Intraoperative Nerve Monitoring Parameters and Risk of Recurrent Laryngeal Nerve Injury in Thyroidectomy: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Literature Search
2.2. Selection Strategy
- Population: Patients undergoing thyroidectomy.
- Intervention: Thyroidectomy performed with intraoperative nerve monitoring (IONM), irrespective of approach or extent.
- Comparison: Studies without IONM (historical control group) or direct head-to-head comparisons between IONM and non-IONM groups.
- Outcome: The rates of unilateral and bilateral transient/permanent RLNI.
- Study Design: All original observational or experimental studies with >20 cases.
- Non-original research.
- Abstract-only publications.
- Case reports or case series with <20 cases.
- Duplicated records or studies with overlapping datasets.
- Studies combining thyroid and parathyroid surgeries without stratified data for thyroidectomy.
- Studies not reporting RLNI outcomes.
- Studies reporting RLN invasion by thyroid cancer at baseline.
- Studies not reporting whether or not IONM was used.
- Animal studies.
- Studies focusing on irrelevant outcomes (e.g., interventional, electromyographic, or diagnostic accuracy studies).
2.3. Data Collection and Outcomes
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Literature Search Results
3.2. Baseline Characteristics of Included Studies
3.3. Methodological Quality of Included Studies
3.4. Pooled RLNI Rates in IONM and Historical No-IONM Groups
3.5. Subgroup Analysis of RLNI Rates Based on IONM Characteristics
3.6. Direct Head-to-Head Comparison Between IONM and No IONM: Unilateral Transient RLNI
3.7. Direct Head-to-Head Comparison Between IONM and No IONM: Unilateral Permanent RLNI
3.8. Meta-Regression Analysis for the Direct Head-to-Head Comparison Between IONM and No IONM
4. Discussion
4.1. Comparison with Prior Evidence
4.2. Key Contributions and Novel Insights
4.3. Clinical Implications
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CR | Complete resection |
CI | Confidence interval |
EMG | Electromyography |
ETT | Endotracheal tube |
IONM | Intraoperative nerve monitoring |
LRLNI | Late recurrent laryngeal nerve injury |
NMB | Neuromuscular blockade |
OR | Odds ratio |
p | p-value |
PRLNI | Permanent recurrent laryngeal nerve injury |
RLN | Recurrent laryngeal nerve |
RLNI | Recurrent laryngeal nerve injury |
RR | Risk ratio |
SRLNI | Symptomatic recurrent laryngeal nerve injury |
SSEP | Somatosensory evoked potential |
TcMEP | Transcranial motor evoked potential |
TR | Total resection |
TSRLNI | Temporary symptomatic recurrent laryngeal nerve injury |
VAS | Visual analogue scale |
References
- Hayward, N.J.; Grodski, S.; Yeung, M.; Johnson, W.R.; Serpell, J. Recurrent laryngeal nerve injury in thyroid surgery: A review. ANZ J. Surg. 2013, 83, 15–21. [Google Scholar] [CrossRef]
- Higgins, T.S.; Gupta, R.; Ketcham, A.S.; Sataloff, R.T.; Wadsworth, J.T.; Sinacori, J.T. Recurrent laryngeal nerve monitoring versus identification alone on post-thyroidectomy true vocal fold palsy: A meta-analysis. Laryngoscope 2011, 121, 1009–1017. [Google Scholar] [CrossRef]
- Jeannon, J.P.; Orabi, A.; Bruch, G.; Abdalsalam, H.; Simo, R. Diagnosis of recurrent laryngeal nerve palsy after thyroidectomy: A systematic review. Int. J. Clin. Pract. 2009, 63, 624–629. [Google Scholar] [CrossRef]
- Pisanu, A.; Porceddu, G.; Podda, M.; Cois, A.; Uccheddu, A. Systematic review with meta-analysis of studies comparing intraoperative neuromonitoring of recurrent laryngeal nerves versus visualization alone during thyroidectomy. J. Surg. Res. 2014, 188, 152–161. [Google Scholar] [CrossRef]
- Bai, B.; Chen, W. Protective effects of intraoperative nerve monitoring (IONM) for recurrent laryngeal nerve injury in thyroidectomy: Meta-analysis. Sci. Rep. 2018, 8, 7761. [Google Scholar] [CrossRef] [PubMed]
- Bergenfelz, A.; Salem, A.; Jacobsson, H.; Nordenström, E.; Almquist, M.; Wallin, G.; Reihnér, E.; Hessman, O.; Eriksson, H.; Jansson, S.; et al. Risk of recurrent laryngeal nerve palsy in patients undergoing thyroidectomy with and without intraoperative nerve monitoring. Br. J. Surg. 2016, 103, 1828–1838. [Google Scholar] [CrossRef]
- Davey, M.G.; Cleere, E.F.; Lowery, A.J.; Kerin, M.J. Intraoperative recurrent laryngeal nerve monitoring versus visualisation alone—A systematic review and meta-analysis of randomized controlled trials. Am. J. Surg. 2022, 224, 836–841. [Google Scholar] [CrossRef]
- Henry, B.M.; Graves, M.J.; Vikse, J.; Sanna, B.; Pękala, P.A.; Walocha, J.A.; Barczyński, M.; Tomaszewski, K.A. The current state of intermittent intraoperative neural monitoring for prevention of recurrent laryngeal nerve injury during thyroidectomy: A PRISMA-compliant systematic review of overlapping meta-analyses. Langenbeck’s Arch. Surg. 2017, 402, 663–673. [Google Scholar] [CrossRef]
- Ku, D.; Hui, M.; Cheung, P.; Chow, O.; Smith, M.; Riffat, F.; Sritharan, N.; Kamani, D.; Randolph, G. Meta-analysis on continuous nerve monitoring in thyroidectomies. Head Neck 2021, 43, 3966–3978. [Google Scholar] [CrossRef] [PubMed]
- Pardal-Refoyo, J.L.; Ochoa-Sangrador, C. Bilateral recurrent laryngeal nerve injury in total thyroidectomy with or without intraoperative neuromonitoring. Systematic review and meta-analysis. Acta Otorrinolaringol. Engl. Ed. 2016, 67, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Rulli, F.; Ambrogi, V.; Dionigi, G.; Amirhassankhani, S.; Mineo, T.; Ottaviani, F.; Buemi, A.; Di Stefano, P.; Mourad, M. Meta-analysis of recurrent laryngeal nerve injury in thyroid surgery with or without intraoperative nerve monitoring. Acta Otorhinolaryngol. Ital. 2014, 34, 223–229. [Google Scholar]
- Zheng, S.; Xu, Z.; Wei, Y.; Zeng, M.; He, J. Effect of intraoperative neuromonitoring on recurrent laryngeal nerve palsy rates after thyroid surgery—A meta-analysis. J. Formos. Med. Assoc. 2013, 112, 463–472. [Google Scholar] [CrossRef]
- Shea, B.J.; Hamel, C.; Wells, G.A.; Bouter, L.M.; Kristjansson, E.; Grimshaw, J.; Henry, D.A.; Boers, M. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J. Clin. Epidemiol. 2009, 62, 1013–1020. [Google Scholar] [CrossRef]
- Muka, T.; Glisic, M.; Milic, J.; Verhoog, S.; Bohlius, J.; Bramer, W.; Chowdhury, R.; Franco, O.H. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur. J. Epidemiol. 2020, 35, 49–60. [Google Scholar] [CrossRef]
- Abdelaal, A.; Eltaras, M.M.; Katamesh, B.E.; Serhan, H.A.; Farahat, R.A.; Badr, H.; Abdelazeem, B. The prevalence and presentation patterns of microcystic macular oedema: A systematic review and meta-analysis of 2128 glaucomatous eyes. Eye 2023, 37, 3322–3333. [Google Scholar] [CrossRef]
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef]
- Mavridis, D.; Salanti, G.; Furukawa, T.A.; Cipriani, A.; Chaimani, A.; White, I.R. Allowing for uncertainty due to missing and LOCF imputed outcomes in meta-analysis. Stat. Med. 2019, 38, 720–737. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, P. Meta-analyses: Heterogeneity and subgroup analysis. BMJ 2013, 346, f4040. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.G.; Higgins, J.P. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 2002, 21, 1559–1573. [Google Scholar] [CrossRef]
- Acun, Z.; Cihan, A.; Ulukent, S.C.; Comert, M.; Ucan, B.; Cakmak, G.K.; Cesur, A. A randomized prospective study of complications between general surgery residents and attending surgeons in near-total thyroidectomies. Surg. Today 2004, 34, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Acun, Z.; Cinar, F.; Cihan, A.; Ulukent, S.C.; Uzun, L.; Ucan, B.; Ugur, M.B. Importance of identifying the course of the recurrent laryngeal nerve in total and near-total thyroid lobectomies. Am. Surg. 2005, 71, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, L.S.; Naser, F.; Mohammed, E. Thyroidectomy with or Without Nerve Identification: A Personal Experience and Technique. Cureus 2023, 15, e40312. [Google Scholar] [CrossRef] [PubMed]
- Akici, M.; Cilekar, M.; Yilmaz, S.; Arikan, Y. Should intraoperative nerve monitoring be used routinely in primary thyroid surgeries? Pak. J. Med. Sci. 2020, 36, 276–280. [Google Scholar] [CrossRef]
- Akkari, M.; Makeieff, M.; Jeandel, C.; Raingeard, I.; Cartier, C.; Garrel, R.; Guerrier, B.; Blanchet, C.; Mondain, M. Thyroid surgery in children and adolescents: A series of 65 cases. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2014, 131, 293–297. [Google Scholar] [CrossRef]
- Alesina, P.F.; Rolfs, T.; Hommeltenberg, S.; Hinrichs, J.; Meier, B.; Mohmand, W.; Hofmeister, S.; Walz, M.K. Intraoperative neuromonitoring does not reduce the incidence of recurrent laryngeal nerve palsy in thyroid reoperations: Results of a retrospective comparative analysis. World J. Surg. 2012, 36, 1348–1353. [Google Scholar] [CrossRef]
- Al-Hakami, H.A.; Al Garni, M.A.; Malas, M.; Abughanim, S.; Alsuraihi, A.; Al Raddadi, T. Surgical Complications After Thyroid Surgery: A 10-Year Experience at Jeddah, Saudi Arabia. Indian J. Otolaryngol. Head Neck Surg. Off. Publ. Assoc. Otolaryngol. India 2019, 71, 1012–1017. [Google Scholar] [CrossRef]
- Alhan, E.; Usta, A.; Türkyılmaz, S. Total Thyroidectomy for Management of Benign Multinodular Goitre in an Endemic Region: Review of 620 Case. Acta Chir. Belg. 2015, 115, 198–201. [Google Scholar] [CrossRef]
- Alharbi, F.; Ahmed, M.R. Experience of thyroid surgery at tertiary referral centers in Jazan Hospitals, Saudi Arabia. Interv. Med. Appl. Sci. 2018, 10, 198–201. [Google Scholar] [CrossRef]
- Alqahtani, S.M.; Al-Sohabi, H.R.; Rayzah, M.F.; Alatawi, A.S.; AlFattani, A.A.; Alalawi, Y.S. Recurrent laryngeal nerve injury after thyroidectomy: A national study from Saudi Arabia. Saudi Med. J. 2023, 44, 80–84. [Google Scholar] [CrossRef]
- Ambe, P.C.; Brömling, S.; Knoefel, W.T.; Rehders, A. Prolonged duration of surgery is not a risk factor for postoperative complications in patients undergoing total thyroidectomy: A single center experience in 305 patients. Patient Saf. Surg. 2014, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Aygun, N.; Kostek, M.; Unlu, M.T.; Isgor, A.; Uludag, M. Clinical and Anatomical Factors Affecting Recurrent Laryngeal Nerve Paralysis During Thyroidectomy via Intraoperative Nerve Monitorization. Front. Surg. 2022, 9, 867948. [Google Scholar] [CrossRef] [PubMed]
- Barczyński, M.; Konturek, A.; Cichoń, S. Randomized clinical trial of visualization versus neuromonitoring of recurrent laryngeal nerves during thyroidectomy. Br. J. Surg. 2009, 96, 240–246. [Google Scholar] [CrossRef]
- Barczyński, M.; Konturek, A.; Hubalewska-Dydejczyk, A.; Gołkowski, F.; Cichoń, S.; Nowak, W. Five-year follow-up of a randomized clinical trial of total thyroidectomy versus Dunhill operation versus bilateral subtotal thyroidectomy for multinodular nontoxic goiter. World J. Surg. 2010, 34, 1203–1213. [Google Scholar] [CrossRef]
- Barczyński, M.; Konturek, A.; Hubalewska-Dydejczyk, A.; Gołkowski, F.; Nowak, W. Randomized clinical trial of bilateral subtotal thyroidectomy versus total thyroidectomy for Graves’ disease with a 5-year follow-up. Br. J. Surg. 2012, 99, 515–522. [Google Scholar] [CrossRef]
- Barczyński, M.; Konturek, A.; Pragacz, K.; Papier, A.; Stopa, M.; Nowak, W. Intraoperative nerve monitoring can reduce prevalence of recurrent laryngeal nerve injury in thyroid reoperations: Results of a retrospective cohort study. World J. Surg. 2014, 38, 599–606. [Google Scholar] [CrossRef]
- Barczyński, M.; Konturek, A.; Stopa, M.; Honowska, A.; Nowak, W. Randomized controlled trial of visualization versus neuromonitoring of the external branch of the superior laryngeal nerve during thyroidectomy. World J. Surg. 2012, 36, 1340–1347. [Google Scholar] [CrossRef]
- Bawa, D.; Alghamdi, A.; Albishi, H.; Al-Tufail, N.; Sharma, S.P.; Khalifa, Y.M.; Khan, S.; Alhajmohammed, M.A. Post-thyroidectomy complications in southwestern Saudi Arabia: A retrospective study of a 6-year period. Ann. Saudi Med. 2021, 41, 369–375. [Google Scholar] [CrossRef]
- Bertelli, A.A.T.; Rangel, L.G.; Lira, R.B.; Tesseroli, M.A.S.; Santos, I.C.; Silva, G.D.; Gomes, M.A.; Tenório, L.R.; Kowalski, L.P.; Gonçalves, A.J.; et al. Trans Oral Endoscopic Thyroidectomy Vestibular Approach (TOETVA) in Brazil: Safety and complications during learning curve. Arch. Endocrinol. Metab. 2021, 65, 259–264. [Google Scholar] [CrossRef]
- Bihain, F.; Nomine-Criqui, C.; Demarquet, L.; Blanchard, C.; Gallet, P.; Nguyen, P.L.; Mirallie, E.; Brunaud, L. What is the impact of continuous neuromonitoring on the incidence of injury to the recurrent laryngeal nerve during total thyroidectomy? Surgery 2021, 169, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Bryk, P.; Głuszek, S. The Effect of Intraoperative Neuromonitoring on Damage to the Laryngeal Nerves in Patients Undergoing Total Thyroidectomy. Med. Stud. 2021, 40, 91–101. [Google Scholar] [CrossRef]
- Calò, P.G.; Pisano, G.; Medas, F.; Marcialis, J.; Gordini, L.; Erdas, E.; Nicolosi, A. Total thyroidectomy without prophylactic central neck dissection in clinically node-negative papillary thyroid cancer: Is it an adequate treatment? World J. Surg. Oncol. 2014, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Calò, P.G.; Pisano, G.; Medas, F.; Pittau, M.R.; Gordini, L.; Demontis, R.; Nicolosi, A. Identification alone versus intraoperative neuromonitoring of the recurrent laryngeal nerve during thyroid surgery: Experience of 2034 consecutive patients. J. Otolaryngol.-Head Neck Surg. 2014, 43, 16. [Google Scholar] [CrossRef]
- Chan, W.F.; Lang, B.H.; Lo, C.Y. The role of intraoperative neuromonitoring of recurrent laryngeal nerve during thyroidectomy: A comparative study on 1000 nerves at risk. Surgery 2006, 140, 866–872; discussion 872–873. [Google Scholar] [CrossRef]
- Chen, D.; Bai, B.; Liu, Z.; Yu, Y. Effect of gasless endoscopic thyroidectomy through an axillary approach on the recurrent laryngeal nerve injury in patients with thyroid cancer. Am. J. Transl. Res. 2022, 14, 7512–7519. [Google Scholar]
- Chiang, F.Y.; Lee, K.W.; Huang, Y.F.; Wang, L.F.; Kuo, W.R. Risk of vocal palsy after thyroidecitomy with identification of the recurrent laryngeal nerve. Kaohsiung J. Med. Sci. 2004, 20, 431–436. [Google Scholar] [CrossRef]
- Chiang, F.Y.; Lu, I.C.; Tsai, C.J.; Hsiao, P.J.; Hsu, C.C.; Wu, C.W. Does extensive dissection of recurrent laryngeal nerve during thyroid operation increase the risk of nerve injury? Evidence from the application of intraoperative neuromonitoring. Am. J. Otolaryngol. 2011, 32, 499–503. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Huang, S.M. Protective effect of intraoperative nerve monitoring against recurrent laryngeal nerve injury during re-exploration of the thyroid. World J. Surg. Oncol. 2013, 11, 94. [Google Scholar] [CrossRef]
- Dedhia, P.H.; Stoeckl, E.M.; McDow, A.D.; Pitt, S.C.; Schneider, D.F.; Sippel, R.S.; Long, K.L. Outcomes after completion thyroidectomy versus total thyroidectomy for differentiated thyroid cancer: A single-center experience. J. Surg. Oncol. 2020, 122, 660–664. [Google Scholar] [CrossRef]
- Dionigi, G.; Boni, L.; Rovera, F.; Bacuzzi, A.; Dionigi, R. Neuromonitoring and video-assisted thyroidectomy: A prospective, randomized case-control evaluation. Surg. Endosc. 2009, 23, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Dralle, H.; Sekulla, C.; Haerting, J.; Timmermann, W.; Neumann, H.J.; Kruse, E.; Grond, S.; Mühlig, H.P.; Richter, C.; Voss, J.; et al. Risk factors of paralysis and functional outcome after recurrent laryngeal nerve monitoring in thyroid surgery. Surgery 2004, 136, 1310–1322. [Google Scholar] [CrossRef]
- Erçetin, C.; Şahbaz, A.; Acar, S.; Tutal, F.; Aksakal, N.; Sarı, S.; Erbil, Y. Is intraoperative nerve monitoring useful for surgical training in thyroid surgery? Turk. J. Surg. 2019, 35, 259–264. [Google Scholar] [CrossRef]
- Farizon, B.; Gavid, M.; Karkas, A.; Dumollard, J.M.; Peoc’h, M.; Prades, J.M. Intraoperative monitoring of the recurrent laryngeal nerve by vagal nerve stimulation in thyroid surgery. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 421–426. [Google Scholar] [CrossRef]
- Fassari, A.; Micalizzi, A.; Lelli, G.; Gurrado, A.; Polistena, A.; Iossa, A.; De Angelis, F.; Martini, L.; Tamagnini, G.T.; Testini, M.; et al. Impact of Intermittent Intraoperative Neuromonitoring (IONM) on the Learning Curve for Total Thyroidectomy by Residents in General Surgery. Surg. Innov. 2024, 31, 355–361. [Google Scholar] [CrossRef]
- Fei, Y.; Li, Y.; Chen, F.; Tian, W. Intraoperative neuromonitoring of the recurrent laryngeal nerve is indispensable during complete endoscopic radical resection of thyroid cancer: A retrospective study. Laryngoscope Investig. Otolaryngol. 2022, 7, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Formanez, A.J. Vocal fold paralysis with intraoperative recurrent laryngeal nerve identification versus non-identification of recurrent laryngeal nerve in total thyroidectomy: A retrospective cohort study. Philipp. J. Otolaryngol. Head Neck Surg. 2016, 31, 22–25. [Google Scholar] [CrossRef]
- Frattini, F.; Mangano, A.; Boni, L.; Rausei, S.; Biondi, A.; Dionigi, G. Intraoperative neuromonitoring for thyroid malignancy surgery: Technical notes and results from a retrospective series. Updates Surg. 2010, 62, 183–187. [Google Scholar] [CrossRef]
- Gremillion, G.; Fatakia, A.; Dornelles, A.; Amedee, R.G. Intraoperative recurrent laryngeal nerve monitoring in thyroid surgery: Is it worth the cost? Ochsner J. 2012, 12, 363–366. [Google Scholar]
- Gunn, A.; Oyekunle, T.; Stang, M.; Kazaure, H.; Scheri, R. Recurrent Laryngeal Nerve Injury After Thyroid Surgery: An Analysis of 11,370 Patients. J. Surg. Res. 2020, 255, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Gür, E.O.; Haciyanli, M.; Karaisli, S.; Haciyanli, S.; Kamer, E.; Acar, T.; Kumkumoglu, Y. Intraoperative nerve monitoring during thyroidectomy: Evaluation of signal loss, prognostic value and surgical strategy. Ann. R. Coll. Surg. Engl. 2019, 101, 589–595. [Google Scholar] [CrossRef]
- Gutierrez-Alvarez, M.; Torres-Ríos, J.A.; Torreblanca-Olascoaga, M.; Campollo-Lopez, A.P.; Barbosa-Villarreal, F.; Padilla-Flores, A.J.; Leal, J.; Silva, C.; Robles-Aviña, J.A. Advantages of Intraoperative Neuromonitoring over Direct Visualization of the Recurrent Laryngeal Nerve During Thyroidectomy. Cureus 2023, 15, e43869. [Google Scholar] [CrossRef]
- Hamilton, N.; Morley, H.; Haywood, M.; Arman, S.; Mochloulis, G. Continuous intraoperative nerve monitoring in thyroidectomy using automatic periodic stimulation in 256 at-risk nerves. Ann. R. Coll. Surg. Engl. 2019, 101, 432–435. [Google Scholar] [CrossRef]
- Hei, H.; Zhai, Y.; Qin, J.; Song, Y. Intermittent Intraoperative Neural Monitoring Technology in Minimally Invasive Video-Assisted Thyroidectomy: A Preliminary Study. J. Investig. Surg. 2016, 29, 93–97. [Google Scholar] [CrossRef]
- Hei, H.; Zhou, B.; Qin, J.; Song, Y. Intermittent intraoperative nerve monitoring in thyroid reoperations: Preliminary results of a randomized, single-surgeon study. Head Neck 2016, 38, E1993–E1997. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, N.; Kong, R.; Wang, D.; Sun, B.; Wu, L. Total thyroidectomy as primary surgical management for thyroid disease: Surgical therapy experience from 5559 thyroidectomies in a less-developed region. World J. Surg. Oncol. 2016, 14, 20. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Iqbal, J.; Hameed, F.; Ahmad, S. Damage to Recurrent Laryngeal Nerve (RLN) with and without Exposure in Thyroidectomy. Ann. Punjab Med. Coll. 2016, 10, 152–156. [Google Scholar]
- Jawad, S.R. Recurrent Laryngeal Nerve Injury with Versus Without Nerve Identification in Different Thyroidectomy Procedures. Al-Kindy Coll. Med. J. 2018, 14, 29–32. [Google Scholar] [CrossRef]
- Joliat, G.R.; Guarnero, V.; Demartines, N.; Schweizer, V.; Matter, M. Recurrent laryngeal nerve injury after thyroid and parathyroid surgery: Incidence and postoperative evolution assessment. Medicine 2017, 96, e6674. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.; Bähr, R. Intraoperative neuromonitoring of the recurrent laryngeal nerve—Results and learning curve. Zentralblatt Chir. 2006, 131, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Kai, H.; Xixia, L.; Miaoyun, L.; Qinchang, C.; Xinzhi, P.; Dingyuan, L.; Honghao, L. Intraoperative nerve monitoring reduces recurrent laryngeal nerve injury in geriatric patients undergoing thyroid surgery. Acta Oto-Laryngol. 2017, 137, 1275–1280. [Google Scholar] [CrossRef]
- Karpathiotakis, M.; D’Orazi, V.; Ortensi, A.; Biancucci, A.; Melcarne, R.; Borcea, M.C.; Scorziello, C.; Tartaglia, F. Intraoperative Neuromonitoring and Optical Magnification in the Prevention of Recurrent Laryngeal Nerve Injuries during Total Thyroidectomy. Medicina 2022, 58, 1560. [Google Scholar] [CrossRef]
- Kim, J.; Graves, C.E.; Jin, C.; Duh, Q.Y.; Gosnell, J.E.; Shen, W.T.; Suh, I.; Sosa, J.A.; Roman, S.A. Intraoperative nerve monitoring is associated with a lower risk of recurrent laryngeal nerve injury: A national analysis of 17,610 patients. Am. J. Surg. 2021, 221, 472–477. [Google Scholar] [CrossRef]
- Kuryga, D.; Wojskowicz, P.; Szymczuk, J.; Wojdyla, A.; Milewska, A.J.; Barczynski, M.; Dadan, J.; Rogowski, M.; Mysliwiec, P. Training in intraoperative neuromonitoring of recurrent laryngeal nerves reduces the risk of their injury during thyroid surgery. Arch. Med. Sci. AMS 2021, 17, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Landerholm, K.; Wasner, A.M.; Järhult, J. Incidence and risk factors for injuries to the recurrent laryngeal nerve during neck surgery in the moderate-volume setting. Langenbeck’s Arch. Surg. 2014, 399, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Lenay-Pinon, D.; Biet-Hornstein, A.; Strunski, V.; Page, C. The circumstances in which recurrent laryngeal nerve palsy occurs after surgery for benign thyroid disease: A retrospective study of 1026 patients. J. Laryngol. Otol. 2021, 135, 640–643. [Google Scholar] [CrossRef]
- Leow, Y.G.; Lee, C.C.; Gan, J.Y.; Huang, L.M. Comparison of Outcomes of Intra-operative Neuromonitoring of Recurrent Laryngeal Nerve Versus Visualisation Alone during Thyroidectomies: A Singapore Experience. Ann. Acad. Med. Singap. 2020, 49, 870–875. [Google Scholar] [CrossRef]
- Ling, Y.; Zhao, J.; Zhao, Y.; Li, K.; Wang, Y.; Kang, H. Role of intraoperative neuromonitoring of recurrent laryngeal nerve in thyroid and parathyroid surgery. J. Int. Med. Res. 2020, 48, 300060520952646. [Google Scholar] [CrossRef]
- Liu, N.; Chen, B.; Li, L.; Zeng, Q.; Sheng, L.; Zhang, B.; Liang, W.; Lv, B. Mechanisms of recurrent laryngeal nerve injury near the nerve entry point during thyroid surgery: A retrospective cohort study. Int. J. Surg. 2020, 83, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Chen, B.; Li, L.; Zeng, Q.; Sheng, L.; Zhang, B.; Liang, W.; Lv, B. Recurrent Laryngeal Nerve Injury Near the Nerve Entry Point in Total Endoscopic Thyroidectomy: A Retrospective Cohort Study. Cancer Manag. Res. 2021, 13, 8979–8987. [Google Scholar] [CrossRef]
- Machens, A.; Elwerr, M.; Lorenz, K.; Weber, F.; Dralle, H. Long-term outcome of prophylactic thyroidectomy in children carrying RET germline mutations. Br. J. Surg. 2018, 105, e150–e157. [Google Scholar] [CrossRef]
- Mahoney, R.C.; Vossler, J.D.; Murayama, K.M.; Woodruff, S.L. Predictors and consequences of recurrent laryngeal nerve injury during open thyroidectomy: An American College of Surgeons National Surgical Quality Improvement Project database analysis. Am. J. Surg. 2021, 221, 122–126. [Google Scholar] [CrossRef]
- Maksimoski, M.; Bauer, A.J.; Kazahaya, K.; Manning, S.C.; Parikh, S.R.; Simons, J.P.; D’Souza, J.; Maddalozzo, J.; Purkey, M.R.; Rychlik, K.; et al. Outcomes in Pediatric Thyroidectomy: Results from a Multinational, Multi-institutional Database. Otolaryngol.-Head Neck Surg. 2022, 167, 869–876. [Google Scholar] [CrossRef]
- Marin Arteaga, A.; Peloni, G.; Leuchter, I.; Bedat, B.; Karenovics, W.; Triponez, F.; Sadowski, S.M. Modification of the Surgical Strategy for the Dissection of the Recurrent Laryngeal Nerve Using Continuous Intraoperative Nerve Monitoring. World J. Surg. 2018, 42, 444–450. [Google Scholar] [CrossRef]
- Maurer, E.; Vorländer, C.; Zielke, A.; Dotzenrath, C.; von Frankenberg, M.; Köhler, H.; Lorenz, K.; Weber, T.; Jähne, J.; Hammer, A.; et al. Short-Term Outcomes of Surgery for Graves’ Disease in Germany. J. Clin. Med. 2020, 9, 4014. [Google Scholar] [CrossRef]
- Messenbaeck, F.G.; Weitzendorfer, M.; Kaminski, C.; Witzel, K. Minimally invasive endoscopic thyroid surgery using a collar access: Experience in 246 cases with the CEViTS technique. Surg. Endosc. 2018, 32, 1607–1612. [Google Scholar] [CrossRef]
- Mirallié, É.; Caillard, C.; Pattou, F.; Brunaud, L.; Hamy, A.; Dahan, M.; Prades, M.; Mathonnet, M.; Landecy, G.; Dernis, H.P.; et al. Does intraoperative neuromonitoring of recurrent nerves have an impact on the postoperative palsy rate? Results of a prospective multicenter study. Surgery 2018, 163, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Takeuchi, M.; Kanazawa, Y.; Kitamura, M.; Ide, K.; Omori, K.; Kawakami, K. Recurrent laryngeal nerve paralysis after thyroid cancer surgery and intraoperative nerve monitoring. Laryngoscope 2019, 129, 1954–1960. [Google Scholar] [CrossRef]
- Mohammad, R.; Huh, G.; Cha, W.; Jeong, W.J. Recurrent Laryngeal Nerve Paralysis Following Thyroidectomy: Analysis of Factors Affecting Nerve Recovery. Laryngoscope 2022, 132, 1692–1696. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Forrest, E.; Lee, J.C.; Paul, E.; Yeung, M.; Grodski, S.; Serpell, J.W. Investigation of recurrent laryngeal palsy rates for potential associations during thyroidectomy. ANZ J. Surg. 2020, 90, 1733–1737. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, R.; Othman, Z.; Othman, S.; Rashid, N.F.A.; Suhaimi, S.N.A. Intraoperative Nerve Monitoring Improves Junior Surgeon Detection Rate of Recurrent Laryngeal Nerve. World 2021, 13, 71–74. [Google Scholar] [CrossRef]
- Nagaoka, R.; Sugitani, I.; Kazusaka, H.; Matsui, M.; Sen, M.; Saitou, M.; Jikuzono, T.; Okamura, R.; Igarashi, T.; Shimizu, K. Learning Curve for Endoscopic Thyroidectomy Using Video-Assisted Neck Surgery: Retrospective Analysis of a Surgeon’s Experience with 100 Patients. J. Nippon Med. Sch. 2022, 89, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Nayyar, S.S.; Thiagarajan, S.; Malik, A.; Chakraborthy, A.; Velayutham, P.; Chaukar, D. Risk factors predisposing for recurrent laryngeal nerve palsy following thyroid malignancy surgery: Experience from a tertiary oncology centre. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 1199–1204. [Google Scholar] [CrossRef]
- Paek, S.H.; Kwon, H.; Kang, K.H. A Comparison of the Bilateral Axillo-breast Approach (BABA) Robotic and Open Thyroidectomy for Papillary Thyroid Cancer After Propensity Score Matching. Surg. Laparosc. Endosc. Percutaneous Tech. 2022, 32, 537–541. [Google Scholar] [CrossRef]
- Pei, M.; Zhu, S.; Zhang, C.; Wang, G.; Hu, M. The value of intraoperative nerve monitoring against recurrent laryngeal nerve injury in thyroid reoperations. Medicine 2021, 100, e28233. [Google Scholar] [CrossRef] [PubMed]
- Périé, S.; Aït-Mansour, A.; Devos, M.; Sonji, G.; Baujat, B.; St Guily, J.L. Value of recurrent laryngeal nerve monitoring in the operative strategy during total thyroidectomy and parathyroidectomy. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2013, 130, 131–136. [Google Scholar] [CrossRef]
- Porseyedi, B.; Zenalinejhad, H.; Moslemi-Aghili, S.; Aghaei-Afshar, M.; Lashkarizadeh, M.; Sanjari, M.; Yosefzadeh, G.; Gozashti, M. Comparison of the Frequency of Recurrent Laryngeal Nerve Injury with and without Exploration of the Nerve in Thyroidectomy. J. Kerman Univ. Med. Sci. 2012, 19, 300–307. [Google Scholar]
- Prokopakis, E.; Kaprana, A.; Velegrakis, S.; Panagiotaki, I.; Chatzakis, N.; Iro, H.; Velegrakis, G. Intraoperative recurrent laryngeal nerve monitoring in revision thyroidectomy. Eur. Arch. Oto-Rhino-Laryngol. 2013, 270, 2521–2524. [Google Scholar] [CrossRef]
- Raval, M.V.; Browne, M.; Chin, A.C.; Zimmerman, D.; Angelos, P.; Reynolds, M. Total thyroidectomy for benign disease in the pediatric patient—Feasible and safe. J. Pediatr. Surg. 2009, 44, 1529–1533. [Google Scholar] [CrossRef]
- Razavi, C.R.; Khadem, M.G.A.; Fondong, A.; Clark, J.H.; Richmon, J.D.; Tufano, R.P.; Russell, J.O. Early outcomes in transoral vestibular thyroidectomy: Robotic versus endoscopic techniques. Head Neck 2018, 40, 2246–2253. [Google Scholar] [CrossRef]
- Ritter, A.; Hod, R.; Reuven, Y.; Shpitzer, T.; Mizrachi, A.; Raveh, E.; Bachar, G. Role of intraoperative recurrent laryngeal nerve monitoring for pediatric thyroid surgery: Comparative analysis. Head Neck 2021, 43, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.L.; Steward, D.L.; Gluckman, J.L.; Welge, J. Continuous laryngeal nerve integrity monitoring during thyroidectomy: Does it reduce risk of injury? Otolaryngol.-Head Neck Surg. 2004, 131, 596–600. [Google Scholar] [CrossRef]
- Rudolph, N.; Dominguez, C.; Beaulieu, A.; De Wailly, P.; Kraimps, J.L. The Morbidity of Reoperative Surgery for Recurrent Benign Nodular Goitre: Impact of Previous Unilateral Thyroid Lobectomy versus Subtotal Thyroidectomy. J. Thyroid Res. 2014, 2014, 231857. [Google Scholar] [CrossRef]
- Russell, J.O.; Razavi, C.R.; Shaear, M.; Liu, R.H.; Chen, L.W.; Pace-Asciak, P.; Tanavde, V.; Tai, K.Y.; Ali, K.; Fondong, A.; et al. Transoral Thyroidectomy: Safety and Outcomes of 200 Consecutive North American Cases. World J. Surg. 2021, 45, 774–781. [Google Scholar] [CrossRef]
- Sanguinetti, A.; Parmeggiani, D.; Lucchini, R.; Monacelli, M.; Triola, R.; Avenia, S.; Conti, C.; Conzo, G.; Avenia, N. Intraoperative recurrent laryngeal nerve monitoring in thyroid surgery Evaluation of its use in terms of “spending review”. Ann. Ital. Chir. 2014, 85, 418–421. [Google Scholar]
- Sarkis, L.M.; Zaidi, N.; Norlén, O.; Delbridge, L.W.; Sywak, M.S.; Sidhu, S.B. Bilateral recurrent laryngeal nerve injury in a specialized thyroid surgery unit: Would routine intraoperative neuromonitoring alter outcomes? ANZ J. Surg. 2017, 87, 364–367. [Google Scholar] [CrossRef]
- Schneider, M.; Dahm, V.; Passler, C.; Sterrer, E.; Mancusi, G.; Repasi, R.; Gschwandtner, E.; Fertl, E.; Handgriff, L.; Hermann, M. Complete and incomplete recurrent laryngeal nerve injury after thyroid and parathyroid surgery: Characterizing paralysis and paresis. Surgery 2019, 166, 369–374. [Google Scholar] [CrossRef]
- Sena, G.; Gallo, G.; Innaro, N.; Laquatra, N.; Tolone, M.; Sacco, R.; Sammarco, G. Total thyroidectomy vs completion thyroidectomy for thyroid nodules with indeterminate cytology/follicular proliferation: A single-centre experience. BMC Surg. 2019, 19, 87. [Google Scholar] [CrossRef]
- Shindo, M.; Chheda, N.N. Incidence of vocal cord paralysis with and without recurrent laryngeal nerve monitoring during thyroidectomy. Arch. Otolaryngol.-Head Neck Surg. 2007, 133, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.K.; Hamid, K.S.; Roberson, C.R.; Rai, S.S.; Bossen, A.C.; Luh, J.H.; Scherer, E.P.; Song, J. Outpatient thyroidectomy is safe and reasonable: Experience with more than 1000 planned outpatient procedures. J. Am. Coll. Surg. 2010, 210, 575–582, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.K.; Sigmond, B.R.; Lairmore, T.C.; Govednik-Horny, C.M.; Janicek, A.K.; Jupiter, D.C. The long-term impact of routine intraoperative nerve monitoring during thyroid and parathyroid surgery. Surgery 2013, 154, 704–711; discussion 711–713. [Google Scholar] [CrossRef] [PubMed]
- Sopiński, J.; Kuzdak, K.; Hedayati, M.; Kołomecki, K. Role of intraoperative neuromonitoring of the recurrent laryngeal nerves during thyroid reoperations of recurrent goiter. Pol. Prz. Chir. 2017, 89, 11–15. [Google Scholar] [CrossRef]
- Stevens, K.; Stojadinovic, A.; Helou, L.B.; Solomon, N.P.; Howard, R.S.; Shriver, C.D.; Buckenmaier, C.C.; Henry, L.R. The impact of recurrent laryngeal neuromonitoring on multi-dimensional voice outcomes following thyroid surgery. J. Surg. Oncol. 2012, 105, 4–9. [Google Scholar] [CrossRef]
- Tabriz, N.; Muehlbeyer, S.; Weyhe, D.; Uslar, V. Risk Factors for Recurrent Laryngeal Nerve Palsy in Thyroid Surgery: A Single Center Experience of 1147 Procedures with Intermittent Intraoperative Neuromonitoring. J. Pers. Med. 2024, 14, 714. [Google Scholar] [CrossRef]
- Vasileiadis, I.; Karatzas, T.; Charitoudis, G.; Karakostas, E.; Tseleni-Balafouta, S.; Kouraklis, G. Association of Intraoperative Neuromonitoring with Reduced Recurrent Laryngeal Nerve Injury in Patients Undergoing Total Thyroidectomy. JAMA Otolaryngol.-Head Neck Surg. 2016, 142, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Velayutham, P.; Thiagarajan, S.; Daniel, C.; Shaikh, M.; Chakraborthy, A.; Chidambaranathan, N.; Sawhney, S.; Chaukar, D. Importance of Intraoperative Neuromonitoring Parameters in Predicting Temporary Recurrent Laryngeal Nerve Palsy Following Thyroid Surgery for Malignancy. Indian J. Surg. Oncol. 2022, 13, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Wojtczak, B.; Sutkowski, K.; Kaliszewski, K.; Głód, M.; Barczyński, M. Experience with intraoperative neuromonitoring of the recurrent laryngeal nerve improves surgical skills and outcomes of non-monitored thyroidectomy. Langenbeck’s Arch. Surg. 2017, 402, 709–717. [Google Scholar] [CrossRef]
- Wu, C.W.; Hao, M.; Tian, M.; Dionigi, G.; Tufano, R.P.; Kim, H.Y.; Jung, K.Y.; Liu, X.; Sun, H.; Lu, I.C.; et al. Recurrent laryngeal nerve injury with incomplete loss of electromyography signal during monitored thyroidectomy-evaluation and outcome. Langenbeck’s Arch. Surg. 2017, 402, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Y.; Shen, H.Y.; Duh, Q.Y.; Hsieh, C.B.; Yu, J.C.; Shih, M.L. Routine Intraoperative Neuromonitoring of the Recurrent Laryngeal Nerve to Facilitate Complete Resection and Ensure Safety in Thyroid Cancer Surgery. Am. Surg. 2018, 84, 1882–1888. [Google Scholar] [CrossRef]
- Xu, W.; Teng, C.; Ding, G.; Zhao, N. Mechanisms of recurrent laryngeal nerve injury in endoscopic thyroidectomy for papillary thyroid carcinoma: A large data from China. Laryngoscope Investig. Otolaryngol. 2023, 8, 604–609. [Google Scholar] [CrossRef]
- Yu, T.; Wang, F.L.; Meng, L.B.; Li, J.K.; Miao, G. Early detection of recurrent laryngeal nerve damage using intraoperative nerve monitoring during thyroidectomy. J. Int. Med. Res. 2020, 48, 300060519889452. [Google Scholar] [CrossRef]
- Yuksekdag, S.; Topcu, A.; Deveci, I.; Unal, E. Recurrent laryngeal nerve injury in total thyroidectomy with intraoperative nerve monitoring and harmonic sealing instrument: A retrospective analysis and treatment results. East. J. Med. 2019, 24, 210–214. [Google Scholar] [CrossRef]
- Khan, I.; Din, I.U.; Orakzai, K.A.; Khan, S.F.; Tarand, A.A.; Aziz, A. Comparison of recurrent laryngeal nerve (RLN) palsy with and without intraoperative nerve identification during thyroidectomy—A cross-sectional study from a tertiary level hospital in peshawar. J. Med. Sci. 2022, 30, 82–86. [Google Scholar]
Author (YOP) | Country | Design | YOI | Sample | Age | Gender | FU (mo) | Neuromonitoring (IONM) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | M | F | Yes/No | Type | Model | Amplitude | Voltage | Neuromuscular Blockade | ||||||
Acun (2004a) [21] | Turkey | RCT | 2001–2003 | 152 | 43 | (24–77) | 39 | 113 | 12 | 0/152 | - | - | - | - | - |
Acun (2005) [22] | Turkey | RC | - | 176 | 44 | (23–77) | 49 | 127 | - | 0/176 | - | - | - | - | - |
Ahmed (2023) [23] | Iraq | RCT | 2018–2020 | 150 | 39 | - | 22 | 128 | - | 75/75 | Continuous | Not reported | Not reported | Not reported | No |
Akici (2020) [24] | Turkey | RC | 2012–2017 | 273 | 47 | 12 | 38 | 235 | - | 140/133 | Continuous | Not reported | 1.5 mA | Not reported | No |
Akkari (2014) [25] | France | RC | 2004–2012 | 65 | 12.5 | 0.7 | 16 | 49 | - | 40/25 | Continuous | Medtronic Xomed 2.0 | <1 mA | Not reported | No |
Alesina (2012) [26] | Germany | RC | 1999–2011 | 246 | 55 | 12.5 | 37 | 209 | - | 89/157 | Continuous | Medtronic Xomed 2.0 | <1 mA | Not reported | No |
Al-Hakami (2019) [27] | KSA | RC | 2008–2017 | 456 | 42.6 | (10–89) | 99 | 357 | 12 | 456/0 | - | Not reported | Not reported | Not reported | No |
Alhan (2015) [28] | Turkey | RC | 2004–2012 | 620 | 48 | 14 | 109 | 511 | 6 | 0/620 | - | - | - | - | - |
Alharbi (2018) [29] | KSA | RC | 2011–2018 | 320 | 42.25 | 9.5 | 112 | 208 | - | 0/620 | - | Not reported | - | - | No |
Alqahtani (2023) [30] | KSA | RC | 2015–2021 | 432 | 41.2 | 19.1 | 76 | 361 | 0.75 | 0/432 | - | Not reported | - | - | No |
Ambe (2014) [31] | Germany | RC | 2006–2012 | 305 | 54.3 | 14.25 | 78 | 227 | - | 305/0 | - | Not reported | Not reported | Not reported | No |
Aygun (2022) [32] | Turkey | RC | 2016–2021 | 871 | 49.17 | 13.42 | 199 | 672 | - | 871/0 | Intermittent | Medtronic Xomed 2.0 | 1 mA | 100 μV | Yes |
Continuous | Medtronic (version not specified) | 1 mA | 500 μV | Yes | |||||||||||
Barczyński (2009) [33] | Poland | RCT | 2006–2007 | 1000 | 51.6 | 14.6 | 88 | 912 | 12 | 500/500 | Continuous | Neurosign System | 1 mA | Not reported | Yes |
Barczyński (2010) [34] | Poland | RCT | 2000–2003 | 600 | 47.22 | 15.61 | 53 | 517 | - | 0/600 | - | Not reported | - | - | Yes |
Barczyński (2012c) [35] | Poland | RCT | 2000–2004 | 191 | 45.9 | (43.1–48.9) | 21 | 170 | 12 | 0/191 | - | - | - | - | - |
Barczyński (2012d) [36] | Poland | RCT | 2009–2010 | 210 | 49.9 | 14.7 | 0 | 201 | 6 | 100/101 | Continuous | Medtronic NIM 3.0 | 1 mA | Not reported | Yes |
Barczyński (2014) [37] | Poland | RC | 1993–2012 | 854 | 54.3 | 13.4 | 687 | 167 | - | 306/548 | Continuous | Neurosign System | 1 mA | Not reported | Yes |
Bawa (2021) [38] | KSA | RC | 2013–2019 | 339 | 38 | (29–48) | 59 | 280 | - | 0/339 | - | Not reported | - | - | Not reported |
Bergenfelz (2016) [6] | Sweden | RC | 2009–2013 | 5252 | 49 | (38–63) | 1050 | 4202 | 6 | 3277/1975 | - | Not reported | Not reported | Not reported | Not reported |
Bertelli (2021) [39] | Brazil | RC | 2017 | 93 | - | - | 14 | 79 | - | 93/0 | - | Neurosoft (INTRO) | Not reported | Not reported | Not reported |
Bihain (2021) [40] | France | PC | 2013–2019 | 603 | 52.8 | 15 | 137 | 466 | 0.06 | 367/236 | Continuous | Medtronic NIM 3.0 | 1 mA | 100 μV | Yes |
Bryk (2024) [41] | Poland | RC | - | 367 | 52.2 | (18–79) | 55 | 312 | - | 205/162 | Continuous | Inomed System | 5 mA | Not reported | No |
Calò (2014a) [42] | Italy | RC | 2007–2013 | 656 | - | - | - | - | - | 357/299 | Continuous | Medtronic Xomed 2.0 | Not reported | Not reported | No |
Calò (2014b) [43] | Italy | RC | 2007–2012 | 2034 | - | - | - | - | - | 1041/993 | Continuous | Medtronic Xomed 2.0 | Not reported | Not reported | No |
Chan (2006) [44] | China | RC | 2002–2005 | 639 | 49 | (8–93) | 133 | 506 | - | 501/499 | Continuous | Neurosign System | 1.5 mA | Not reported | No |
Chen (2022a) [45] | China | RC | 2019–2020 | 110 | 41.1 | 7.25 | 46 | 64 | - | 110/0 | - | Not reported | Not reported | Not reported | Not reported |
Chiang (2004) [46] | Taiwan | RC | 1986–2002 | 521 | 42 | (17–78) | 118 | 403 | - | 0/521 | - | Not reported | - | - | Not reported |
Chiang (2011) [47] | Taiwan | RC | 2006–2009 | 231 | - | - | - | - | - | 231/0 | Continuous | Medtronic Xomed 2.0 | 1 mA | Not reported | No |
Chuang (2013) [48] | Taiwan | RC | 2001–2010 | 71 | - | (22.8–85) | 12 | 59 | - | 56/15 | Continuous | Medtronic (version not specified) | 1 mA | 700–1500 μV | No |
Dedhia (2020) [49] | USA | RC | 2000–2018 | 1096 | 50.1 | 0.78 | 341 | 755 | 6 | 1096/0 | - | Not reported | Not reported | Not reported | Not reported |
Dionigi (2009) [50] | Italy | RCT | 2004–2007 | 72 | 40.5 | (19–77) | 10 | 62 | 12 | - | - | Medtronic NIM 2.0 | - | - | - |
Dralle (2004) [51] | Germany | RC | 1998–2001 | 16,448 | - | - | - | - | - | 12,166/17,832 | Continuous | Neurosign System | 5 mA | Not reported | No |
Erçetin (2019) [52] | Turkey | PC | 2008–2016 | 748 | 47.8 | 13 | 130 | 665 | 12 | 398/397 | Intermittent | Medtronic (version not specified) | 1.5 mA | Not reported | No |
Farizon (2017) [53] | France | RC | 2012–2015 | 195 | 53.4 | (14–88) | 34 | 161 | 12 | 195/0 | Continuous | Medtronic (version not specified) | <1 mA | 100 μV | No |
Fassari (2024) [54] | Italy | RC | - | 300 | 48.6 | 11.9 | 121 | 179 | - | 150/150 | Intermittent | Medtronic (version not specified) | 2 mA | Not reported | No |
Fei (2022) [55] | China | RC | 2013–2018 | 106 | 32.25 | 6.83 | - | - | - | 54/52 | Intermittent/Continuous | Medtronic (version not specified) | 2 mA | 100 μV | Yes |
Formanez (2016) [56] | Philippines | RC | 2009–2014 | 237 | 41 | (20–65) | 74 | 163 | 6 | 109/128 | - | Not reported | Not reported | Not reported | Not reported |
Frattini (2010) [57] | Italy | RC | - | 152 | 40.6 | (19–77) | 67 | 85 | 12 | 76/76 | Continuous | Medtronic (version not specified) | 3 mA | Not reported | No |
Gremillion (2012) [58] | USA | RC | 2007–2010 | 119 | - | - | - | - | - | 31/88 | Continuous | Not reported | Not reported | Not reported | Not reported |
Gunn (2020) [59] | USA | RC | 2016–2017 | 11,370 | 53 | (41–63) | 2476 | 8894 | 1 | 7031/4230 | Continuous | Not reported | Not reported | Not reported | Not reported |
Gür (2019) [60] | Turkey | RC | 2014–2017 | 456 | 52.8 | (18–82) | 106 | 350 | - | 456/0 | Continuous | AVALANCHE | 2 mA | 100 μV | No |
Gutierrez-Alvarez (2023) [61] | UAS | RC | 2019–2022 | 218 | - | - | 39 | 179 | - | 150/68 | Continuous | Medtronic NIM 3.0 | Not reported | Not reported | No |
Hamilton (2019) [62] | UK | RC | 2014–2016 | 256 | - | 27–86 | 27 | 169 | - | - | - | APS Medtronic | - | - | - |
Hei (2016a) [63] | China | RCT | 2012–2014 | 70 | 47.5 | 9.9 | 16 | 54 | 6 | 41/43 | Intermittent | Medtronic NIM 2.0 | Not reported | Not reported | Yes |
Hei (2016b) [64] | China | RC | 2009–2011 | 97 | 45.35 | 11.23 | 19 | 78 | - | 46/51 | Intermittent | Medtronic NIM 2.0 | 2 mA | Not reported | Yes |
Hu (2016) [65] | China | RC | 2003–2014 | 5559 | 55 | (9–87) | 714 | 4845 | 6 | 0/5559 | - | Not reported | - | - | Not reported |
Iqbal (2016) [66] | Pakistan | RCT | 2013–2014 | 150 | - | 13–60 | 53 | 97 | - | 75/75 | - | Not reported | Not reported | Not reported | Not reported |
Jawad (2018) [67] | Baghdad | PC | 2012–2016 | 132 | 37.35 | 8.37 | 47 | 85 | 6 | 64/54 | - | Not reported | Not reported | Not reported | Not reported |
Joliat (2017) [68] | Switzerland | RC | 2005–2013 | 451 | 50 | 43–63 | 12 | 51 | 12 | 8/55 | - | Not reported | Not reported | Not reported | Not reported |
Jonas (2006) [69] | France | PC | 1999–2004 | 937 | 50.8 | (24–83) | - | - | 12 | - | - | Neurosign System | - | - | - |
Kai (2017) [70] | China | RC | 2013–2016 | 522 | 65.66 | 0.3 | 122 | 430 | - | 340/212 | Continuous | Medtronic NIM 3.0 | 1 mA | 100 μV | Yes |
Karpathiotakis (2022) [71] | Italy | PC | 2018–2020 | 100 | 55 | (43–65) | 17 | 83 | 6 | 50/50 | Intermittent | Medtronic NIM 3.0 | Not reported | 100 μV | No |
Khan (2022) [122] | Pakistan | CS | 2020–2021 | 70 | 44.43 | - | 18 | 52 | 6 | 57/23 | - | Not reported | Not reported | Not reported | Not reported |
Kim (2021) [72] | USA | RC | 2016–2018 | 17,610 | 52 | 15 | 3904 | 13706 | - | 11,248/6362 | - | Not reported | Not reported | Not reported | Not reported |
Kuryga (2021) [73] | Poland | RC | 2005–2012 | 1235 | 49.5 | - | 169 | 1065 | 36 | 182/1052 | Continuous | CLEO nerve monitor | 1 mA | Not reported | Yes |
Landerholm (2014) [74] | Sweden | PC | 1984–2011 | 973 | 54.7 | 16.1 | 242 | 1080 | 12 | 0/973 | - | Not reported | - | - | Not reported |
Lenay-Pinon (2021) [75] | France | RC | 2013–2019 | 1026 | 53 | (18–81) | 266 | 760 | 12 | - | - | Inomed System | - | - | - |
Leow (2020) [76] | Singapore | RC | 2014–2018 | 261 | 49.2 | 12.5 | 68 | 193 | - | 108/153 | Intermittent | Medtronic NIM 3.0 | Not reported | Not reported | No |
Ling (2020) [77] | China | RC | 2012–2017 | 1696 | 52 | (40–59) | 280 | 753 | 6 | 1104/592 | Intermittent | Medtronic NIM 3.0 | 2 mA | 100 μV | Yes |
Liu (2020) [78] | China | RC | 2017–2019 | 2350 | 51.9 | 13.3 | 371 | 1887 | 6 | 2350/0 | Intermittent | Medtronic NIM 3.0 | 1 mA | 100 μV | No |
Liu (2021) [79] | China | RC | 2012–2019 | 415 | 35.45 | (19–48) | 1 | 404 | 6 | 415/0 | Intermittent | Medtronic NIM 3.0 | 1 mA | 100 μV | Yes |
Machens (2018) [80] | Germany | RC | 1994–2017 | 167 | 6.9 | - | 78 | 89 | 6 | 167/0 | Continuous | Not reported | Not reported | Not reported | Not reported |
Mahoney (2021) [81] | USA | RC | 2016–2017 | 11,552 | ≥65 | - | 2514 | 9038 | - | 7130/4422 | - | Not reported | Not reported | Not reported | Not reported |
Maksimoski (2022) [82] | USA | RC | 2012–2017 | 1025 | 13.9 | - | 228 | 797 | - | 795/230 | - | Not reported | Not reported | Not reported | Not reported |
Marin Arteaga (2018) [83] | Switzerland | RC | 2012–2016 | 1001 | 55 | 16.8 | 35 | 66 | 6 | 1001/0 | Continuous | Medtronic NIM 3.0 | Not reported | 100 μV | No |
Maurer (2020) [84] | Germany | RC | 2017–2019 | 1808 | 44 | (14–80) | 330 | 1478 | - | 3409/16 | Intermittent/Continuous | Not reported | Not reported | Not reported | Not reported |
Messenbaeck (2018) [85] | Austria | RC | - | 246 | 45.6 | (21–73) | 29 | 217 | - | 246/0 | Continuous | Medtronic (version not specified) | Not reported | Not reported | Not reported |
Mirallié (2018) [86] | France | PC | 2012–2014 | 1328 | 51.2 | (18–80) | 267 | 1061 | 6 | 807/521 | Continuous | Medtronic (version not specified) | Not reported | Not reported | Yes |
Mizuno (2019) [87] | Japan | RC | 2008–2017 | 5084 | 57.7 | 14.6 | 1528 | 4276 | 1 | 849/4955 | - | Not reported | Not reported | Not reported | Not reported |
Mohammad (2022) [88] | Kuwait | RC | 2016–2019 | 197 | 49 | 23–85 | 71 | 126 | 6 | 171/26 | Continuous | Medtronic NIM 3.0 | 2 mA | 100 μV | No |
Moreira (2020) [89] | Australia | RC | 2010–2017 | 1003 | - | - | 220 | 783 | - | 1003/0 | Continuous | Medtronic Xomed 2.0 | Not reported | Not reported | Not reported |
Muhammad (2021) [90] | Malaysia | RCT | 2016 | 25 | 54.2 | - | 7 | 33 | - | 20/20 | Continuous | Medtronic NIM 3.0 | 1 mA | Not reported | Yes |
Nagaoka (2022) [91] | Japan | RC | 2016–2020 | 100 | 36.2 | - | 1 | 99 | 6 | 25/75 | - | Not reported | Not reported | Not reported | Not reported |
Nayyar (2020) [92] | India | RC | 2017–2019 | 228 | - | - | 150 | 250 | - | 150/250 | - | Not reported | Not reported | Not reported | Not reported |
Paek (2022) [93] | Korea | RC | 2013–2014 | 315 | 42.45 | 9.9 | 70 | 245 | 6 | 315/0 | Continuous | Medtronic NIM 3.0 | Not reported | Not reported | Not reported |
Pei (2021) [94] | China | RC | 2010–2020 | 109 | 49.56 | 14.98 | 48 | 61 | - | 65/44 | Continuous | Medtronic NIM 3.0 | 2 mA | Not reported | Not reported |
Périé (2013) [95] | France | PC | 2007–2011 | 100 | 47.1 | 16–81 | 19 | 81 | 6 | - | - | Neurosign System | - | - | - |
Porseyedi (2012) [96] | Iran | RC | 2005–2011 | 566 | 40.26 | - | 124 | 442 | - | 337/229 | - | Not reported | Not reported | Not reported | Not reported |
Prokopakis (2013) [97] | Greece | RC | 2004–2011 | 97 | 61 | 47–75 | 20 | 77 | - | - | - | Medtronic (version not specified) | - | - | - |
Raval (2009) [98] | USA | RC | 2000–2007 | 31 | 12.2 | (5–17) | 6 | 25 | 6 | 23/8 | Continuous | Medtronic (version not specified) | Not reported | Not reported | Not reported |
Razavi (2018) [99] | USA | RC | 2016–2017 | 27 | 41.3 | 12.2 | 4 | 23 | 3 | - | - | Medtronic (version not specified) | - | - | - |
Ritter (2021) [100] | Israel | RC | 2001–2019 | 113 | 13.5 | 3.9 | 29 | 84 | 12 | - | - | Medtronic NIM 2.0 | - | - | - |
Robertson (2004) [101] | USA | RC | 1999–2002 | 165 | 44.4 | - | 54 | 182 | - | 82/83 | Continuous | Medtronic Xomed 2.0 | Not reported | Not reported | Not reported |
Rudolph (2014) [102] | France | RC | 1991–2006 | 494 | 39 | - | 41 | 453 | 6 | 494/0 | - | Not reported | Not reported | Not reported | Not reported |
Russell (2021) [103] | USA | RC | 2017–2020 | 533 | 44 | (10–84) | 90 | 443 | 6 | 533/0 | Continuous | Medtronic NIM 3.0 | Not reported | Not reported | Not reported |
Sanguinetti (2014) [104] | Italy | RC | 2012 | 350 | - | - | - | - | - | 105/245 | Continuous | Medtronic Xomed 2.0 | Not reported | Not reported | Not reported |
Sarkis (2017) [105] | Australia | RC | 1990–2014 | 7406 | - | - | - | - | 3 | 7406/0 | Continuous | Not reported | Not reported | Not reported | Not reported |
Schneider (2019) [106] | Austria | PC | 2012–2016 | 4707 | - | - | 1212 | 3495 | 12 | 4707/0 | Intermittent | AVALANCHE | 2 mA | Not reported | Not reported |
Sena (2019) [107] | Italy | RC | 2009–2018 | 237 | 52.7 | - | 89 | 199 | - | - | - | Medtronic NIM 3.0 | - | - | - |
Shindo (2007) [108] | USA | RC | 1998–2005 | 684 | - | - | - | - | - | 671/372 | Continuous | Medtronic (version not specified) | Not reported | Not reported | No |
Snyder (2010) [109] | USA | RC | 2003–2009 | 1242 | 57.3 | - | - | - | - | 1242/0 | - | Not reported | Not reported | Not reported | Not reported |
Snyder (2013) [110] | USA | RC | 2004–2011 | 1936 | 52 | - | 685 | 2750 | - | 3354/81 | Continuous | Medtronic (version not specified) | 1 mA | 150 μV | No |
Sopiński (2017) [111] | China | RCT | 2014–2016 | 80 | 57.95 | 9.35 | 4 | 76 | - | 27/53 | Intermittent | Inomed System | Not reported | Not reported | Yes |
Stevens (2012) [112] | USA | PC | 2004–2008 | 91 | 48.45 | 12.9 | 37 | 54 | 6 | 39/52 | Continuous | Medtronic (version not specified) | Not reported | 100 μV | Not reported |
Tabriz (2024) [113] | Germany | RC | 2016–2020 | 1147 | 52 | (13–90) | 293 | 854 | - | 1147/0 | Intermittent | Not reported | Not reported | Not reported | Not reported |
Vasileiadis (2016) [114] | Greece | RC | 2002–2012 | 2566 | 51.35 | 14.18 | 528 | 2028 | 12 | 1481/1075 | Intermittent | Medtronic NIM 2.0 | 1 mA | Not reported | No |
Velayutham (2022) [115] | India | PC | 2017–2019 | 84 | - | - | - | - | - | 84/0 | Continuous | Medtronic NIM 3.0 | 2.5 mA | 500 μV | No |
Wojtczak (2017) [116] | Poland | PC | 2011–2014 | 632 | 53.94 | 13.87 | 117 | 515 | 6 | 236/396 | Intermittent | Medtronic NIM 3.0 | 1.5 mA | Not reported | Not reported |
Wu (2017) [117] | Taiwan | PC | 2012–2014 | 323 | 50 | (16–83) | 63 | 260 | 6 | - | - | Medtronic NIM 3.0 | - | - | - |
Wu (2018) [118] | USA | RC | 2006–2015 | 380 | 38.5 | 14.04 | 71 | 309 | - | 288/92 | Continuous | Medtronic (version not specified) | <1 mA | 100 μV | Not reported |
Xu (2023) [119] | China | RC | 2015–2021 | 416 | 37.8 | 7.87 | - | - | 6 | 416/0 | Intermittent | Medtronic (version not specified) | 3 mA | Not reported | Not reported |
Yu (2020) [120] | China | RC | 2016–2017 | 93 | 50 | 24–78 | 22 | 71 | - | 93/0 | Continuous | Medtronic (version not specified) | Not reported | Not reported | Yes |
Yuksekdag (2019) [121] | Turkey | RC | 2014–2018 | 260 | 51 | 32–67 | - | - | 6 | - | - | Medtronic NIM 3.0 | - | - | - |
Author (YOP) | Selection | Comparability | Outcome | Overall Rating | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Demonstration That Outcome of Interest Was Not Present at Start of Study | Design | Analysis | Assessment of Outcome | Was Follow-Up Long Enough for Outcomes to Occur? | Adequacy of Follow-Up of Cohorts | ||
Acun (2005) [21] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Akici (2020) [24] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Akkari (2014) [25] | No | Yes | Yes | Yes | Yes | No | Yes | No | No | Poor |
Alesina (2012) [26] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
AlHakami (2019) [27] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Alhan (2015) [28] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Alharbi (2018) [29] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Alqahtani (2023) [30] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Ambe (2014) [31] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Aygun (2022) [32] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Barczyński (2014) [33] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Bawa (2021) [38] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Bergenfelz (2016) [6] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Bertelli (2021) [39] | No | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Fair |
Bihain (2021) [40] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Bryk (2024) [41] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Calò (2014a) [42] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Calò (2014b) [43] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Chan (2006) [44] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Chen (2022a) [45] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Chiang (2004) [46] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Chiang (2011) [47] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Chuang (2013) [48] | No | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Fair |
Dedhia (2020) [49] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Dralle (2004) [51] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Erçetin (2019) [52] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Farizon (2017) [53] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Fassari (2024) [54] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Fei (2022) [55] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Formanez (2016) [56] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Frattini (2010) [57] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Gremillion (2012) [58] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Gunn (2020) [59] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Gür (2019) [60] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
GutierrezAlvarez (2023) [61] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Hamilton (2019) [62] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Hei (2016b) [63] | No | Yes | Yes | Yes | Yes | No | Yes | No | No | Poor |
Hu (2016) [64] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Jawad (2018) [67] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Joliat (2017) [68] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Jonas (2006) [69] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Kai (2017) [70] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Karpathiotakis (2022) [71] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Khan (2022) [122] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Kim (2021) [72] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Kuryga (2021) [73] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Landerholm (2014) [74] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
LenayPinon (2021) [75] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Leow (2020) [76] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Ling (2020) [77] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Liu (2020) [78] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Liu (2021) [79] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Machens (2018) [80] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Mahoney (2021) [81] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Maksimoski (2022) [82] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Marin Arteaga (2018) [83] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Maurer (2020) [84] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Messenbaeck (2018) [85] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Mirallié (2018) [86] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Mizuno (2019) [87] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Mohammad (2022) [88] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Moreira (2020) [89] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Nagaoka (2022) [91] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Nayyar (2020) [92] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Paek (2022) [93] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Pei (2021) [94] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Périé (2019) [95] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Porseyedi (2012) [96] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Prokopakis (2013) [97] | No | Yes | Yes | Yes | Yes | No | Yes | No | No | Poor |
Raval (2009) [98] | No | Yes | Yes | Yes | Yes | No | Yes | No | No | Poor |
Razavi (2018) [99] | No | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Fair |
Ritter (2021) [100] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Robertson (2004) [101] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Rudolph (2014) [102] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Russell (2021) [103] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Sanguinetti (2014) [104] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Sarkis (2017) [105] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Schneider (2019) [106] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Sena (2019) [107] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Shindo (2007) [108] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Snyder (2010) [109] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Snyder (2013) [110] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Stevens (2012) [112] | No | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Fair |
Tabriz (2024) [113] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Vasileiadis (2016) [114] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Velayutham (2022) [115] | No | Yes | Yes | Yes | Yes | No | Yes | No | No | Poor |
Wojtczak (2017) [116] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Wu (2017) [117] | Yes | Yes | Yes | Yes | Yes | No | Yes | No | No | Fair |
Wu (2018) [118] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Xu (2023) [119] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Yu (2020) [120] | No | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Fair |
Yuksekdag (2019) [121] | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Good |
Unilateral RLNI | Bilateral RLNI | ||||||||
---|---|---|---|---|---|---|---|---|---|
Transient | Permanent | Transient | Permanent | ||||||
IONM | Historical | IONM | Historical | IONM | Historical | IONM | Historical | ||
Main-Pooled | Studies | 87 | 61 | 54 | 39 | 11 | 11 | 3 | 4 |
Patients | 11,248 | 6362 | 7406 | 5559 | 4955 | 4955 | 1352 | 2341 | |
Proportion (95% CI) | 4% (4–5) | 5% (4–6) | 1% (1–1) | 1% (1–1) | 0% (0–0) | 0% (0–0) | 0% (0–0) | 0% (0–0) | |
IONM Type | Continuous | 4% (3–6) | 1% (0–1) | 0% (0–1) | |||||
Intermittent | 5% (3–6) | 0% (0–1) | 4% (0–9) | ||||||
Not reported | 5% (3–6) | 1% (1–2) | 0% (0–0) | ||||||
IONM Model | AVALANCHE | 6% (1–10) | 1% (1–1) | - | |||||
CLEO nerve monitor | 1% (0–2) | - | 1% (0–2) | ||||||
Inomed System | 10% (0–23) | - | - | ||||||
Medtronic (version not specified) | 7% (1–12) | 1% (0–2) | 1% (0–1) | ||||||
Medtronic NIM 2.0 | 2% (0–5) | 0% (0–1) | - | ||||||
Medtronic NIM 3.0 | 4% (3–5) | 0% (0–1) | 4% (0–9) | ||||||
Medtronic Xomed 2.0 | 4% (2–6) | 0% (0–0) | 0% (0–0) | ||||||
Neurosign System | 2% (2–3) | 2% (0–3) | - | ||||||
Neurosoft (INTRO) | 3% (0–7) | 1% (0–3) | - | ||||||
Not reported | 5% (3–6) | 1% (0–1) | 0% (0–0) | ||||||
Amplitude | <1 mA | 7% (5–9) | 0% (0–1) | 1% (0–2) | |||||
1 mA | 3% (2–4) | 0% (0–1) | 1% (0–2) | ||||||
1.5 mA | 3% (2–4) | 1% (0–2) | - | ||||||
2 mA | 5% (3–7) | 1% (0–1) | - | ||||||
2.5 mA | 5% (1–9) | - | - | ||||||
3 mA | 4% (2–6) | 1% (0–4) | 1% (0–2) | ||||||
5 mA | 5% (2–8) | 4% (3–4) | - | ||||||
Not reported | 5% (4–7) | 1% (0–1) | 0% (0–0) | ||||||
Voltage | 100 μV | 5% (3–6) | 0% (0–1) | 4% (0–9) | |||||
150 μV | 3% (2–3) | - | - | ||||||
500 μV | 4% (3–6) | - | - | ||||||
700–1500 μV | 4% (0–9) | - | - | ||||||
Not reported | 4% (3–5) | 1% (1–1) | 0% (0–0) | ||||||
Neuromuscular blockade | No | 3% (3–4) | 1% (1–2) | 0% (0–0) | |||||
Yes | 7% (2–12) | 1% (0–2) | 1% (0–1) | ||||||
Not reported | 5% (4–6) | 0% (0–1) | 0% (0–0) |
Transient Unilateral RLNI | Coefficient | SE | Z | p Value | Low CI | High CI |
---|---|---|---|---|---|---|
Continuous IONM (vs. Intermittent) | −1.196 | 0.597 | −2.000 | 0.045 | −2.365 | −0.027 |
IONM Model (Reference: Medtronic NIM 3.0) | ||||||
Medtronic (version not specified) | −1.099 | 0.549 | −2.000 | 0.045 | −2.176 | −0.022 |
Medtronic Xomed 2.0 | 2.643 | 0.916 | 2.890 | 0.004 | 0.847 | 4.438 |
Neurosign System | 0.539 | 0.440 | 1.220 | 0.221 | −0.324 | 1.402 |
Medtronic NIM 2.0 | −1.931 | 0.801 | −2.410 | 0.016 | −3.500 | −0.362 |
Inomed System | −2.924 | 3.059 | −0.960 | 0.339 | −8.919 | 3.071 |
CLEO nerve monitor | 0.989 | 1.134 | 0.870 | 0.383 | −1.233 | 3.211 |
Amplitude (per mA change) | 0.925 | 0.768 | 1.200 | 0.228 | −0.580 | 2.429 |
Neuromuscular blockade use (vs. non) | −0.528 | 0.387 | −1.360 | 0.172 | −1.286 | 0.230 |
Constant | −0.517 | 1.438 | −0.360 | 0.719 | −3.335 | 2.301 |
Model Fit | R2 = 100%; I2 = 0% | |||||
Transient Bilateral RLNI | Coefficient | SE | Z | p Value | Low CI | High CI |
Continuous IONM (vs. Intermittent) | 1.015 | 2.553 | 0.400 | 0.691 | −3.989 | 6.019 |
IONM Model (Reference: Medtronic NIM 3.0) | ||||||
Medtronic (version not specified) | −1.255 | 2.418 | −0.520 | 0.604 | −5.995 | 3.484 |
Medtronic Xomed 2.0 | 1.498 | 1.701 | 0.880 | 0.378 | −1.836 | 4.831 |
Neurosign System | 0.262 | 0.858 | 0.300 | 0.761 | −1.420 | 1.944 |
Medtronic NIM 2.0 | −0.172 | 2.283 | −0.080 | 0.940 | −4.646 | 4.302 |
Amplitude (per mA change) | 1.697 | 2.093 | 0.810 | 0.417 | −2.405 | 5.799 |
Neuromuscular blockade use (vs. non) | −0.012 | 0.719 | −0.020 | 0.986 | −1.421 | 1.396 |
Constant | −3.436 | 4.202 | −0.820 | 0.414 | −11.672 | 4.800 |
Model Fit | R2 = 100%; I2 = 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merchavy, S.; Kassem, K.; Awawde, R.; Abd Elhadi, U.; Safia, A. Intraoperative Nerve Monitoring Parameters and Risk of Recurrent Laryngeal Nerve Injury in Thyroidectomy: A Systematic Review and Meta-Analysis. Biomedicines 2025, 13, 2516. https://doi.org/10.3390/biomedicines13102516
Merchavy S, Kassem K, Awawde R, Abd Elhadi U, Safia A. Intraoperative Nerve Monitoring Parameters and Risk of Recurrent Laryngeal Nerve Injury in Thyroidectomy: A Systematic Review and Meta-Analysis. Biomedicines. 2025; 13(10):2516. https://doi.org/10.3390/biomedicines13102516
Chicago/Turabian StyleMerchavy, Shlomo, Kenan Kassem, Rifat Awawde, Uday Abd Elhadi, and Alaa Safia. 2025. "Intraoperative Nerve Monitoring Parameters and Risk of Recurrent Laryngeal Nerve Injury in Thyroidectomy: A Systematic Review and Meta-Analysis" Biomedicines 13, no. 10: 2516. https://doi.org/10.3390/biomedicines13102516
APA StyleMerchavy, S., Kassem, K., Awawde, R., Abd Elhadi, U., & Safia, A. (2025). Intraoperative Nerve Monitoring Parameters and Risk of Recurrent Laryngeal Nerve Injury in Thyroidectomy: A Systematic Review and Meta-Analysis. Biomedicines, 13(10), 2516. https://doi.org/10.3390/biomedicines13102516