhou, H.; et al. Reprogrammed glycolysis-induced augmentation of NIR-II excited photodynamic/photothermal therapy. Biomaterials 2025, 320, 123235. [Google Scholar] [CrossRef]
- Gao, Z.; Mansor, M.H.; Howard, F.; MacInnes, J.; Zhao, X.; Muthana, M. Microfluidic-Assisted Silk Nanoparticles Co-Loaded with Epirubicin and Copper Sulphide: A Synergistic Photothermal–Photodynamic Chemotherapy Against Breast Cancer. Nanomaterials 2025, 15, 221. [Google Scholar] [CrossRef]
- Li, M.; Chu, K.; Zhou, Q.; Wang, H.; Zhang, W.; Zhang, Y.; Lv, J.; Zhou, H.; An, J.; Wu, Z.; et al. Dual-drug loaded hyaluronic acid conjugates coated polydopamine nanodrugs for synergistic chemo-photothermal therapy in triple negative breast cancer. Int. J. Biol. Macromol. 2025, 308, 142559. [Google Scholar] [CrossRef]
- Dong, Y.; Guo, L.; Song, L.; Liu, T.; Zheng, G.; Zheng, M.; Li, B. Two-Dimensional MXenes Surface Engineering Nanoplatform for PTT-Chemotherapy Synergistic Tumor Therapy. Int. J. Nanomed. 2025, 20, 1983–1998. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Liang, X.; Chen, Z.; Liu, B.; Yuan, Z. 4T1 Cell Membrane-Coated Pdots with NIR-II Absorption and Fluorescence Properties for Targeted Phototheranostics of Breast Tumors. ACS Appl. Mater. Interfaces 2024, 16, 66425–66435. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, J.; Chen, S.; Guo, Q.; Jing, Z.; Huang, B.; Pan, Y.; Wang, L.; Hu, Y. Zoledronate and SPIO dual-targeting nanoparticles loaded with ICG for photothermal therapy of breast cancer tibial metastasis. Sci. Rep. 2020, 10, 13675. [Google Scholar] [CrossRef]
- Li, H.; Li, P.; Zhang, J.; Lin, Z.; Bai, L.; Shen, H. Applications of nanotheranostics in the second near-infrared window in bioimaging and cancer treatment. Nanoscale 2024, 16, 21697–21730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; Yang, X.; Wu, Z.; Chen, Q.; Wei, Q.; Guo, Y.; Hu, Q.; Shen, J.-W. NIR-triggered and Thermoresponsive Core-shell nanoparticles for synergistic anticancer therapy. J. Control. Release 2024, 374, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Tang, C.; Tang, Y.; Su, K.; Chai, X.; Zhan, Z.; Niu, X.; Li, J. RGS5+ lymphatic endothelial cells facilitate metastasis and acquired drug resistance of breast cancer through oxidative stress-sensing mechanism. Drug Resist. Updat. 2024, 77, 101149. [Google Scholar] [CrossRef]
- Avelino, A.R.M.; Pulipati, S.; Jamouss, K.; Bhardwaj, P.V. Updates in Treatment of HER2-positive Metastatic Breast Cancer. Curr. Treat. Options Oncol. 2024, 25, 1471–1481. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Wang, W.; Li, X.; Sun, X.; Zhao, Y.; Wang, Q.; Li, Y.; Hu, F.; Ren, H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol. Cancer 2024, 23, 261. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, L.; Zhu, W.; Tu, J.; Peng, X.; Deng, Q.; Li, S.; He, X.; Dong, H.; Liu, C.; et al. Tumor cell-derived N-acetyl-aspartyl-glutamate reshapes the tumor microenvironment to facilitate breast cancer metastasis. Sci. Bull. 2025, 70, 1126–1138. [Google Scholar] [CrossRef]
- Xie, F.; Zhou, X.; Ran, Y.; Li, R.; Zou, J.; Wan, S.; Su, P.; Meng, X.; Yan, H.; Lu, H.; et al. Targeting FOXM1 condensates reduces breast tumour growth and metastasis. Nature 2025, 638, 1112–1121. [Google Scholar] [CrossRef]
- Xu, Q.; Ban, X.; Yang, L.; Chen, Y.; Zhang, F.; Wang, Y.; Cao, P.; Yu, M.; Duan, X. MRI-visualized PTT/CDT for breast cancer ablation and distant metastasis prevention. Appl. Mater. Today 2024, 36, 102059. [Google Scholar] [CrossRef]
- Zeng, Y.; Pan, Z.; Yuan, J.; Song, Y.; Feng, Z.; Chen, Z.; Ye, Z.; Li, Y.; Bao, Y.; Ran, Z.; et al. Inhibiting Osteolytic Breast Cancer Bone Metastasis by Bone-Targeted Nanoagent via Remodeling the Bone Tumor Microenvironment Combined with NIR-II Photothermal Therapy. Small 2023, 19, e2301003. [Google Scholar] [CrossRef]
- Zou, B.; Xiong, Z.; He, L.; Chen, T. Reversing breast cancer bone metastasis by metal organic framework-capped nanotherapeutics via suppressing osteoclastogenesis. Biomaterials 2022, 285, 121549. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, J.; Li, L.; Wang, M.; Sun, J.; Chang, J.; Lin, J.; Li, C. A Metal Chelation Therapy to Effectively Eliminate Breast Cancer and Intratumor Bacteria While Suppressing Tumor Metastasis by Copper Depletion and Zinc Ions Surge. Angew. Chem. Int. Ed. Engl. 2025, 64, e202417592. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Wan, X.; Wang, R.; Luo, H.; Chang, C.; Dai, P.; Gan, Y.; Guo, Y.; Hou, Y.; et al. Tryptophan 2,3-dioxygenase-positive matrix fibroblasts fuel breast cancer lung metastasis via kynurenine-mediated ferroptosis resistance of metastatic cells and T cell dysfunction. Cancer Commun. 2024, 44, 1261–1286. [Google Scholar] [CrossRef]
- Lan, J.; Zeng, R.; Li, Z.; Yang, X.; Liu, L.; Chen, L.; Sun, L.; Shen, Y.; Zhang, T.; Ding, Y. Biomimetic Nanomodulators with Synergism of Photothermal Therapy and Vessel Normalization for Boosting Potent Anticancer Immunity. Adv. Mater. 2024, 36, e2408511. [Google Scholar] [CrossRef]
- Ou, X.; Tan, Y.; Xie, J.; Yuan, J.; Deng, X.; Shao, R.; Song, C.; Cao, X.; Xie, X.; He, R.; et al. Methylation of GPRC5A promotes liver metastasis and docetaxel resistance through activating mTOR signaling pathway in triple negative breast cancer. Drug Resist. Updat. 2024, 73, 101063. [Google Scholar] [CrossRef]
- Zou, Y.; Ye, F.; Kong, Y.; Hu, X.; Deng, X.; Xie, J.; Song, C.; Ou, X.; Wu, S.; Wu, L.; et al. The Single-Cell Landscape of Intratumoral Heterogeneity and The Immunosuppressive Microenvironment in Liver and Brain Metastases of Breast Cancer. Adv. Sci. 2023, 10, e2203699. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Kang, Y.; Zhang, X.F. Nanotechnology for the theranostic opportunity of breast cancer lung metastasis: Recent advancements and future challenges. Front. Bioeng. Biotechnol. 2024, 12, 1410017. [Google Scholar] [CrossRef]
- Yilmazer, A.; Eroglu, Z.; Gurcan, C.; Gazzi, A.; Ekim, O.; Sundu, B.; Gokce, C.; Ceylan, A.; Giro, L.; Unal, M.A.; et al. Synergized photothermal therapy and magnetic field induced hyperthermia via bismuthene for lung cancer combinatorial treatment. Mater. Today Bio 2023, 23, 100825. [Google Scholar] [CrossRef]
- Liu, F.; Kang, Q.; Xiao, H.; Liu, Y.; Tan, S.; Fan, K.; Peng, J.; Tan, X.; Wu, G.; Yang, Q. Rationally designed NIR-II excitable and endoplasmic reticulum-targeted molecular phototheranostics for imaging-guided enhanced photoimmunotherapy of triple-negative breast cancer. J. Nanobiotechnology 2025, 23, 235. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, P.; Olivieri, M.; Filippi, L.; Marzo, K.; Jandric, J.; Rodari, M.; Marenco, M.; Evangelista, L. Liver metastases in breast cancer: [18F]FDG and radioembolization as strategies for diagnosis and treatment. Expert Rev. Med. Devices 2025, 22, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Wei, D.; Yang, Z.; Pang, W.; Pang, K.; Gu, B.; Wei, X. Photodynamic therapy reduces metastasis of breast cancer by minimizing circulating tumor cells. Biomed. Opt. Express 2021, 12, 3878–3886. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, Y.; Wu, R.; Lei, J.; Li, T.; Zheng, Y. Aggregable gold nanoparticles for cancer photothermal therapy. J. Mater. Chem. B 2024, 12, 8048–8061. [Google Scholar] [CrossRef]
- Cheng, X.; Zhou, X.; Xu, J.; Sun, R.; Xia, H.; Ding, J.; Chin, Y.E.; Chai, Z.; Shi, H.; Gao, M. Furin Enzyme and pH Synergistically Triggered Aggregation of Gold Nanoparticles for Activated Photoacoustic Imaging and Photothermal Therapy of Tumors. Anal. Chem. 2021, 93, 9277–9285. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-W.; Zhou, Y.; Xu, J.; Gao, F.; Si, Q.-K.; Wang, J.-Y.; Zhang, F.; Wang, L.-P. Water-Soluble and Degradable Gelatin/Polyaniline Assemblies with a High Photothermal Conversion Efficiency for pH-Switchable Precise Photothermal Therapy. ACS Appl. Mater. Interfaces 2022, 14, 52670–52683. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zhou, J.; Wang, J.; Ma, X.; Liu, F.; Chen, S.; Fan, J.-X.; Yan, G.-P. Advances of Photothermal Agents with Fluorescence Imaging/Enhancement Ability in the Field of Photothermal Therapy and Diagnosis. Mol. Pharm. 2024, 21, 467–480. [Google Scholar] [CrossRef]
- Rashid, N.S.; Grible, J.M.; Clevenger, C.V.; Harrell, J.C. Breast cancer liver metastasis: Current and future treatment approaches. Clin. Exp. Metastasis 2021, 38, 263–277. [Google Scholar] [CrossRef]
- Wen, J.; Ye, F.; Xie, F.; Liu, D.; Huang, L.; Fang, C.; Zhong, S.; Ren, L. The role of surgical intervention for isolated breast cancer liver metastasis: Results of case-control study with comparison to medical treatment. Cancer Med. 2020, 9, 4656–4666. [Google Scholar] [CrossRef]
- Chen, X.; He, H.; Guo, X.; Hou, M.; Zhang, X.; Li, S.; Wang, C.; Zhao, G.; Li, W.; Zhang, X.; et al. Calcium Orthophosphate in Liposomes for Co-Delivery of Doxorubicin Hydrochloride/Paclitaxel in Breast Cancer. Mol. Pharm. 2023, 20, 3914–3924. [Google Scholar] [CrossRef]
- Gan, S.; Macalinao, D.G.; Shahoei, S.H.; Tian, L.; Jin, X.; Basnet, H.; Bibby, C.; Muller, J.T.; Atri, P.; Seffar, E.; et al. Distinct tumor architectures and microenvironments for the initiation of breast cancer metastasis in the brain. Cancer Cell 2024, 42, 1693–1712.e24. [Google Scholar] [CrossRef]
- Raghavendra, A.S.; Ibrahim, N.K. Breast Cancer Brain Metastasis: A Comprehensive Review. JCO Oncol. Pract. 2024, 20, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Yuzhalin, A.E.; Lowery, F.J.; Saito, Y.; Yuan, X.; Yao, J.; Duan, Y.; Ding, J.; Acharya, S.; Zhang, C.; Fajardo, A.; et al. Astrocyte-induced Cdk5 expedites breast cancer brain metastasis by suppressing MHC-I expression to evade immune recognition. Nat. Cell Biol. 2024, 26, 1773–1789. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, Y.; Du, H.; Tang, M.; Wang, T.; Tan, J.; Zha, L.; Yang, L.; Ashrafizadeh, M.; Tian, Y.; et al. Biological profile of breast cancer brain metastasis. Acta Neuropathol. Commun. 2025, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.; Wang, Y.; Zhang, S.; Sun, P.; Li, Y.; Zhang, Y.; Chen, Z.; Liu, B.; Yuan, Z. NIR-II Fluorescence Imaging-Guided Combinatorial Therapy of Breast Cancer Using ICG/Chelerythrine-Loaded Aptamer-Targeted Liposomes. ACS Appl. Bio Mater. 2025, 8, 6350–6359. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Y.; Gu, B.; Yang, Z.; Xu, X.; Peng, H.; Song, S.; Yang, Z. Multifunctional nanodrug-enabled mild photothermal therapy for enhanced immunotherapy in triple-negative breast cancer. J. Mater. Chem. B 2025, 13, 9203–9216. [Google Scholar] [CrossRef]
- Bardia, A.; Hu, X.; Dent, R.; Yonemori, K.; Barrios, C.H.; O’sHaughnessy, J.A.; Wildiers, H.; Pierga, J.-Y.; Zhang, Q.; Saura, C.; et al. Trastuzumab Deruxtecan after Endocrine Therapy in Metastatic Breast Cancer. N. Engl. J. Med. 2024, 391, 2110–2122. [Google Scholar] [CrossRef]
- Kim, S.-J.; Park, H.-B.; An, E.-K.; Ryu, D.; Zhang, W.; Pack, C.-G.; Kim, H.; Kwak, M.; Im, W.; Ryu, J.-H.; et al. Lipid-coated gold nanorods for photoimmunotherapy of primary breast cancer and the prevention of metastasis. J. Control. Release 2024, 373, 105–116. [Google Scholar] [CrossRef]
- Harbeck, N.; Ciruelos, E.; Jerusalem, G.; Müller, V.; Niikura, N.; Viale, G.; Bartsch, R.; Kurzeder, C.; Higgins, M.J.; Connolly, R.M.; et al. Trastuzumab deruxtecan in HER2-positive advanced breast cancer with or without brain metastases: A phase 3b/4 trial. Nat. Med. 2024, 30, 3717–3727. [Google Scholar] [CrossRef]
- Yang, Q.; Peng, J.; Shi, K.; Xiao, Y.; Liu, Q.; Han, R.; Wei, X.; Qian, Z. Rationally designed peptide-conjugated gold/platinum nanosystem with active tumor-targeting for enhancing tumor photothermal-immunotherapy. J. Control. Release 2019, 308, 29–43. [Google Scholar] [CrossRef]
- Sui, L.; Wang, J.; Jiang, W.G.; Song, X.; Ye, L. Molecular mechanism of bone metastasis in breast cancer. Front. Oncol. 2024, 14, 1401113. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, T.; Zheng, B.; Lu, Y.; Liang, Y.; Xu, G.; Zhao, L.; Tao, Y.; Song, Q.; You, H.; et al. Lymphotoxin-β promotes breast cancer bone metastasis colonization and osteolytic outgrowth. Nat. Cell Biol. 2024, 26, 1597–1612. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Ma, X.; Hu, S.; Zhang, J.; Wu, Q.; Ye, W.; Zhu, S.; Yang, D.; Qu, D.; et al. Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes. Sci. Rep. 2015, 5, 11709. [Google Scholar] [CrossRef]
- Jie, S.; Guo, X.; Ouyang, Z. Tumor ablation using novel photothermal NaxWO3 nanoparticles against breast cancer osteolytic bone metastasis. Int. J. Nanomed. 2019, 14, 7353–7362. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Zhang, P.; Lv, L.; Zhou, Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020, 10, 11837–11861. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zou, Y.; Bie, B.; Dong, C.; Lv, Y. Combining dual-targeted liquid metal nanoparticles with autophagy activation and mild photothermal therapy to treat metastatic breast cancer and inhibit bone destruction. Acta Biomater. 2023, 157, 578–592. [Google Scholar] [CrossRef]
- Liu, P.; Mu, X.; Zhang, X.D.; Ming, D. The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjugate Chem. 2020, 31, 260–275. [Google Scholar] [CrossRef]
- Sun, W.; Ge, K.; Jin, Y.; Han, Y.; Zhang, H.; Zhou, G.; Yang, X.; Liu, D.; Liu, H.; Liang, X.-J.; et al. Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy to Treat Breast Cancer Bone Metastasis. ACS Nano 2019, 13, 7556–7567. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, B.; Chen, T.; Huang, Y.; Xiao, Z.; Jin, Y. Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile hydrogels. Acta Pharm. Sin. B 2022, 12, 1447–1459. [Google Scholar] [CrossRef]
- Yang, X.; Gao, L.; Wei, Y.; Tan, B.; Wu, Y.; Yi, C.; Liao, J. Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction. J. Nanobiotechnology 2021, 19, 307. [Google Scholar] [CrossRef]
- Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I-Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU. Pharmaceutics 2020, 12, 146. [Google Scholar] [CrossRef]
- Lobatto, M.E.; Calcagno, C.; Otten, M.J.; Millon, A.; Ramachandran, S.; Paridaans, M.P.; van der Valk, F.M.; Storm, G.; Stroes, E.S.; Fayad, Z.A.; et al. Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1133–1140. [Google Scholar] [CrossRef]
- Kyriakides, T.R.; Raj, A.; Tseng, T.H.; Xiao, H.; Nguyen, R.; Mohammed, F.S.; Halder, S.; Xu, M.; Wu, M.J.; Bao, S.; et al. Biocompatibility of nanomaterials and their immunological properties. Biomed. Mater. 2021, 16, 042005. [Google Scholar] [CrossRef] [PubMed]
- D’Avenio, G.; Daniele, C.; Grigioni, M. Nanostructured Medical Devices: Regulatory Perspective and Current Applications. Materials 2024, 17, 1787. [Google Scholar] [CrossRef] [PubMed]
Depth (mm) | Typical Anatomical Examples | Best Spectral Window (General) | Reference |
---|---|---|---|
0–3 | Skin surface, superficial lesions, subcutaneous tissue | NIR-I (700–900 nm), good contrast, widely available lasers/dyes | [38] |
3–10 | Subcutaneous tumors, small nodal lesions | NIR-I → NIR-IIa (1000–1350 nm), NIR-II improves depth & contrast | [39] |
10–30 | Deep-seated tumors (organ surface), muscle | NIR-IIa/b (1000–1350/1500–1700 nm), preferred for penetration | [40] |
>30 | Large organs, brain (through craniotomy), and surgical guidance | NIR-II (esp. 1000–1350 nm), and interstitial delivery (fibers) recommended | [41] |
Feature | Mechanism | Temperature Range (°C) | Duration | Typical Adverse Events | Mechanistic Notes | Preclinical Stage | Reference |
---|---|---|---|---|---|---|---|
PTT Alone—Mild (Immunomodulatory) | Immune activation, ICD | 41–45 | 5–20 min | Mild inflammation, transient edema | ICD, HSP release, T-cell priming | Mostly preclinical | [42] |
PTT Alone—Ablative | Tumor ablation | 50–60+ | 5–10 min | Tissue necrosis, pain | Direct cytotoxicity | Preclinical | [43] |
PTT + Chemotherapy | Synergistic cytotoxicity | 45–55 | 5–20 min | Systemic chemo toxicity | Drug release/heat synergy | Preclinical | [44] |
PTT + Immunotherapy | Enhanced anti-tumor immunity | 41–45 | 5–20 min | Immune-related events | T-cell activation enhance | Preclinical | [45] |
PTT + PDT | ROS-mediated cytotoxicity | 45–55 | 5–20 min | Skin/photosensitivity, inflammation | ROS + hyperthermia synergy | Preclinical | [46] |
PTT + Radiotherapy | Radiosensitization, cytotoxic synergy | 45–55 | 5–20 min | Radiation dermatitis, tissue injury | Hyperthermia enhances DNA damage | Preclinical | [47] |
Phototherapeutic Agent | Mechanism | Target Breast Metastasis | In Vitro and In Vivo Study | Reference |
---|---|---|---|---|
FMPEG | PTT + CD | Liver and breast cancer | Sustained and long-lasting antitumor effect, attributed to the immunostimulatory properties by producing tumor-associated antigens, suppressing distant tumor and liver metastasis. | [79] |
ICG/Fe3O4@PLGA-ZOL | PTT + CT | Bone and breast cancer | Extraordinary antitumor therapeutic effects, and these NPs can be accurately located in the medullary cavity of the tibia to solve problems with deep lesions, such as breast cancer tibial metastasis, showing great potential for cancer theranostics. | [71] |
CuP@PPy-ZOL | PTT + CDT | Bone and breast cancer | Significantly inhibited the tumor growth of breast cancer bone metastases and osteolysis while promoting bone repair to achieve the reversal of osteolytic breast cancer bone metastases. | [80] |
IR780@PLGA NPs | PTT | Bone and breast cancer | Exhibited excellent PTT for bone metastases | [60] |
ICG@Cu2-XSe-ZIF-8 | PTT + CDT | Bone and breast cancer | Effectively suppresses the tumor cells in bone tissue and reduces the erosion of bone tissue via suppressing osteoclastogenesis. | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Hasan, I.; Zhang, Y.; Peng, T.; Guo, B. Photothermal Combination Therapy for Metastatic Breast Cancer: A New Strategy and Future Perspectives. Biomedicines 2025, 13, 2558. https://doi.org/10.3390/biomedicines13102558
Wang Z, Hasan I, Zhang Y, Peng T, Guo B. Photothermal Combination Therapy for Metastatic Breast Cancer: A New Strategy and Future Perspectives. Biomedicines. 2025; 13(10):2558. https://doi.org/10.3390/biomedicines13102558
Chicago/Turabian StyleWang, Zun, Ikram Hasan, Yinghe Zhang, Tingting Peng, and Bing Guo. 2025. "Photothermal Combination Therapy for Metastatic Breast Cancer: A New Strategy and Future Perspectives" Biomedicines 13, no. 10: 2558. https://doi.org/10.3390/biomedicines13102558
APA StyleWang, Z., Hasan, I., Zhang, Y., Peng, T., & Guo, B. (2025). Photothermal Combination Therapy for Metastatic Breast Cancer: A New Strategy and Future Perspectives. Biomedicines, 13(10), 2558. https://doi.org/10.3390/biomedicines13102558