Advancing Precision in Neuro-Oncology with Intraoperative Imaging and Fluorescence Guidance: A Narrative Review
Abstract
1. Introduction
2. Intraoperative Ultrasound (iUS or USG)
3. Intraoperative Magnetic Resonance Imaging (iMRI)
4. Intraoperative Computed Tomography (iCT)
5. Virtual MRI (vMRI)
6. 5-Aminolevulinic Acid (5-ALA) Guided Surgery
7. Sodium Fluorescein Guided Surgery
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-ala | 5-aminolevulinic acid |
BBB | blood-brain barrier |
CEUS | contrast enhanced ultrasound |
CNS | central nervous system |
EBM | evidence-based medicine |
GB | glioblastoma |
GTR | gross total resection |
HGG | high grade gliomas |
iCT | intraoperative computed tomography |
iMRI | intraoperative magnetic resonance imagining |
iUS | intraoperative ultrasound |
LGG | low grade gliomas |
MRI | magnetic resonance imagining |
OSR | overall survival rate |
PpIX | protoporphyrin IX |
RCT | randomized control trial |
USG | ultrasonography |
vMRI | virtual magnetic resonance imagining |
WHO | World Health Organisation |
References
- Omuro, A.; DeAngelis, L.M. Glioblastoma and Other Malignant Gliomas: A Clinical Review. JAMA 2013, 310, 1842–1850. [Google Scholar] [CrossRef]
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef]
- Dong, X.; Noorbakhsh, A.; Hirshman, B.R.; Zhou, T.; Tang, J.A.; Chang, D.C.; Carter, B.S.; Chen, C.C. Survival Trends of Grade I, II, and III Astrocytoma Patients and Associated Clinical Practice Patterns between 1999 and 2010: A SEER-Based Analysis. Neuro-Oncol. Pract. 2014, 3, 29–38. [Google Scholar] [CrossRef]
- Schaff, L.R.; Mellinghoff, I.K. Glioblastoma and Other Primary Brain Malignancies in Adults: A Review. JAMA 2023, 329, 574–587. [Google Scholar] [CrossRef]
- Glover, G.H. Overview of Functional Magnetic Resonance Imaging. Neurosurg. Clin. N. Am. 2011, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Roda, D.; Veiga, P.; Melo, J.B.; Carreira, I.M.; Ribeiro, I.P. Principles in the Management of Glioblastoma. Genes 2024, 15, 501. [Google Scholar] [CrossRef]
- Jafri, S.K.K.; Bukhari, S.S.; Shamim, M.S. Role of Surgery in Multifocal Glioblastoma. J. Pak. Med. Assoc. 2022, 72, 576–578. [Google Scholar] [CrossRef]
- Karschnia, P.; Young, J.S.; Dono, A.; Häni, L.; Sciortino, T.; Bruno, F.; Juenger, S.T.; Teske, N.; Morshed, R.A.; Haddad, A.F.; et al. Prognostic Validation of a New Classification System for Extent of Resection in Glioblastoma: A Report of the RANO Resect Group. Neuro. Oncol. 2023, 25, 940–954. [Google Scholar] [CrossRef] [PubMed]
- Solis, W.G.; Hansen, M. Fluorescence in a Cryptococcoma Following Administration of 5-Aminolevulinic Acid Hydrochloride (Gliolan). BMJ Case Rep. 2017, 2017, bcr-2017. [Google Scholar] [CrossRef]
- Unsgaard, G.; Rygh, O.M.; Selbekk, T.; Müller, T.B.; Kolstad, F.; Lindseth, F.; Hernes, T.A.N. Intra-Operative 3D Ultrasound in Neurosurgery. Acta Neurochir. 2006, 148, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Prada, F.; Del Bene, M.; Mattei, L.; Lodigiani, L.; Debeni, S.; Kolev, V.; Vetrano, I.; Solbiati, L.; Sakas, G.; Dimeco, F. Preoperative Magnetic Resonance and Intraoperative Ultrasound Fusion Imaging for Real-Time Neuronavigation in Brain Tumor Surgery. Ultraschall Med. 2014, 9, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J. Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Prada, F.; Perin, A.; Martegani, A.; Aiani, L.; Solbiati, L.; Lamperti, M.; Casali, C.; Legnani, F.; Mattei, L.; Saladino, A.; et al. Intraoperative Contrast-Enhanced Ultrasound for Brain Tumor Surgery. Neurosurgery 2014, 74, 542–552. [Google Scholar] [CrossRef]
- Selbekk, T.; Jakola, A.S.; Solheim, O.; Johansen, T.F.; Lindseth, F.; Reinertsen, I.; Unsgård, G. Ultrasound Imaging in Neurosurgery: Approaches to Minimize Surgically Induced Image Artefacts for Improved Resection Control. Acta Neurochir. 2013, 155, 973–980. [Google Scholar] [CrossRef]
- Solheim, O.; Selbekk, T.; Jakola, A.S.; Unsgård, G. Ultrasound-Guided Operations in Unselected High-Grade Gliomas-Overall Results, Impact of Image Quality and Patient Selection. Acta Neurochir. 2010, 152, 1873–1886. [Google Scholar] [CrossRef] [PubMed]
- Journal, E.; Murithi Kaberia, P.; Farhoud, A.H.; Abbassy, M.; Hamed Heikal, A.; Fayed, A.A. Ultrasound-Assisted Resection of Insular Gliomas. Egypt. J. Neurosurg. 2024, 39, 1–7. [Google Scholar] [CrossRef]
- Elmesallamy, W.A.E.A. The Role of Intraoperative Ultrasound in Gross Total Resection of Brain Mass Lesions and Outcome. Egypt. J. Neurol. Psychiatry Neurosurg. 2019, 55, 1–11. [Google Scholar] [CrossRef]
- Wilson, S.R.; Burns, P.N. Microbubble-Enhanced US in Body Imaging: What Role? Radiology 2010, 257, 24–39. [Google Scholar] [CrossRef]
- Stummer, W.; Reulen, H.J.; Meinel, T.; Pichlmeier, U.; Schumacher, W.; Tonn, J.C.; Rohde, V.; Oppel, F.; Turowski, B.; Woiciechowsky, C.; et al. Extent of Resection and Survival in Glioblastoma Multiforme: Identification of and Adjustment for Bias. Neurosurgery 2008, 62, 564–574. [Google Scholar] [CrossRef]
- Nimsky, C.; Ganslandt, O.; Cerny, S.; Hastreiter, P.; Greiner, G.; Fahlbusch, R. Quantification of, Visualization of, and Compensation for Brain Shift Using Intraoperative Magnetic Resonance Imaging. Neurosurgery 2000, 47, 1070–1080. [Google Scholar] [CrossRef]
- Senft, C.; Bink, A.; Franz, K.; Vatter, H.; Gasser, T.; Seifert, V. Intraoperative MRI Guidance and Extent of Resection in Glioma Surgery: A Randomised, Controlled Trial. Lancet Oncol. 2011, 12, 997–1003. [Google Scholar] [CrossRef]
- Kubben, P.L.; ter Meulen, K.J.; Schijns, O.E.M.G.; ter Laak-Poort, M.P.; van Overbeeke, J.J.; van Santbrink, H. Intraoperative MRI-Guided Resection of Glioblastoma Multiforme: A Systematic Review. Lancet Oncol. 2011, 12, 1062–1070. [Google Scholar] [CrossRef]
- Hall, W.A.; Truwit, C.L. Intraoperative MR-Guided Neurosurgery. J. Magn. Reson. Imag. 2008, 27, 368–375. [Google Scholar] [CrossRef]
- Wirtz, C.R.; Bonsanto, M.M.; Knauth, M.; Tronnier, V.M.; Albert, F.K.; Staubert, A.; Kunze, S.; Wirtz, R. Intraoperative Magnetic Resonance Imaging to Update Interactive Navigation in Neurosurgery: Method and Preliminary Experience. Comput. Aided Surg. 1997, 2, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Abraham, P.; Sarkar, R.; Brandel, M.G.; Wali, A.R.; Rennert, R.C.; Ramos, C.L.; Padwal, J.; Steinberg, J.A.; Santiago-Dieppa, D.R.; Cheung, V.; et al. Cost-Effectiveness of Intraoperative MRI for Treatment of High-Grade Gliomas. Radiology 2019, 291, 689–697. [Google Scholar] [CrossRef]
- Ottesen, J.A.; Storas, T.; Vatnehol, S.A.S.; Løvland, G.; Vik-Mo, E.O.; Schellhorn, T.; Skogen, K.; Larsson, C.; Bjørnerud, A.; Groote-Eindbaas, I.R.; et al. Deep Learning-Based Intraoperative MRI Reconstruction. Eur. Radiol. Exp. 2024, 9, 29. [Google Scholar] [CrossRef]
- Saß, B.; Pojskic, M.; Bopp, M.; Nimsky, C.; Carl, B. Comparing Fiducial-Based and Intraoperative Computed Tomography-Based Registration for Frameless Stereotactic Brain Biopsy. Stereotact. Funct. Neurosurg. 2021, 99, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Bin-Alamer, O.; Abou-Al-Shaar, H.; Gersey, Z.C.; Huq, S.; Kallos, J.A.; McCarthy, D.J.; Head, J.R.; Andrews, E.; Zhang, X.; Hadjipanayis, C.G. Intraoperative Imaging and Optical Visualization Techniques for Brain Tumor Resection: A Narrative Review. Cancers 2023, 15, 4890. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Lee, S.T.; Chang, C.N.; Pai, P.C.; Chen, Y.L.; Hsieh, T.C.; Chuang, C.C. Volumetric Measurement for Comparison of the Accuracy between Intraoperative CT and Postoperative MR Imaging in Pituitary Adenoma Surgery. AJNR Am. J. Neuroradiol. 2011, 32, 1539. [Google Scholar] [CrossRef]
- Dixon, L.; Lim, A.; Grech-Sollars, M.; Nandi, D.; Camp, S. Intraoperative Ultrasound in Brain Tumor Surgery: A Review and Implementation Guide. Neurosurg. Rev. 2022, 45, 2503–2515. [Google Scholar] [CrossRef]
- Ashraf, M.; Ahmed, S.; Nadir, M.A.; Tariq, Z.; Iqbal, M.; Malik, M.; Khan, M.H.; Assad, A.A.; Awan, A.R.; Saeed, A.R.; et al. Value of Intraoperative Computed Tomography in Intra-Axial Brain Tumor Surgery: A Systematic Review. World Neurosurg. 2025, 198, 124029. [Google Scholar] [CrossRef] [PubMed]
- Chicoine, M.R.; Sylvester, P.; Yahanda, A.T.; Shah, A. Image Guidance in Cranial Neurosurgery: How a Six-Ton Magnet and Fluorescent Colors Make Brain Tumor Surgery Better. Mo. Med. 2020, 117, 39. [Google Scholar]
- Peltonen, J.I.; Kaasalainen, T.; Kortesniemi, M. Metal Artifacts in Intraoperative O-Arm CBCT Scans. BMC Med. Imag. 2021, 21, 1–6. [Google Scholar] [CrossRef]
- Grasso, E.; Certo, F.; Ganau, M.; Bonomo, G.; Fiumanò, G.; Buscema, G.; Maugeri, A.; Agodi, A.; Barbagallo, G.M.V. Role of Virtual IMRI in Glioblastoma Surgery: Advantages, Limitations, and Correlation with ICT and Brain Shift. Brain Sci. 2024, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Cranial Planning with Elements: Software for Neurosurgery|Brainlab. Available online: https://www.brainlab.com/surgery-products/overview-neurosurgery-products/cranial-planning/?utm_source=chatgpt.com (accessed on 22 August 2025).
- Bopp, M.H.A.; Corr, F.; Saß, B.; Pojskic, M.; Kemmling, A.; Nimsky, C. Augmented Reality to Compensate for Navigation Inaccuracies. Sensors 2022, 22, 9591. [Google Scholar] [CrossRef]
- Kim, J.T.; Di, L.; Etame, A.B.; Olson, S.; Vogelbaum, M.A.; Tran, N.D. Use of Virtual Magnetic Resonance Imaging to Compensate for Brain Shift during Image-Guided Surgery: Illustrative Case. J. Neurosurg. Case Lessons 2022, 3, CASE21683. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Stocker, S.; Wagner, S.; Stepp, H.; Fritsch, C.; Goetz, C.; Goetz, A.E.; Kiefmann, R.; Reulen, H.J. Intraoperative Detection of Malignant Gliomas by 5-Aminolevulinic Acid- Induced Porphyrin Fluorescence. Neurosurgery 1998, 42, 518–526. [Google Scholar] [CrossRef]
- Roberts, D.W.; Valdés, P.A.; Harris, B.T.; Fontaine, K.M.; Hartov, A.; Fan, X.; Ji, S.; Lollis, S.S.; Pogue, B.W.; Leblond, F.; et al. Coregistered Fluorescence-Enhanced Tumor Resection of Malignant Glioma: Relationships between δ-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence, Magnetic Resonance Imaging Enhancement, and Neuropathological Parameters: Clinical Article. J. Neurosurg. 2011, 114, 595–603. [Google Scholar] [CrossRef]
- Acerbi, F.; Broggi, M.; Eoli, M.; Anghileri, E.; Cavallo, C.; Boffano, C.; Cordella, R.; Cuppini, L.; Pollo, B.; Schiariti, M.; et al. Is Fluorescein-Guided Technique Able to Help in Resection of High-Grade Gliomas? Neurosurg. Focus 2014, 36, E5. [Google Scholar] [CrossRef]
- Schebesch, K.-M.; Brawanski, A.; Hohenberger, C.; Höhne, J. Fluorescein Sodium-Guided Surgery of Malignant Brain Tumors: History, Current Concepts, and Future Projects. Turk. Neurosurg. 2016, 26, 185. [Google Scholar] [CrossRef]
- Maugeri, R.; Villa, A.; Pino, M.; Imperato, A.; Giammalva, G.R.; Costantino, G.; Graziano, F.; Gulì, C.; Meli, F.; Francaviglia, N.; et al. With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas. Brain Sci. 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Jiang, Y.; Liu, R.; Wu, G.; Wu, G.; Xu, K.; Miao, Z. Safety and Feasibility of Low-Dose Fluorescein-Guided Resection of Glioblastoma. Clin. Neurol. Neurosurg. 2018, 175, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.; Brown, C.S.; Colan, J.A.; Zhang, J.Y.; Huq, S.; Rivera, D.; Young, T.; Williams, T.; Subramaniam, V.; Hadjipanayis, C. Fluorescence-Guided Surgery for Gliomas: Past, Present, and Future. Cancers 2025, 17, 1837. [Google Scholar] [CrossRef] [PubMed]
Tool | Method | Advantages | Disadvantages | Approximate Cost |
---|---|---|---|---|
Intraoperative Ultrasound (iUS) | Provides dynamic, real-time visualization of the brain and tumour during surgery, aiding localisation, assessment of resection progress, and detection of residual tumour. | Continuous use throughout surgery without interrupting the workflow. Compensates for brain shift. Portable. Does not require a highly specialized surgical infrastructure. Not as expensive as iCT and iMRI. | Requires considerable operator experience to interpret images accurately. May be difficult to distinguish tumour from edoema or infiltrated brain tissue in some cases. supported by a few prospective studies, retrospective research and case reports. | EUR 7000–EUR 11,000 |
Intraoperative Magnetic Resonance Imaging (iMRI) | Utilizes MRI during surgery to provide real-time, high-resolution images of the operative field. | High-quality imaging—the gold standard for brain tumours. Compensates for brain shift. Detects even small residual tumours. | Very expensive. Requires a specially designed operating theatre and equipment. Prolonged image acquisition time interrupts surgical workflow. | Over EUR 1 million (however, costs may be offset by reduced tumour recurrence, fewer revision surgeries, and improved quality of life). |
Intraoperative Computed Tomography (iCT) | Provides intraoperative imaging of the surgical field, often used with neuronavigation. | Relatively fast image acquisition. Particularly useful in skull base procedures, endoscopic approaches, and frameless stereotactic biopsies. Compensates for brain shift. | Requires specialized equipment. Lower soft-tissue resolution than MRI -insufficient for guiding resection of infiltrative tumours when used alone. Susceptible to artefacts. Radiation exposure. Occupies considerable space in the operating theatre. | EUR 80,000–EUR 300,000 (costs may be mitigated by reduced recurrence rates, fewer re-operations, and improved patient outcomes). |
Virtual Magnetic Resonance Imaging (vMRI) | Combines intraoperative CT scans with preoperative high-resolution MRI to generate an updated, MRI-like visualization. | Adjusts for intraoperative anatomical changes. Integrated into neuronavigation systems. | Limited evidence supporting improved clinical outcomes or the extent of resection. Requires specialized hardware and software. | Cost equivalent to intraoperative CT plus software licencing. |
5-Aminolevulinic Acid (5-ALA) | A precursor metabolized within malignant cells into protoporphyrin IX, which accumulates selectively due to altered mitochondrial function and high metabolic activity. | Enhances intraoperative visualization of tumour margins. Relatively inexpensive compared with advanced imaging systems. Supported by one randomized, prospective study, retrospective studies and case reports. | Effectiveness depends on tumour histology. Requires specific optical filters and microscopes. Interpretation is subjective. May yield false positives in inflammatory or gliotic areas. | Several thousand euros. |
Fluorescein | Passively distributes through regions of blood–brain barrier disruption, highlighting contrast-enhancing areas. | Provides real-time intraoperative visualization of tumour margins. | Non-specific -cannot reliably differentiate tumour tissue from other enhancing pathologies (e.g., radiation necrosis, inflammation, ischaemia). Possible adverse effects include nausea, urticaria, hypotension, or rare anaphylaxis. Requires a microscope with dedicated fluorescence filters. Supported mainly by observational studies and case reports. | EUR 30–EUR 50 per dose (excluding equipment cost). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podstawka, M.; Dębska, A.; Szmyd, B.; Zaczkowski, K.; Piotrowski, M.; Bobeff, E.J.; Ratajczyk, P.; Jaskólski, D.J.; Wiśniewski, K. Advancing Precision in Neuro-Oncology with Intraoperative Imaging and Fluorescence Guidance: A Narrative Review. Biomedicines 2025, 13, 2550. https://doi.org/10.3390/biomedicines13102550
Podstawka M, Dębska A, Szmyd B, Zaczkowski K, Piotrowski M, Bobeff EJ, Ratajczyk P, Jaskólski DJ, Wiśniewski K. Advancing Precision in Neuro-Oncology with Intraoperative Imaging and Fluorescence Guidance: A Narrative Review. Biomedicines. 2025; 13(10):2550. https://doi.org/10.3390/biomedicines13102550
Chicago/Turabian StylePodstawka, Małgorzata, Anna Dębska, Bartosz Szmyd, Karol Zaczkowski, Michał Piotrowski, Ernest J. Bobeff, Paweł Ratajczyk, Dariusz J. Jaskólski, and Karol Wiśniewski. 2025. "Advancing Precision in Neuro-Oncology with Intraoperative Imaging and Fluorescence Guidance: A Narrative Review" Biomedicines 13, no. 10: 2550. https://doi.org/10.3390/biomedicines13102550
APA StylePodstawka, M., Dębska, A., Szmyd, B., Zaczkowski, K., Piotrowski, M., Bobeff, E. J., Ratajczyk, P., Jaskólski, D. J., & Wiśniewski, K. (2025). Advancing Precision in Neuro-Oncology with Intraoperative Imaging and Fluorescence Guidance: A Narrative Review. Biomedicines, 13(10), 2550. https://doi.org/10.3390/biomedicines13102550