Effects of Whole-Body, Local, and Modality-Specific Vibration Therapy on Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Literature Search and Screening
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Assessment of Methodological Quality
2.6. Statistical Analysis
2.7. Certainty of Evidence
3. Results
3.1. Selection of Studies
3.2. Characteristics of the Studies
3.3. Quality Assessment Results
3.4. Effect of Vibration Intervention on Gait in Parkinson’s Disease
3.5. Meta-Regression Analysis of Clinical Moderators
3.6. Subgroup Analysis of Intervention Moderators
3.7. Sensitivity Analysis Restricted to Study Design
3.8. Certainty of Evidence for the Effects of Vibration Therapy on Gait in Patients with Parkinson’s Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Müller, T.; Möhr, J.-D. Long-term management of Parkinson’s disease using levodopa combinations. Expert Opin. Pharmacother. 2018, 19, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Schütz, L.; Sixel-Döring, F.; Hermann, W. Management of sleep disturbances in Parkinson’s disease. J. Park. Dis. 2022, 12, 2029–2058. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: A systematic review and meta-analysis. Lancet Healthy Longev. 2024, 5, e464–e479. [Google Scholar] [PubMed]
- Chaudhuri, K.R.; Azulay, J.-P.; Odin, P.; Lindvall, S.; Domingos, J.; Alobaidi, A.; Kandukuri, P.L.; Chaudhari, V.S.; Parra, J.C.; Yamazaki, T. Economic burden of Parkinson’s disease: A multinational, real-world, cost-of-illness study. Drugs-Real World Outcomes 2024, 11, 1–11. [Google Scholar] [CrossRef]
- Moustafa, A.A.; Chakravarthy, S.; Phillips, J.R.; Gupta, A.; Keri, S.; Polner, B.; Frank, M.J.; Jahanshahi, M. Motor symptoms in Parkinson’s disease: A unified framework. Neurosci. Biobehav. Rev. 2016, 68, 727–740. [Google Scholar] [CrossRef]
- Thanvi, B.; Lo, N.; Robinson, T. Levodopa-induced dyskinesia in Parkinson’s disease: Clinical features, pathogenesis, prevention and treatment. Postgrad. Med. J. 2007, 83, 384–388. [Google Scholar] [CrossRef]
- Mueller, T.; Russ, H. Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opin. Pharmacother. 2006, 7, 1715–1730. [Google Scholar] [CrossRef]
- Pickering, R.M.; Fitton, C.; Ballinger, C.; Fazakarley, L.; Ashburn, A. Self reported adherence to a home-based exercise programme among people with Parkinson’s disease. Park. Relat. Disord. 2013, 19, 66–71. [Google Scholar] [CrossRef]
- Ha, J.; Park, J.H.; Lee, J.S.; Kim, H.Y.; Song, J.O.; Yoo, J.; Ahn, J.H.; Youn, J.; Cho, J.W. Effectiveness of Live-Streaming Tele-Exercise Intervention in Patients With Parkinson’s Disease: A Pilot Study. J. Mov. Disord. 2024, 17, 189. [Google Scholar] [PubMed]
- Li, J.; Aulakh, N.; Culum, I.; Roberts, A.C. Adherence to Non-Pharmacological Interventions in Parkinson’s Disease: A Rapid Evidence Assessment of the Literature. J. Park. Dis. 2024, 14, S35–S52. [Google Scholar]
- Goodwin, G.M.; McCloskey, D.I.; Matthews, P.B. Proprioceptive illusions induced by muscle vibration: Contribution by muscle spindles to perception? Science 1972, 175, 1382–1384. [Google Scholar] [CrossRef]
- Lapole, T.; Tindel, J. Acute effects of muscle vibration on sensorimotor integration. Neurosci. Lett. 2015, 587, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Forner-Cordero, A.; Steyvers, M.; Levin, O.; Alaerts, K.; Swinnen, S.P. Changes in corticomotor excitability following prolonged muscle tendon vibration. Behav. Brain Res. 2008, 190, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ritzmann, R.; Gollhofer, A.; Kramer, A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur. J. Appl. Physiol. 2013, 113, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Camerota, F.; Celletti, C.; Suppa, A.; Galli, M.; Cimolin, V.; Filippi, G.M.; La Torre, G.; Albertini, G.; Stocchi, F.; De Pandis, M.F. Focal muscle vibration improves gait in Parkinson’s disease: A pilot randomized, controlled trial. Mov. Disord. Clin. Pract. 2016, 3, 559–566. [Google Scholar] [CrossRef]
- Novak, P.; Novak, V. Effect of step-synchronized vibration stimulation of soles on gait in Parkinson’s disease: A pilot study. J. Neuroeng. Rehabil. 2006, 3, 9. [Google Scholar] [CrossRef]
- Dincher, A.; Schwarz, M.; Wydra, G. Analysis of the Effects of Whole—Body Vibration in Parkinson Disease–Systematic Review and Meta—Analysis. Pm&r 2019, 11, 640–653. [Google Scholar]
- Fischer, M.; Vialleron, T.; Laffaye, G.; Fourcade, P.; Hussein, T.; Chèze, L.; Deleu, P.-A.; Honeine, J.-L.; Yiou, E.; Delafontaine, A. Long-term effects of whole-body vibration on human gait: A systematic review and meta-analysis. Front. Neurol. 2019, 10, 627. [Google Scholar] [CrossRef]
- Arenales Arauz, Y.L.; Ahuja, G.; Kamsma, Y.P.; Kortholt, A.; van der Zee, E.A.; van Heuvelen, M.J. Potential of whole-body vibration in Parkinson’s disease: A systematic review and meta-analysis of human and animal studies. Biology 2022, 11, 1238. [Google Scholar] [CrossRef]
- Zhao, Y.-G.; Lv, W.; Huo, H.-Q.; Wu, J.-R.; Cheng, W.-W.; Wang, S. Meta-analysis of the effect of whole-body vibration training on the improvement of limb function in patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 6985–6995. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. bmj 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. bmj 2011, 343, d5928. [Google Scholar] [CrossRef]
- Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2019; Volume 4, p. 14651858. [Google Scholar]
- Oroszi, T.; Van Heuvelen, M.J.; Nyakas, C.; Van Der Zee, E.A. Vibration detection: Its function and recent advances in medical applications. F1000Research 2020, 9, F1000 Faculty Rev-1619. [Google Scholar] [CrossRef]
- Moore, T.H.; Higgins, J.P.; Dwan, K. Ten tips for successful assessment of risk of bias in randomized trials using the RoB 2 tool: Early lessons from Cochrane. Cochrane Evid. Synth. Methods 2023, 1, e12031. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A. Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Eds.; John Wiley & Sons: Chichester, UK, 2019; pp. 205–228. [Google Scholar]
- Morris, S.B. Estimating effect sizes from pretest-posttest-control group designs. Organ. Res. Methods 2008, 11, 364–386. [Google Scholar] [CrossRef]
- Morris, S.B.; DeShon, R.P. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol. Methods 2002, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Vandermeer, B.W.; Shamliyan, T.A.; O’Neil, M.E.; Yazdi, F.; Fox, S.H.; Morton, S.C. Handling Continuous Outcomes in Quantitative Synthesis; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2013. [Google Scholar]
- Hedges, L.V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Cooper, H.; Hedges, L.V.; Valentine, J.C. The Handbook of Research Synthesis and Meta-Analysis; Russell Sage Foundation: New York, NY, USA, 2019. [Google Scholar]
- Hox, J.J.; De Leeuw, E.D. Multilevel models for meta-analysis. In Multilevel Modeling; Psychology Press: East Sussex, UK, 2003; pp. 87–104. [Google Scholar]
- Del Re, A. A practical tutorial on conducting meta-analysis in R. Quant. Methods Psychol. 2015, 11, 37–50. [Google Scholar] [CrossRef]
- Fernández-Castilla, B.; Declercq, L.; Jamshidi, L.; Beretvas, S.N.; Onghena, P.; Van den Noortgate, W. Detecting selection bias in meta-analyses with multiple outcomes: A simulation study. J. Exp. Educ. 2021, 89, 125–144. [Google Scholar] [CrossRef]
- Simental-Mendia, L.E.; Cicero, A.F.; Atkin, S.L.; Majeed, M.; Sahebkar, A. A systematic review and meta-analysis of the effect of curcuminoids on adiponectin levels. Obes. Res. Clin. Pract. 2019, 13, 340–344. [Google Scholar] [CrossRef]
- Wang, N. Conducting meta-analyses of proportions in R. J. Behav. Data Sci. 2023, 3, 64–126. [Google Scholar] [CrossRef]
- Orwin, R.G. A fail-safe N for effect size in meta-analysis. J. Educ. Stat. 1983, 8, 157–159. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 2000, 95, 89–98. [Google Scholar] [PubMed]
- Lendraitienė, E.; Rėkus, E.; Volkevičiūtė, A.; Tunaitytė, A.; Venslauskas, M.; Abramavičius, S.; Stankevičius, E. Research of upper limb tremor reduction with a vibrational medical device for parkinson’s disease. Technol. Disabil. 2024, 36, 29–38. [Google Scholar] [CrossRef]
- Jöbges, E.; Elek, J.; Rollnik, J.; Dengler, R.; Wolf, W. Vibratory proprioceptive stimulation affects Parkinsonian tremor. Park. Relat. Disord. 2002, 8, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Ronconi, G.; Gatto, D.M.; Ariani, M.; Codazza, S.; Panunzio, M.; Coraci, D.; Ferrara, P.E. Effects of focal muscle vibration on cervical pain in Parkinson’s disease patients: A pilot study. Eur. J. Transl. Myol. 2024, 34, 12355. [Google Scholar] [CrossRef]
- Burke, D.; Andrews, C.J.; Lance, J.W. Tonic vibration reflex in spasticity, Parkinson’s disease, and normal subjects. J. Neurol. Neurosurg. Psychiatry 1972, 35, 477–486. [Google Scholar] [CrossRef]
- Aggarwal, R.; Pretzer-Aboff, I.; Winfree, K.N.; Agrawal, S.K.; Behari, M. Clinical outcomes of step-synchronized vibration training in patients of Parkinson’s disease with freezing of gait. Ann. Mov. Disord. 2019, 2, 15–20. [Google Scholar]
- Valkovič, P.; Krafczyk, S.; Bötzel, K. Postural reactions to soleus muscle vibration in Parkinson’s disease: Scaling deteriorates as disease progresses. Neurosci. Lett. 2006, 401, 92–96. [Google Scholar]
- Ghoseiri, K.; Forogh, B.; Ali Sanjari, M.; Bavi, A. Effects of vibratory orthosis on balance in idiopathic Parkinson’s disease. Disabil. Rehabil. Assist. Technol. 2009, 4, 58–63. [Google Scholar] [CrossRef]
- Goetz, C.G. Jean-Martin Charcot and his vibratory chair for Parkinson disease. Neurology 2009, 73, 475–478. [Google Scholar] [CrossRef]
- Harris, M.A.; Marion, S.A.; Spinelli, J.J.; Tsui, J.K.; Teschke, K. Occupational exposure to whole-body vibration and parkinson’s disease: Results from a population-based case-control study. Am. J. Epidemiol. 2012, 176, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Valkovič, P.; Krafczyk, S.; Šaling, M.; Benetin, J.; Bötzel, K. Postural reactions to neck vibration in Parkinson’s disease. Mov. Disord. 2006, 21, 59–65. [Google Scholar] [CrossRef]
- Kammermeier, S.; Dietrich, L.; Maierbeck, K.; Plate, A.; Lorenzl, S.; Singh, A.; Bötzel, K. Neck vibration proprioceptive postural response intact in progressive supranuclear palsy unlike idiopathic Parkinson’s disease. Front. Neurol. 2017, 8, 689. [Google Scholar] [CrossRef]
- Silveira-Ciola, A.P.; Barbieri, F.A.; Soares, C.F.; Marques, N.R.; Simieli, L.; Faganello-Navega, F.R. The effect of whole body vibration on gait stability in individuals with Parkinson’s disease: A preliminary study. Int. J. Ther. Rehabil. 2023, 30, 1–13. [Google Scholar] [CrossRef]
- Rickards, C.; Cody, F. Proprioceptive control of wrist movements in Parkinson’s disease. Reduced muscle vibration-induced errors. Brain 1997, 120, 977–990. [Google Scholar] [CrossRef]
- Boddy, A.; Barta, K.; Flores, M.; Sawyer, K.; Perry, L.; Campbell, A. Immediate impact of whole-body vibration on backward walking in individuals with Parkinson disease. Physiother. Theory Pract. 2025, 41, 2167–2172. [Google Scholar] [CrossRef]
- Winfree, K.N.; Pretzer-Aboff, I.; Hilgart, D.; Aggarwal, R.; Behari, M.; Agrawal, S.K. The effect of step-synchronized vibration on patients with Parkinson’s disease: Case studies on subjects with freezing of gait or an implanted deep brain stimulator. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 806–811. [Google Scholar] [CrossRef]
- Han, J.; Jung, J.; Lee, J.; Kim, E.; Lee, M.; Lee, K. Effect of muscle vibration on postural balance of Parkinson’s diseases patients in bipedal quiet standing. J. Phys. Ther. Sci. 2013, 25, 1433–1435. [Google Scholar] [CrossRef] [PubMed]
- Varalta, V.; Righetti, A.; Evangelista, E.; Vantini, A.; Martoni, A.; Tamburin, S.; Fonte, C.; Di Vico, I.A.; Tinazzi, M.; Waldner, A. Effects of upper limb vibratory stimulation training on motor symptoms in Parkinson’s disease: An observational study. J. Rehabil. Med. 2024, 56, 19495. [Google Scholar] [CrossRef] [PubMed]
- Chouza, M.; Arias, P.; Viñas, S.; Cudeiro, J. Acute effects of whole—Body vibration at 3, 6, and 9 hz on balance and gait in patients with Parkinson’s disease. Mov. Disord. 2011, 26, 920–921. [Google Scholar] [CrossRef]
- Chang, C.-M.; Tsai, C.-H.; Lu, M.-K.; Tseng, H.-C.; Lu, G.; Liu, B.-L.; Lin, H.-C. The neuromuscular responses in patients with Parkinson’s disease under different conditions during whole-body vibration training. BMC Complement. Med. Ther. 2022, 22, 2. [Google Scholar] [CrossRef]
- Garção, D.C.; dos Santos, M.R.H.; da Silva Correia, A.G.; Cajueiro, C.A.G.; de Oliveira, J.S.; Fraga, B.P.; Moreira, O.S.M. Influence of whole-body vibration and gait training with additional load on functioning, balance, and gait in patients with Parkinson’s disease. Res. Soc. Dev. 2022, 11, e27811828612. [Google Scholar] [CrossRef]
- Peppe, A.; Paone, P.; Paravati, S.; Baldassarre, M.; Bakdounes, L.; Spolaor, F.; Guidotto, A.; Pavan, D.; Sawacha, Z.; Clerici, D. Proprioceptive focal stimulation (Equistasi®) may improve motor symptoms in moderate Parkinson’s disease patients Italian multicentric preliminary open study. AGE 2019, 69, 51. [Google Scholar]
- Cen, S.; Ma, J.; Sun, H.; Zhang, H.; Li, Y.; Mao, W.; Xu, E.; Mei, S.; Chhetri, J.K.; Ruan, Z. Vibrotactile Foot Device for Freezing of Gait in Parkinson’s Disease: A Pilot Study. Mov. Disord. Clin. Pract. 2024, 11, 1241–1248. [Google Scholar] [CrossRef]
- Ferrara, P.E.; Gatto, D.M.; Codazza, S.; Zordan, P.; Stefinlongo, G.; Coraci, D.; Lo Monaco, M.R.; Ricciardi, D.; Ronconi, G. Effects of focal muscle vibration on gait and balance in Parkinson patients: Preliminary results. Appl. Sci. 2022, 12, 10486. [Google Scholar] [CrossRef]
- Rossi, S.; Lisini Baldi, T.; Aggravi, M.; Ulivelli, M.; Cioncoloni, D.; Niccolini, V.; Donati, L.; Prattichizzo, D. Wearable haptic anklets for gait and freezing improvement in Parkinson’s disease: A proof-of-concept study. Neurol. Sci. 2020, 41, 3643–3651. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.T.; Turbanski, S.; Kessler, K.; Schmidtbleicher, D. The effects of random whole-body-vibration on motor symptoms in Parkinson’s disease. NeuroRehabilitation 2006, 21, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.T.; Pereira, A.J.F.; Magno, L.D.P.; Figueiras, H.d.M.; Sobral, L.L. Balance, gait and quality of life in Parkinson’s disease: Effects of whole body vibration treatment. Fisioter. Mov. 2014, 27, 261–270. [Google Scholar] [CrossRef]
- Larocque, K.A. The Effect of Acute Muscle Tendon Vibration on Motor Unit Activity in the Contralateral, More-Affected Limb in Parkinson’s Disease. Master’s Thesis, University of British Columbia, Vancouver, BC, Cananda, 2015. [Google Scholar]
- Pereira, M.P.; Gobbi, L.T.; Almeida, Q.J. Freezing of gait in Parkinson’s disease: Evidence of sensory rather than attentional mechanisms through muscle vibration. Park. Relat. Disord. 2016, 29, 78–82. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, A.M.; Nardone, A.; Picco, D.; Nilsson, J.; Schieppati, M. Alternate trains of postural muscle vibration promote cyclic body displacement in standing parkinsonian patients. Mov. Disord. 2008, 23, 2186–2193. [Google Scholar] [CrossRef]
- Volpe, D.; Giantin, M.G.; Fasano, A. A wearable proprioceptive stabilizer (Equistasi®) for rehabilitation of postural instability in Parkinson’s disease: A phase II randomized double-blind, double-dummy, controlled study. PLoS ONE 2014, 9, e112065. [Google Scholar] [CrossRef]
- Serio, F.; Minosa, C.; De Luca, M.; Conte, P.; Albani, G.; Peppe, A. Focal vibration training (Equistasi®) to Improve posture stability. A retrospective study in Parkinson’s disease. Sensors 2019, 19, 2101. [Google Scholar] [CrossRef]
- Turbanski, S.; Haas, C.T.; Schmidtbleicher, D.; Friedrich, A.; Duisberg, P. Effects of random whole-body vibration on postural control in Parkinson’s disease. Res. Sports Med. 2005, 13, 243–256. [Google Scholar] [CrossRef]
- Kaut, O.; Allert, N.; Coch, C.; Paus, S.; Grzeska, A.; Minnerop, M.; Wüllner, U. Stochastic resonance therapy in Parkinson’s disease. NeuroRehabilitation 2011, 28, 353–358. [Google Scholar] [CrossRef]
- Kapur, S.S.; Stebbins, G.T.; Goetz, C.G. Vibration therapy for Parkinson’s disease: Charcot’s studies revisited. J. Park. Dis. 2012, 2, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.T.; Buhlmann, A.; Turbanski, S.; Schmidtbleicher, D. Proprioceptive and sensorimotor performance in Parkinson’s disease. Res. Sports Med. 2006, 14, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Dincher, A. Effects of Whole Body Vibration on reaction time in Parkinson’s Disease Patients—A pilot study. Neurodegener. Dis. Curr. Res 2021, 1, 1–6. [Google Scholar]
- Dincher, A.; Becker, P.; Wydra, G. Effect of whole-body vibration on freezing and flexibility in Parkinson’s disease—A pilot study. Neurol. Sci. 2021, 42, 2795–2801. [Google Scholar] [CrossRef]
- Dincher, A.; Wydra, G. Effect of Whole Body Vibration on Balance in Parkinson’s disease—A Randomized Controlled Pilot Study. In Alzheimer’s Disease & Treatment; MedDocs Publishers: Reno, NV, USA, 2021. [Google Scholar]
- Corbianco, S.; Cavallini, G.; Baldereschi, G.; Carboncini, M.C.; Fiamingo, F.L.; Bongioanni, P.; Dini, M. Whole body vibration and treadmill training in Parkinson’s disease rehabilitation: Effects on energy cost and recovery phases. Neurol. Sci. 2018, 39, 2159–2168. [Google Scholar] [CrossRef]
- Kaut, O.; Brenig, D.; Marek, M.; Allert, N.; Wüllner, U. Postural stability in Parkinson’s disease patients is improved after stochastic resonance therapy. Parkinson’s Disease 2016, 2016, 7948721. [Google Scholar] [CrossRef]
- Li, K.-Y.; Cho, Y.-J.; Chen, R.-S. The Effect of Whole—Body Vibration on Proprioception and Motor Function for Individuals with Moderate Parkinson Disease: A Single—Blind Randomized Controlled Trial. Occup. Ther. Int. 2021, 2021, 9441366. [Google Scholar] [CrossRef]
- Guadarrama-Molina, E.; Barrón-Gámez, C.E.; Estrada-Bellmann, I.; Meléndez-Flores, J.D.; Ramírez-Castañeda, P.; Hernández-Suárez, R.M.G.; Menchaca-Pérez, M.; Salas-Fraire, O. Comparison of the effect of whole-body vibration therapy versus conventional therapy on functional balance of patients with Parkinson’s disease: Adding a mixed group. Acta Neurol. Belg. 2021, 121, 721–728. [Google Scholar] [CrossRef]
- Pretzer-Aboff, I.; Elswick, R.; Gouelle, A.; Helm, N.; Blackwell, G.; Cloud, L. Determination of optimal vibration dose to treat Parkinson’s disease gait symptoms: A clinical trial. Clin. Park. Relat. Disord. 2024, 10, 100248. [Google Scholar] [CrossRef]
- Karbowniczek, A.; Niewiadomski, W.; Gasiorowska, A.; Strasz, A.; Cybulski, G.; Palasz, E.; Niewiadomska, G. Impact of the whole body vibration training on the motor symptoms in Parkinson Disease patients. Park. Relat. Disord. 2016, 22, e66–e67. [Google Scholar] [CrossRef]
- Karbowniczek, A.; Niewiadomski, W.; Gasiorowska, A.; Strasz, A.; Cybulski, G.; Palasz, E.; Niewiadomska, G. Impact of the whole body vibration training on activity of daily living and quality of life in Parkinson Disease patients. Park. Relat. Disord. 2016, 22, e67. [Google Scholar] [CrossRef]
- Niewiadomski, W.; Strasz, A.; Karbowniczek, A.; Gasiorowska, A.; Zylinski, M.; Pariaszewska, K.; Cybulski, G.; Palasz, E.; Niewiadomska, G. Changes in maximum static force of knee extensors caused by prolonged whole body vibration training in Parkinson Disease patients. Park. Relat. Disord. 2016, 22, e67. [Google Scholar] [CrossRef]
- Arias, P.; Chouza, M.; Vivas, J.; Cudeiro, J. Effect of whole body vibration in Parkinson’s disease: A controlled study. Mov. Disord. 2009, 24, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Ebersbach, G.; Edler, D.; Kaufhold, O.; Wissel, J. Whole body vibration versus conventional physiotherapy to improve balance and gait in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2008, 89, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Gaßner, H.; Janzen, A.; Schwirtz, A.; Jansen, P. Random whole body vibration over 5 weeks leads to effects similar to placebo: A controlled study in Parkinson’s disease. Park. Dis. 2014, 2014, 386495. [Google Scholar] [CrossRef]
- King, L.K.; Almeida, Q.J.; Ahonen, H. Short-term effects of vibration therapy on motor impairments in Parkinson’s disease. NeuroRehabilitation 2009, 25, 297–306. [Google Scholar] [CrossRef]
- Mosabbir, A.; Almeida, Q.J.; Ahonen, H. The effects of long-term 40-Hz physioacoustic vibrations on motor impairments in Parkinson’s disease: A double-blinded randomized control trial. Healthcare 2020, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Phuenpathom, W.; Panyakaew, P.; Vateekul, P.; Surangsrirat, D.; Bhidayasiri, R. Residual effects of combined vibratory and plantar stimulation while seated influences plantar pressure and spatiotemporal gait measures in individuals with Parkinson’s disease exhibiting freezing of gait. Front. Aging Neurosci. 2024, 15, 1280324. [Google Scholar] [CrossRef] [PubMed]
- Phuenpathom, W.; Panyakaew, P.; Vateekul, P.; Surangsrirat, D.; Hiransuthikul, A.; Bhidayasiri, R. Vibratory and plantar pressure stimulation: Steps to improve freezing of gait in Parkinson’s disease. Park. Relat. Disord. 2022, 105, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Romanato, M.; Guiotto, A.; Spolaor, F.; Bakdounes, L.; Baldassarre, G.; Cucca, A.; Peppe, A.; Volpe, D.; Sawacha, Z. Changes of biomechanics induced by Equistasi® in Parkinson’s disease: Coupling between balance and lower limb joints kinematics. Med. Biol. Eng. Comput. 2021, 59, 1403–1415. [Google Scholar] [CrossRef]
- Spolaor, F.; Romanato, M.; Annamaria, G.; Peppe, A.; Bakdounes, L.; To, D.-K.; Volpe, D.; Sawacha, Z. Relationship between muscular activity and postural control changes after proprioceptive focal stimulation (Equistasi®) in middle-moderate Parkinson’s disease patients: An explorative study. Sensors 2021, 21, 560. [Google Scholar] [CrossRef]
- Yamagami, T.; Rivera, M.; Trueblood, P.; Gomez, S. Effects of Whole Body Vibration Versus Agility Training on Gait Parameters in Individuals with Parkinson’s Disease: A Pilot Study; Poster Presentation California Physical Therapy Association: Santa Clara, CA, USA, 2018. [Google Scholar]
- Oranges, F.P.; Greco, F.; Tarsitano, M.G.; Quinzi, F.; Quattrone, A.; Quattrone, A.; Emerenziani, G.P. Acute Effects of Whole-Body Vibration on Gait Kinematics in Individuals with Parkinson’s Disease. Appl. Sci. 2025, 15, 7055. [Google Scholar] [CrossRef]
- Peterson, D.S.; King, L.A.; Cohen, R.G.; Horak, F.B. Cognitive contributions to freezing of gait in Parkinson disease: Implications for physical rehabilitation. Phys. Ther. 2016, 96, 659–670. [Google Scholar] [CrossRef]
- Scholl, J.L.; Espinoza, A.I.; Rai, W.; Leedom, M.; Baugh, L.A.; Berg-Poppe, P.; Singh, A. Relationships between freezing of gait severity and cognitive deficits in Parkinson’s disease. Brain Sci. 2021, 11, 1496. [Google Scholar] [CrossRef]
- Chow, R.; Tripp, B.P.; Rzondzinski, D.; Almeida, Q.J. Investigating therapies for freezing of gait targeting the cognitive, limbic, and sensorimotor domains. Neurorehabilit. Neural Repair 2021, 35, 290–299. [Google Scholar] [CrossRef]
- Yin, S.; Liu, Y.; Zhong, Y.; Zhu, F. Effects of whole-body vibration on bone mineral density in postmenopausal women: An overview of systematic reviews. BMC Women’s Health 2024, 24, 444. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, Y.; Chen, X. Effects of whole-body vibration training with different body positions and amplitudes on lower limb muscle activity in middle-aged and older women. Dose-Response 2022, 20, 15593258221112960. [Google Scholar] [CrossRef] [PubMed]
- Hass, C.J.; Bishop, M.; Moscovich, M.; Stegemöller, E.L.; Skinner, J.; Malaty, I.A.; Shukla, A.W.; McFarland, N.; Okun, M.S. Defining the clinically meaningful difference in gait speed in persons with Parkinson disease. J. Neurol. Phys. Ther. 2014, 38, 233–238. [Google Scholar] [CrossRef]
- Baudendistel, S.T.; Haussler, A.M.; Rawson, K.S.; Earhart, G.M. Minimal clinically important differences of spatiotemporal gait variables in Parkinson disease. Gait Posture 2024, 108, 257–263. [Google Scholar] [CrossRef]
- Taghizadeh, G.; Eissazade, N.; Fereshtehnejad, S.-M.; Taghavi Azar Sharabiani, P.; Shati, M.; Mortazavi, S.S.; Habibi, S.A.H.; SalemiJuybari, M.; Mehdizadeh, M. Minimal clinically important difference and substantial clinical benefits for single-and dual-task timed up and go test following motor-cognitive training in Parkinson’s disease. Age Ageing 2025, 54, afaf241. [Google Scholar] [CrossRef] [PubMed]
Category | Outcome Measures | Description |
---|---|---|
Gait speed | Cadence; Velocity; Stride velocity; Stride time; Step-walk-turn task—time to accomplish; Step-walk-turn task—trunk velocity; Time to walk 10 m; Stand-walk-sit time; Velocity over 24 h; 8-Meter Walk Test; Gait-Velocity; Gait-Cadence; Gait-Turn Time | Indicators of temporal performance reflecting how fast an individual walks, turns, or completes functional tasks. |
Gait cycle | Double support time; Single support time; Stride duration; Stance duration; Swing duration; Stance Right/Left; Double support time Right/Left. | Measures of temporal phases within the gait cycle, quantifying stance, swing, and support periods. |
Gait magnitude | Step length; Stride length; Stride length Right/Left; Stride; Gait-Step amplitude; Mean stride length of three strides before a freeze | Indicators of spatial amplitude of walking, including step and stride length, and stride size before freezing. |
Gait variability | Stride coefficient of variation (CV); Stance CV; Swing CV; Double support CV; Stride velocity CV; Stride length CV; CV of three strides before a freeze; Gait-stride-time CV | Indices of consistency and stability of gait, calculated using the coefficient of variation in temporal or spatial parameters. |
Freezing of gait (FOG) | Unified Parkinson’s Disease Rating Scale (UPDRS) Part III—gait item; UPDRS Part III—freezing of gait item; Freezing of gait occurrence; Freezing of gait episodes; Freezing duration; Mean stride length of three strides before a freeze; CV of three strides before a freeze | Clinical and objective measures capturing the occurrence, severity, and characteristics of freezing episodes. |
Author and Year | Study Type | Participants | Sample (N, Age) | Intervention and Control Protocol | Intervention Protocol | WBV Parameters | Posture and WBV Type | Device Type | Outcome Measures |
---|---|---|---|---|---|---|---|---|---|
Gaßner et al. (2014) [87] | RCT, SB | DD: 7.71 ± 5.28, H&Y: 2.62 ± 0.38, L-dopa: 406.35 ± 291.23 | I: 8 (71.4 ± 4.4), C: 9 (68.2 ± 4.9) | I: independent WBV, C: Sham (Same platform and posture, vibration switched off) | Freq: 2–3/wk, Dur: 5 wk | Bouts: 5, Bout Dur: 1 min, Rest: 1 min, Freq: 6 Hz, Amp: 3 mm | Knees slightly bent | SRT Zeptor Medical plus noise | Cad; DST; SST; SL; Vel; SWT-GRF; SWT-TrunkVel; SWT-TurnSteps; SWT-Time |
Ebersbach et al. (2008) [86] | RCT | DD: 7.26 ± 3.00, L-dopa: 567.62 ± 216.21 | I: 10 (72.5 ± 6.0), C: 11 (75.0 ± 6.8) | I: WBV + conventional training, C: Active control (Conventional balance training) | Freq: 10/wk, Dur: 3 wk | Bouts: 1, Bout Dur: 15 min, Freq: 25 Hz, Amp: 7–14 mm | Slightly bent knees and hips | Galileo | 10 MWP; SWS |
King et al. (2009) [88] | RCO | DD: 6.80 ± 4.75, L-dopa: 269.39 ± 271.93 | I: 20 (65.4 ± 9.9), C: 20 (65.4 ± 9.9) | I: independent WBV, C: Sham (Sat on Physioacoustic Chair without vibration) | Freq: 1/wk, Dur: 1 wk | Bouts: 5, Bout Dur: 1 min, Rest: 1 min | Seated in a chair | Physioacoustic Chair | SL |
Camerota et al. (2016) [15] | RCT, SB | DD: 7.76 ± 4.64, H&Y: 2.76 ± 0.48, L-dopa: 716.47 ± 89.48 | I: 10 (67.0 ± 7.96), C: 10 (65.5 ± 9.85) | I: independent FMV, C: Sham (Device placed near skin but not touching) | Freq: 3/wk, Dur: 1 wk | Bouts: 6, Bout Dur: 10 min, Rest: 1 min, Freq: 100 Hz, Amp: 0.2–0.5 mm | Supine and prone positions | Cro System; Nemoco SRL | Vel |
Mosabbir et al. (2020) [89] | RCT, DB | DD: 6.50 ± 4.40 | I: 21 (69.4 ± 9.5), C: 15 (69.4 ± 9.5) | I: independent FMV, C: Sham (Sat on identical chair, only 40 Hz humming sound) | Freq: 3/wk, Dur: 12 wk | Bouts: 6–8, Bout Dur: 2–3 min, Rest: 1 min, Freq: 40 Hz | Sitting posture | Physioacoustic reclining chair with 6 built-in speakers | UPDRSIII-Gait |
Novak et al. (2006) [16] | WSC, NB | DD: 6.00 ± 3.90, H&Y: 2.40 ± 0.20, L-dopa: 725.70 ± 510.10 | I: 8 (61.4 ± 12.4), C: 8 (58.9 ± 12.3) | I: independent FMV, C: sham (details not reported) | Freq: 1/wk, Dur: 1 wk | Bouts: 1, Bout Dur: 6 min, Freq: 70 Hz, Amp: 0.1–0.2 mm | Standing and walking posture | Wearable step-synchronized vibration device | WalkDist; Vel; Cad; StrDur; StrLen; StrCV; StanDur; StanCV; SwDur; SwCV; DSDur; DSCV |
Kaut et al. (2016) [78] | RCT, DB | DD: 7.00 ± 5.85, H&Y: 2.70 ± 0.80, L-dopa: 396.88 ± 279.20 | I: 29 (66.1 ± 8.28), C: 25 (67.9 ± 8.78) | I: independent WBV, C: sham (Same equipment/posture, lowest frequency) | Freq: 4/wk, Dur: 1 wk | Bouts: 6, Bout Dur: 1 min, Rest: 1 min, Freq: 7 Hz, Amp: 3 mm | Semi-squat posture | SR-Zeptor® | 8 MW |
Romanato et al. (2021) [92] | RCO, DB | DD: 11.88 ± 4.89, H&Y: 2.46 ± 0.51, L-dopa: 757.14 ± 290.88 | I: 20 (67.46 ± 10.27), C: 20 (67.46 ± 10.27) | I: independent FMV, C: sham (Identical-appearing inactive device) | Freq: 5–6/wk, Dur: 8 wk | Bout Dur: 60–240 min, Freq: 300 Hz | Standing, walking, and static posture | Equistasi® | Str; Time; Vel; Stan; UPDRSIII-Gait; UPDRSIII-FOG |
Peppe et al. (2019) [59] | RCO, DB | DD: 8.35 ± 3.60, H&Y: 2.45 ± 0.50, L-dopa: 743.30 ± 293.00 | I: 40 (61.36 ± 9.9), C: 40 (61.36 ± 9.9) | I: independent FMV, C: sham (Identical device without vibration) | Freq: 5–6/wk, Dur: 8 wk | Bout Dur: 240 min | - | Equistasi® | Vel; SL-R; SL-L; Stan-R; Stan-L; DST-R; DST-L; UPDRSIII-Gait; UPDRSIII-FOG |
Phuenpathom et al. (2024) [90] | RCT, SB | DD: 12.25 ± 3.16, H&Y: 3.05 ± 0.59, L-dopa: 1035.30 ± 350.96 | I: 20 (72.0 ± 7.2), C: 20 (71.2 ± 7.2) | I: independent FMV, C: sham (Identical insoles with battery removed) | Freq: 1/wk, Dur: 1 wk | Bouts: 1, Bout Dur: 1.6 min, Freq: 100 Hz | Seated | FOG shoes | FOG; StrVel; StrLen; Cad; MeanSL-3BFreeze; CV-StrVel; CV-StrLen; CV-3BFreeze |
Phuenpathom et al. (2022) [91] | RCT | DD: 10.26 ± 2.79, H&Y: 2.57 ± 0.47, L-dopa: 825.01 ± 372.27 | I: 15 (63.26 ± 4.78), C: 15 (60.4 ± 5.87) | I: independent FMV, C: no stimulation | Freq: 1/wk, Dur: 1 wk | Bouts: 1, Bout Dur: 1.6 min, Freq: 100 Hz | - | Custom-made vibratory eccentric mass device | FOG; FOG-Ep; FOG-Dur; StrVel; StrLen; MeanSL-3BFreeze; CV-StrVel; CV-StrLen; CV-3BFreeze |
Yamagami et al. (2018) [94] | 2G, Pilot | DD: 5.63 ± 5.15, H&Y: 2.63 ± 1.06 | I: 4 (69.75 ± 4.57), C: 4 (65.25 ± 8.18) | I: WBV combined with agility training, C: agility training | Freq: 3/wk, Dur: 5 wk | Bouts: 3, Bout Dur: 1–3 min, Freq: 18 Hz, Amp: 5.2 mm | Standing in a semi-squat posture | Galileo Med L | Vel; Cad; SL |
Spolaor et al. (2021) [93] | RCO, DB | DD: 11.88 ± 3.23, H&Y: 2.46 ± 0.51, L-dopa: 757.14 ± 290.88 | I: 20 (67.46 ± 10.27), C: 20 (67.46 ± 10.27) | I: independent FMV, C: sham (Identical kit not delivering vibration) | Freq: 5–6/wk, Dur: 8 wk | Bout Dur: 60–240 min, Freq: 9000 Hz | - | Equistasi® | Str; StrTime; Vel; Stan |
Arias et al. (2009) [85] | DB | - | I: 10 (66.9 ± 11.11), C: 11 (66.55 ± 5.57) | I: independent WBV, C: sham (Platform identical, vibration switched off) | Freq: 2–3/wk, Dur: 5 wk | Bouts: 5, Bout Dur: 1 min, Rest: 1 min, Freq: 6 Hz | Standing with slightly bent knees and feet firmly placed | Fit Massage | Vel; Cad; StepAmp; TurnTime; StrTimeCV |
Moderator Variable | Subgroup Level | g (Hedges’ g) | 95% CI | 95% PI | Qe(df), p |
---|---|---|---|---|---|
Control type | Passive control | 0.285 ** | [0.120, 0.450] | [−0.185, 0.755] | Qm(1) = 11.13, <0.001 ** |
Active control | 0.039 | [−0.078, 0.156] | [−0.078, 0.156] | ||
Amplitude | ≤1 mm | 0.351 | [−2.864, 3.566] | [−2.864, 3.566] | Qm(2) = 2.51, 0.285 |
1–5 mm | 0.147 * | [0.109, 0.184] | [0.109, 0.184] | ||
>5 mm | 0.068 | [−0.666, 0.801] | [−0.666, 0.801] | ||
Frequency (Hz) | ≤50 Hz | 0.253 | [−0.106, 0.613] | [−0.319, 0.826] | Qm(2) = 14.66, <0.001 ** |
51–100 Hz | 0.502 * | [0.040, 0.964] | [−1.085, 2.089] | ||
>100 Hz | 0.028 | [−0.651, 0.708] | [−0.651, 0.708] | ||
Weekly frequency | 1 time/week | 0.452 * | [0.015, 0.888] | [−1.049, 1.952] | Qm(2) = 8.28, 0.016 * |
2–3 times/week | 0.35 | [−0.123, 0.823] | [−0.423, 1.124] | ||
≥4 times/week | 0.117 | [−0.145, 0.378] | [−0.145, 0.378] | ||
Total sessions | 1 session | 0.457 * | [0.012, 0.903] | [−1.006, 1.920] | Qm(2) = 7.40, 0.025 * |
3–35 sessions | 0.309 | [−0.053, 0.671] | [−0.183, 0.801] | ||
≥36 sessions | 0.119 | [−0.266, 0.503] | [−0.266, 0.503] | ||
Intervention period | 1 week | 0.459 * | [0.109, 0.808] | [−0.808, 1.726] | Qm(1) = 1.07, 0.302 |
2–7 weeks | 0.273 | [−0.314, 0.859] | [−0.648, 1.193] | ||
≥8 weeks | - (no convergence) | - | - | ||
Total exposure/session | ≤3 min | 0.579 | [−0.946, 2.104] | [−5.809, 6.966] | Qm(2) = 3.53, 0.171 |
3–15 min | 0.293 | [−0.026, 0.613] | [−0.123, 0.710] | ||
≥15 min | 0.284 | [−0.957, 1.525] | [−0.994, 1.562] | ||
Vibration type | Sinusoidal | 0.413 * | [0.119, 0.706] | [−0.637, 1.462] | Qm(1) = 2.86, 0.091 |
Stochastic | 0.187 | [−0.037, 0.412] | [−0.267, 0.642] | ||
Modality | WBV | 0.287 | [−0.321, 0.895] | [−0.478, 1.053] | Qm(1) = 0.00, 0.966 |
FMV | 0.295 * | [0.055, 0.536] | [−0.343, 0.933] | ||
Study design | RCT | 0.316 * | [0.004, 0.628] | [−0.678, 1.310] | Qm(2) = 5.48, 0.064 |
RCO | 0.149 | [−0.178, 0.476] | [−0.178, 0.476] | ||
nRCT | 0.384 | [−0.493, 1.261] | [−0.736, 1.504] | ||
Outcome domain | Speed | 0.361 * | [0.089, 0.633] | [−0.405, 1.127] | Qm(3) = 2.41, 0.491 |
Cycle | 0.221 * | [0.092, 0.349] | [0.092, 0.349] | ||
Magnitude | 0.326 * | [0.071, 0.582] | [−0.141, 0.794] | ||
Freezing of gait | 0.481 | [−0.682, 1.644] | [−2.280, 3.242] | ||
Variability | - (no convergence) | - | - |
Certainty Assessment | № of Patients | Effect | Certainty | Importance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
№ of Studies | Study Design | Risk of Bias | Inconsistency | Indirectness | Imprecision | Other Considerations | Vibration Therapy | Sham, Active Control, or Usual Care | Relative (95% CI) | Absolute (95% CI) | ||
RCT and RCO | ||||||||||||
11 | randomized trials | very serious | serious a | not serious | serious b | none | -/213 | -/214 | not estimable | ⨁◯◯◯ Very low a,b | IMPORTANT | |
Non RCT | ||||||||||||
3 | non-randomized studies | extremely seriousc | not serious | not serious | serious d | none | -/22 | -/22 | not estimable | ⨁◯◯◯ Very low c,d | IMPORTANT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seok, J.-W.; Park, S.-R. Effects of Whole-Body, Local, and Modality-Specific Vibration Therapy on Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Biomedicines 2025, 13, 2505. https://doi.org/10.3390/biomedicines13102505
Seok J-W, Park S-R. Effects of Whole-Body, Local, and Modality-Specific Vibration Therapy on Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Biomedicines. 2025; 13(10):2505. https://doi.org/10.3390/biomedicines13102505
Chicago/Turabian StyleSeok, Ji-Woo, and Se-Ra Park. 2025. "Effects of Whole-Body, Local, and Modality-Specific Vibration Therapy on Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis" Biomedicines 13, no. 10: 2505. https://doi.org/10.3390/biomedicines13102505
APA StyleSeok, J.-W., & Park, S.-R. (2025). Effects of Whole-Body, Local, and Modality-Specific Vibration Therapy on Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Biomedicines, 13(10), 2505. https://doi.org/10.3390/biomedicines13102505