The Role of Perinatal Complications in Neurodevelopmental Outcomes of ART-Conceived Children: Prognostic Model for Brain Immaturity
Abstract
1. Introduction
2. Materials and Methods
2.1. Definitions of Pathological Neurodevelopmental Conditions
- IUR: Defined as estimated fetal weight or birth weight below the 10th percentile for gestational age according to WHO guidelines.
- Birth trauma: Diagnosed according to ICD−10 codes P10–P15, including intracranial hemorrhage, brachial plexus injury, and skeletal fractures sustained during delivery.
- Nervous system damage: Included perinatal hypoxic–ischemic encephalopathy and other central nervous system injuries documented in neonatal medical records.
- Immaturity of brain structures on neurosonography (NSG): Identified by a pediatric neurologist and radiologist based on ultrasonographic markers, including persistence of germinal matrix, ventricular asymmetry, and delayed cortical maturation.
- Cognitive impairments: Defined as developmental delay or intellectual disability recorded in pediatric follow-up, corresponding to ICD−10 codes F70–F79.
- ADHD: Diagnosed by pediatric psychiatrists according to DSM−5 criteria and confirmed in medical history.
- ASD: Diagnosed by pediatric psychiatrists based on ICD−10 F84 codes and standardized behavioral assessment.
- Mental disorders: Included documented diagnoses of mood, anxiety, or behavioral disorders, classified under ICD−10 F30–F99 codes.
2.2. Statistical Analysis
- p represents the probability of a given outcome, which ranges from 0 to 1.
- x1, x2, …, xn denote the values of the independent variables (risk factors) that are measured on nominal, ordinal, or quantitative scales.
- a0 signifies the intercept term of the model.
- a1, a2, …, an are the regression coefficients corresponding to each independent variable.
- e denotes the base of the natural logarithm.
- Ethical Approval: This study was approved by the local Ethics Committee at the “Scientific Center of Pediatrics and Pediatric Surgery” on 13 April 2022 (reference number: 2). We obtained informed consent from all participants’ authorized representatives before enrollment.
- Trial registration: The protocol was registered on ClinicalTrials.gov (NCT06094998) on 17 October 2023.
3. Results
3.1. Prevalence of Nervous System Pathologies in Children Conceived by ART Compared to Naturally Conceived Children
3.2. Analysis of the Impact of ART and Other Risk Factors on the Development of Nervous System Pathologies and Cognitive Disorders in ART-Conceived Children
3.3. Development of a Prediction Model for Determining the Probability of Immaturity of Brain Structures Detected by NSG in ART-Conceived Children
z = −3.89 + 3.29 × XPL+ 1.7 × XP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ART | Assisted Reproductive Technologies |
IVF | In vitro fertilization |
NC | Naturally conceived |
ADHD | Attention deficit hyperactivity disorder |
ASD | Autism spectrum disorders |
CP | Cerebral palsy |
ICSI | Intracytoplasmic sperm injection |
OR | Odds ratio |
CI | Confidence interval |
ROC | Receiver Operating Characteristic |
AUC | Area under the ROC curve |
NSG | Neurosonography |
IUR | Intrauterine growth retardation |
RDS | Respiratory distress syndrome |
References
- Isenova, S.S.H.; Aripkhanova, A.S.; Sultanmuratova, D.D.; Kazybaeva, A.S.; Tileukul, N.A.; Boran, A.M. Management Strategies for Thrombophilic Patients Undergoing Assisted Reproductive Technologies. Akusherstvo I Ginekol. 2023, 2023, 5–10. [Google Scholar] [CrossRef]
- Adamson, G.D.; Creighton, P.; de Mouzon, J.; Zegers-Hochschild, F.; Dyer, S.; Chambers, G.M. How Many Infants Have Been Born with the Help of Assisted Reproductive Technology? Fertil. Steril. 2025, 124, 40–50. [Google Scholar] [CrossRef]
- Nurgaliyeva, Z.; Ilmuratova, S.; Lokshin, V.; Manzhuova, L.; Seisebayeva, R. Identifying Risk Factors for Neonatal Hypoglycemia in Infants Conceived through Assisted Reproductive Technology: A Retrospective Cohort Study. Acta Biomed. 2025, 96, 16891. [Google Scholar] [CrossRef]
- Levin, S.; Sheiner, E.; Wainstock, T.; Walfisch, A.; Segal, I.; Landau, D.; Sergienko, R.; Levitas, E.; Harlev, A. Infertility Treatments and Long-Term Neurologic Morbidity of the Offspring. Am. J. Perinatol. 2019, 36, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Kuji, N.; Ueno, K.; Kojima, J.; Nishi, H. The Long-Term Outcome of Children Conceived Through Assisted Reproductive Technology. Reprod. Sci. 2023, 31, 583–590. [Google Scholar] [CrossRef]
- Bergh, C.; Wennerholm, U.B. Long-Term Health of Children Conceived after Assisted Reproductive Technology. Upsala J. Med. Sci. 2020, 125, 152–157. [Google Scholar] [CrossRef]
- Wang, F.F.; Yu, T.; Chen, X.L.; Luo, R.; Mu, D.Z. Cerebral Palsy in Children Born after Assisted Reproductive Technology: A Meta-Analysis. World J. Pediatr. 2021, 17, 364–374. [Google Scholar] [CrossRef]
- Hansen, M.; Greenop, K.R.; Bourke, J.; Baynam, G.; Hart, R.J.; Leonard, H. Intellectual Disability in Children Conceived Using Assisted Reproductive Technology. Pediatrics 2018, 142, e20181269. [Google Scholar] [CrossRef]
- Wang, C.; Johansson, A.L.V.; Rodriguez-Wallberg, K.A.; Landén, M.; Almqvist, C.; Hernández-Díaz, S.; Oberg, A.S. Long-Term Follow-up of Psychiatric Disorders in Children and Adolescents Conceived by Assisted Reproductive Techniques in Sweden. JAMA Psychiatry 2022, 79, 133–142. [Google Scholar] [CrossRef]
- Wijs, L.A.; Doherty, D.A.; Keelan, J.A.; Burton, P.; Yovich, J.L.; Robinson, M.; Hart, R.J. Mental Health and Behavioural Problems in Adolescents Conceived after ART. Hum. Reprod. 2022, 37, 2831–2844. [Google Scholar] [CrossRef] [PubMed]
- Norrman, E.; Petzold, M.; Bergh, C.; Wennerholm, U.B. School Performance in Singletons Born after Assisted Reproductive Technology. Hum. Reprod. 2018, 33, 1948–1959. [Google Scholar] [CrossRef]
- Wienecke, L.S.; Kjær, S.K.; Frederiksen, K.; Hargreave, M.; Dalton, S.O.; Jensen, A. Ninth-Grade School Achievement in Danish Children Conceived Following Fertility Treatment: A Population-Based Cohort Study. Fertil. Steril. 2020, 113, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Luke, B.; Brown, M.B.; Ethen, M.K.; Canfield, M.A.; Watkins, S.; Wantman, E.; Doody, K.J. Third Grade Academic Achievement among Children Conceived with the Use of in Vitro Fertilization: A Population-Based Study in Texas. Fertil. Steril. 2020, 113, 1242–1250.e4. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Ghosh, J.; Coutifaris, C.; Sapienza, C.; Mainigi, M. Epigenetic Changes and Assisted Reproductive Technologies. Epigenetics 2020, 15, 12–25. [Google Scholar] [CrossRef]
- Barberet, J.; Ducreux, B.; Guilleman, M.; Simon, E.; Bruno, C.; Fauque, P. DNA Methylation Profiles after ART during Human Lifespan: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2022, 28, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Cannarella, R.; Crafa, A.; Mongioì, L.M.; Leggio, L.; Iraci, N.; La Vignera, S.; Condorelli, R.A.; Calogero, A.E. DNA Methylation in Offspring Conceived after Assisted Reproductive Techniques: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 5056. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Hwu, W.L.; Chen, C.H.; Hou, C.Y.; Cheng, W. Children Conceived by Assisted Reproductive Technology Prone to Low Birth Weight, Preterm Birth, and Birth Defects: A Cohort Review of More Than 50,000 Live Births During 2011–2017 in Taiwan. Front. Pediatr. 2020, 8, 87. [Google Scholar] [CrossRef]
- Cochrane, E.; Pando, C.; Kirschen, G.W.; Soucier, D.; Fuchs, A.; Garry, D.J. Assisted Reproductive Technologies (ART) and Placental Abnormalities. J. Perinat. Med. 2020, 48, 825–828. [Google Scholar] [CrossRef]
- Wennerholm, U.B.; Bergh, C. Perinatal Outcome in Children Born after Assisted Reproductive Technologies. Upsala J. Med. Sci. 2020, 125, 158–166. [Google Scholar] [CrossRef]
- Mitter, V.R.; Fasel, P.; Berlin, C.; Amylidi-Mohr, S.; Mosimann, B.; Zwahlen, M.; von Wolff, M.; Kohl Schwartz, A.S. Perinatal Outcomes in Singletons after Fresh IVF/ICSI: Results of Two Cohorts and the Birth Registry. Reprod. Biomed. Online 2022, 44, 689–698. [Google Scholar] [CrossRef]
- Lei, L.L.; Lan, Y.L.; Wang, S.Y.; Feng, W.; Zhai, Z.J. Perinatal Complications and Live-Birth Outcomes Following Assisted Reproductive Technology: A Retrospective Cohort Study. Chin. Med. J. 2019, 132, 2408–2416. [Google Scholar] [CrossRef]
- Ganer Herman, H.; Mizrachi, Y.; Shevach Alon, A.; Farhadian, Y.; Gluck, O.; Bar, J.; Kovo, M.; Raziel, A. Obstetric and Perinatal Outcomes of in Vitro Fertilization and Natural Pregnancies in the Same Mother. Fertil. Steril. 2021, 115, 940–946. [Google Scholar] [CrossRef]
- Hoyos, L.R.; Ory, S.J. The Influence of Assisted Reproductive Technologies on Obstetric and Perinatal Outcomes: The Chicken, the Egg, or Both? Fertil. Steril. 2021, 115, 884–885. [Google Scholar] [CrossRef]
- Spangmose, A.L.; Ginström Ernstad, E.; Malchau, S.; Forman, J.; Tiitinen, A.; Gissler, M.; Opdahl, S.; Romundstad, L.B.; Bergh, C.; Wennerholm, U.B.; et al. Obstetric and Perinatal Risks in 4601 Singletons and 884 Twins Conceived after Fresh Blastocyst Transfers: A Nordic Study from the CoNARTaS Group. Hum. Reprod. 2020, 35, 805–815. [Google Scholar] [CrossRef]
- Wessel, J.A.; Mol, F.; Danhof, N.A.; Bensdorp, A.J.; Tjon-Kon Fat, R.I.; Broekmans, F.J.M.; Hoek, A.; Mol, B.W.J.; Mochtar, M.H.; Van Wely, M.; et al. Birthweight and Other Perinatal Outcomes of Singletons Conceived after Assisted Reproduction Compared to Natural Conceived Singletons in Couples with Unexplained Subfertility: Follow-up of Two Randomized Clinical Trials. Hum. Reprod. 2021, 36, 817–825. [Google Scholar] [CrossRef]
- Hwang, S.S.; Dukhovny, D.; Gopal, D.; Cabral, H.; Missmer, S.; Diop, H.; Declercq, E.; Stern, J.E. Health of Infants After ART-Treated, Subfertile, and Fertile Deliveries. Pediatrics 2018, 142, e20174069. [Google Scholar] [CrossRef]
- Huang, X.; Fu, J.H. Association Between Assisted Reproductive Technology and White Matter Injury in Premature Infants: A Case-Control Study. Front. Pediatr. 2021, 9, 686670. [Google Scholar] [CrossRef]
- Kvanta, H.; Bolk, J.; Broström, L.; Fernández de Gamarra-Oca, L.; Padilla, N.; Ådén, U. Extreme Prematurity and Perinatal Risk Factors Related to Extremely Preterm Birth Are Associated with Complex Patterns of Regional Brain Volume Alterations at 10 Years of Age: A Voxel-Based Morphometry Study. Front. Neurol. 2023, 14, 1148781. [Google Scholar] [CrossRef]
- Strizhakov, A.N.; Popova, N.G.; Ignatko, I.V.; Bogomazova, I.M.; Pitskhelauri, E.G.; Belousova, V.S.; Tolkach, Y.I. Predicting Injuries of the Central Nervous System of the Foetus in Preterm Birth. Vopr. Ginekol. Akusherstva I Perinatol. 2016, 15, 31–42. [Google Scholar] [CrossRef]
- Bespalova, O.N.; Butenko, M.G.; Bakleycheva, M.O.; Kosyakova, O.V.; Sargsyan, G.S.; Kogan, I.Y. Efficacy of Progestogens in the Management of Threatened Miscarriage in Women with Multiple Pregnancies Resulting from Assisted Reproductive Technologies. Vopr. Ginekol. Akusherstva I Perinatol. 2021, 20, 47–54. [Google Scholar] [CrossRef]
- Luke, B.; Brown, M.B.; Wantman, E.; Forestieri, N.E.; Browne, M.L.; Fisher, S.C.; Yazdy, M.M.; Ethen, M.K.; Canfield, M.A.; Watkins, S.; et al. The Risk of Birth Defects with Conception by ART. Hum. Reprod. 2021, 36, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Lokshin, V.; Ilmuratova, S. Cognitive development and neuropsychic health of children conceived by assisted repro-ductive technologies. Akush Ginekol 2022, 11, 31–36. [Google Scholar] [CrossRef]
Pathological Conditions | Study Groups | p | OR; 95% CI | |||
---|---|---|---|---|---|---|
ART (n = 120) | NC (n = 132) | |||||
Abs. | % | Abs. | % | |||
Intrauterine growth retardation | 7 | 5.8 | 3 | 2.3 | 0.200 | 2.66; 0.67–10.54 |
Presence of birth trauma | 6 | 5 | 5 | 3.8 | 0.761 | 1.34; 0.4–4.5 |
Asphyxia of the newborn | 8 | 6.7 | 14 | 10.6 | 0.269 | 0.6; 0.24–1.5 |
Nervous system damage | 17 | 14.2 | 12 | 9.1 | 0.207 | 1.65; 0.75–3.62 |
Immaturity of brain structures on neurosonography | 16 | 13.3 | 7 | 5.3 | 0.027 * | 2.75; 1.09–6.93 |
Pathologic hyperbilirubinemias of the newborn period | 43 | 35.8 | 42 | 31.8 | 0.501 | 1.2; 0.7–2.02 |
Congenital malformations of the central nervous system (neural tube defects) | 0 | 0 | 3 | 2.3 | 0.217 | 0.15; 0.0–3.0 |
Cerebral palsy | 0 | 0 | 1 | 0.8 | 0.537 | 0.36; 0.01–9.02 |
Cognitive impairments | 3 | 2.5 | 7 | 5.3 | 0.340 | 0.46; 0.12–1.81 |
Attention deficit hyperactivity disorder | 6 | 5 | 8 | 6.1 | 0.788 | 0.82; 0.28–2.42 |
Autism spectrum disorders | 3 | 2.5 | 2 | 1.5 | 0.671 | 1.67; 0.27–10.15 |
Mental disorders | 1 | 0.8 | 2 | 1.5 | 1.000 | 0.55; 0.49–6.1 |
Risk Factors | Presence of Immaturity of Brain Structures on Neurosonography | p | OR; 95% CI | p ** | aOR; 95% CI | |||
---|---|---|---|---|---|---|---|---|
Presence (n = 23) | Absence (n = 229) | |||||||
Abs. | % | Abs. | % | |||||
Multiple pregnancy | 12 | 52.2 | 38 | 16.6 | <0.001 * | 5.48; 2.25–13.34 | 0.736 | 1.22; 0.38–3.94 |
Abortion history | 6 | 26.1 | 40 | 17.5 | 0.393 | 1.67; 0.62–4.49 | 0.015 | 3.38; 1.27–9.03 |
Maternal obesity | 1 | 4.3 | 16 | 7 | 1.000 | 0.61; 0.08–4.78 | 0.032 | 2.75; 1.09–6.94 |
Thyroid diseases | 3 | 13 | 58 | 25.3 | 0.305 | 0.44; 0.13–1.54 | 0.039 | 2.65; 1.05–6.72 |
Chronic pyelonephritis | 9 | 39.1 | 58 | 25.3 | 0.213 | 1.9; 0.78–4.61 | 0.016 | 3.22; 1.24–8.35 |
Threat of abortion | 10 | 43.5 | 73 | 31.9 | 0.256 | 1.64; 0.69–3.92 | 0.031 | 2.78; 1.1–7.02 |
Preterm labor | 16 | 69.6 | 23 | 10 | <0.001 * | 20.47; 7.63–54.94 | 0.688 | 1.25; 0.43–3.66 |
Low birth weight | 14 | 60.9 | 19 | 8.3 | <0.001 * | 17.19; 6.58–44.91 | 0.435 | 1.51; 0.54–4.28 |
Intrauterine pneumonia | 7 | 30.4 | 9 | 3.9 | <0.001 * | 10.69; 3.52–32.47 | 0.042 | 2.74; 1.04–7.22 |
Respiratory distress syndrome | 9 | 39.1 | 13 | 5.7 | <0.001 * | 10.68; 3.9–29.25 | 0.057 | 2.58; 0.97–6.82 |
Asphyxia of the newborn | 8 | 34.8 | 14 | 6.1 | <0.001 * | 8.19; 2.97–22.58 | 0.011 | 3.78; 1.36–10.51 |
Pneumopathy (pulmonary atelectasis. hyaline membrane disease. edematous hemorrhagic syndrome) | 5 | 21.7 | 7 | 3.1 | 0.002 * | 8.81; 2.54–30.57 | 0.042 | 2.68; 1.04–6.94 |
Intrauterine growth retardation | 4 | 17.4 | 6 | 2.6 | 0.008 * | 7.83; 2.03–30.16 | 0.056 | 2.51; 0.98–6.44 |
Pathologic hyperbilirubinemia | 13 | 56.5 | 72 | 31.4 | 0.020 * | 2.84; 1.19–6.77 | 0.038 | 2.69; 1.06–6.84 |
Congenital heart defects | 8 | 34.8 | 27 | 11.8 | 0.007 * | 3.99; 1.55–10.29 | 0.064 | 2.43; 0.95–6.24 |
Risk Factors | Presence of Immaturity of Brain Structures in ART-Conceived Children | p | OR; 95% CI | ||||
---|---|---|---|---|---|---|---|
Presence (n = 16) | Absence (n = 104) | ||||||
Abs. | % | Abs. | % | ||||
Multiple pregnancy | 11 | 68.8 | 37 | 35.6 | 0.015 * | 3.98; 1.29–12.34 | |
Abortion history | 3 | 18.8 | 8 | 7.7 | 0.164 | 2.77; 0.65–11.78 | |
Thyroid diseases | 0 | 0 | 25 | 24 | 0.105 | 0.09; 0.01–1.63 | |
Chronic pyelonephritis | 6 | 37.5 | 17 | 16.3 | 0.080 | 3.07; 0.98–9.58 | |
Threatened miscarriage | 8 | 50 | 31 | 29.8 | 0.151 | 2.36; 0.81–6.84 | |
Preterm labor | 13 | 81.3 | 17 | 16.3 | <0.001 * | 22.18; 5.7–86.29 | |
Intracytoplasmic sperm injection | 8 | 50 | 65 | 62.5 | 0.413 | 0.6; 0.21–1.73 | |
Frozen Embryo Transfer | 10 | 62.5 | 81 | 77.9 | 0.212 | 0.47; 0.16–1.44 | |
Progesterone intake during pregnancy | 6 | 37.5 | 15 | 14.4 | 0.035 * | 3.56; 1.13–11.25 | |
Low birth weight | 11 | 68.8 | 14 | 13.5 | <0.001 * | 14.14; 4.27–46.85 | |
Intrauterine pneumonia | 5 | 31.3 | 4 | 3.8 | 0.002 * | 11.36; 2.65–48.68 | |
Respiratory distress syndrome | 6 | 37.5 | 7 | 6.7 | 0.002 * | 8.31; 2.34–29.6 | |
Asphyxia of the newborn | 4 | 25 | 4 | 3.8 | 0.011 * | 8.33; 1.84–37.71 | |
Pneumopathy (pulmonary atelectasis. hyaline membrane disease. edematous hemorrhagic syndrome) | 3 | 18.8 | 4 | 3.8 | 0.049 * | 5.77; 1.16–28.71 | |
Fetal growth restriction | 3 | 18.8 | 3 | 2.3 | 0.049 * | 5.77; 1.16–28.71 | |
Pathologic hyperbilirubinemia | 9 | 56.3 | 34 | 32.7 | 0.093 | 2.65; 0.91–7.71 | |
Congenital heart and vascular defects | 5 | 31.3 | 17 | 16.3 | 0.170 | 2.33; 0.72–7.56 |
Predictors | Unadjusted | Adjusted | ||
---|---|---|---|---|
COR; 95% CI | p | AOR; 95% CI | p | |
Preterm labor | 22.18; 5.7–86.29 | <0.001 * | 26.92; 6.18–117.31 | <0.001 * |
Progesterone use before pregnancy | 3.56; 1.13–11.25 | 0.035 * | 5.46; 1.18–25.25 | 0.030 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilmuratova, S.; Lokshin, V.; Nurgaliyeva, Z.; Kеmelbekov, K.; Kulniyazova, G.; Abdykalykova, B.; Seisebayeva, R.; Zhubanysheva, K.; Altynbayeva, G.; Mukhambetova, G.; et al. The Role of Perinatal Complications in Neurodevelopmental Outcomes of ART-Conceived Children: Prognostic Model for Brain Immaturity. Biomedicines 2025, 13, 2551. https://doi.org/10.3390/biomedicines13102551
Ilmuratova S, Lokshin V, Nurgaliyeva Z, Kеmelbekov K, Kulniyazova G, Abdykalykova B, Seisebayeva R, Zhubanysheva K, Altynbayeva G, Mukhambetova G, et al. The Role of Perinatal Complications in Neurodevelopmental Outcomes of ART-Conceived Children: Prognostic Model for Brain Immaturity. Biomedicines. 2025; 13(10):2551. https://doi.org/10.3390/biomedicines13102551
Chicago/Turabian StyleIlmuratova, Sevara, Vyacheslav Lokshin, Zhanar Nurgaliyeva, Kаnatzhan Kеmelbekov, Gulshat Kulniyazova, Bibigul Abdykalykova, Roza Seisebayeva, Karlygash Zhubanysheva, Gulmira Altynbayeva, Gulnar Mukhambetova, and et al. 2025. "The Role of Perinatal Complications in Neurodevelopmental Outcomes of ART-Conceived Children: Prognostic Model for Brain Immaturity" Biomedicines 13, no. 10: 2551. https://doi.org/10.3390/biomedicines13102551
APA StyleIlmuratova, S., Lokshin, V., Nurgaliyeva, Z., Kеmelbekov, K., Kulniyazova, G., Abdykalykova, B., Seisebayeva, R., Zhubanysheva, K., Altynbayeva, G., Mukhambetova, G., Sadykova, A., Marapov, D., Nekhorosheva, V., & Manzhuova, L. (2025). The Role of Perinatal Complications in Neurodevelopmental Outcomes of ART-Conceived Children: Prognostic Model for Brain Immaturity. Biomedicines, 13(10), 2551. https://doi.org/10.3390/biomedicines13102551