α-Actinin-1 in Megakaryocytes: Its Structure, Interacting Proteins and Implications for Thrombopoiesis
Abstract
1. Introduction
2. Thrombopoiesis
3. The Role of α-Actinin-1 in MKs and Platelets
4. The Structure and Expression of α-Actinin-1
5. Proteins That Interact with α-Actinin-1
5.1. Integrin αIIbβ3 (Also Known as Glycoprotein GPIIb/IIIa)
5.2. Actin
5.3. C-Terminal LIM Domain Protein of 36 kDa (CLP36)
5.4. Integrins β2 and β1 and Integrin α5
5.5. Phospholipase D (PLD)
5.6. Mps One Binder Kinase Activator-like 1 (MOB1)
5.7. LATS6 Guanine–Nucleotide Exchange Factor, Cytohesin-2 (CYTH2)
5.8. The Exchange Factor for Arf6 (EFA6)
5.9. Ataxin-2 (Sca2)
5.10. L-Type Ca2+ Channel CaV1.2
5.11. Transient Receptor Potential (TRP) Polycystin 2 and 3
5.12. N-Methyl-D-aspartate (NMDA) Receptors
5.13. Metabotropic Glutamate Receptor Type 5b (mGlu5b) Receptor
5.14. Alström Syndrome Protein 1 (ALMS1)
5.15. Mitogen-Activated Protein Kinase Kinase Kinase 1 (MEKK1)
5.16. Oroxylin A (OA)
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ABD | Actin-binding domain |
| ABSs | Actin-binding sites |
| ADP | Adenosine diphosphate |
| ALMS1 | Alström syndrome protein 1 |
| ARF | ADP-ribosylation factor |
| ARNO | ARF nucleotide-binding site opener |
| BM | Bone marrow |
| CaM | Calmodulin-like |
| CaMD | Calmodulin-like domain |
| CaMKII | Ca2+/calmodulin-dependent kinase II |
| CD | Cluster of differentiation |
| CH | Calponin homology |
| CMTP | Congenital macrothrombocytopenia |
| CHO | Chinese hamster ovary |
| CYTH2 | Cytohesin-2 |
| DDX6 | DEAD-box helicase 6 |
| DMS | Demarcation membrane system |
| ECM | Extracellular matrix |
| EF | E-helix and F-helix |
| EFA6 | Exchange factor for Arf6 |
| FGF-4 | Fibroblast growth factor-4 |
| FN | Fibronectin |
| GEF | Guanine-nucleotide exchange factor |
| GP | Glycoprotein |
| HCC | Hepatocellular carcinoma |
| HSCs | Hematopoietic stem cells |
| IBS2 | Integrin-binding site 2 |
| ILK | Integrin-linked kinase |
| ITAM | Immunoreceptor tyrosine-based activation motif |
| MAPK | Mitogen-activated protein kinase |
| MDCK | Madin–Darby canine kidney |
| MEKK1 | Mitogen-activated protein kinase kinase kinase 1 |
| mGlu5b | Metabotropic glutamate receptor type 5b |
| MK | Megakaryocyte |
| MOB1 | Mps one binder kinase activator-like 1 |
| MPV | Mean platelet volume |
| MST | Mammalian ste20-like kinase |
| NMDA | N-methyl-D-aspartate |
| LATS | Large tumor suppressor kinase |
| OA | Oroxylin A |
| PABP | Poly(A)-binding protein |
| PAR1-AP | Protease-activated receptor 1-activating peptide |
| PC2 | Polycystin 2 |
| PF4 | Platelet factor 4 |
| PH | Pleckstrin homology |
| PKN | Protein kinase N |
| PKC | Protein kinase C |
| PLD | Phospholipase D |
| PMA | Phorbol myristate acetate |
| PMF | Primary myelofibrosis |
| p-TEFb | Positive transcription elongation factor b |
| SCA2 | Spinocerebellar ataxia type 2 |
| SDF-1α | Stromal cell-derived factor 1 α |
| SFKs | Src family kinases |
| shRNA | Short hairpin RNA |
| SLR | Spectrin-like repeat |
| SNPs | Single-nucleotide polymorphisms |
| SR | Spectrin repeat |
| Syk | Spleen tyrosine kinase |
| TPO | Thrombopoietin |
| TRP | Transient receptor potential |
| TRPP3 | Transient receptor potential polycystin 3 |
| TXA2 | Thromboxane A2 |
| VPS33B | Vacuolar protein sorting-associated protein 33B |
| YAP | Yes-associated protein |
| ZASP | Z-band alternatingly structured protein |
| TAZ | Transcriptional coactivator with PDZ-binding motif |
References
- Almazni, I.; Stapley, R.; Morgan, N.V. Inherited thrombocytopenia: Update on genes and genetic variants which may be associated with bleeding. Front. Cardiovasc. Med. 2019, 6, 80. [Google Scholar] [CrossRef]
- Marin-Quilez, A.; Sanchez-Fuentes, A.; Zamora-Canovas, A.; Gomez-Gonzalez, P.L.; Diaz-Ajenjo, L.; Benito, R.; Rodriguez-Alen, A.; Sevivas, T.; Murciano, T.; Murillo, L.; et al. Insights into the clinical, platelet and genetic landscape of inherited thrombocytopenia with malignancy risk. Br. J. Haematol. 2025. [Google Scholar] [CrossRef]
- Sadaf, A.; Ware, R.E. Microscope diagnosis of MYH9-related thrombocytopenia. Blood 2021, 138, 1000. [Google Scholar] [CrossRef]
- Vassallo, P.; Westbury, S.K.; Mumford, A.D. FLNA variants associated with disorders of platelet number or function. Platelets 2020, 31, 1097–1100. [Google Scholar] [CrossRef]
- Hou, Y.; Shao, L.; Zhou, H.; Liu, Y.; Fisk, D.G.; Spiteri, E.; Zehnder, J.L.; Peng, J.; Zhang, B.M.; Hou, M. Identification of a pathogenic TUBB1 variant in a Chinese family with congenital macrothrombocytopenia through whole genome sequencing. Platelets 2021, 32, 1108–1112. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, J.; Wei, M.; Singh, S.; Nikuze, L.; Huang, L.; Li, Y.; Jiang, J.; Wei, H. Clinical and molecular characteristics of Wiskott-Aldrich Syndrome in five unrelated Chinese families. Scand. J. Immunol. 2022, 95, e13115. [Google Scholar] [CrossRef]
- Karki, N.R.; Ajebo, G.; Savage, N.; Kutlar, A. DIAPH1 mutation as a novel cause of autosomal dominant macrothrombocytopenia and hearing Loss. Acta Haematol. 2021, 144, 91–94. [Google Scholar] [CrossRef]
- Marin-Quilez, A.; Vuelta, E.; Diaz-Ajenjo, L.; Fernandez-Infante, C.; Garcia-Tunon, I.; Benito, R.; Palma-Barqueros, V.; Hernandez-Rivas, J.M.; Gonzalez-Porras, J.R.; Rivera, J.; et al. A novel nonsense variant in TPM4 caused dominant macrothrombocytopenia, mild bleeding tendency and disrupted cytoskeleton remodeling. J. Thromb. Haemost. 2022, 20, 1248–1255. [Google Scholar] [CrossRef]
- O’Sullivan, L.R.; Cahill, M.R.; Young, P.W. The importance of α-actinin proteins in platelet formation and function, and their causative role in congenital macrothrombocytopenia. Int. J. Mol. Sci. 2021, 22, 9363. [Google Scholar] [CrossRef]
- Stritt, S.; Nurden, P.; Favier, R.; Favier, M.; Ferioli, S.; Gotru, S.K.; van Eeuwijk, J.M.; Schulze, H.; Nurden, A.T.; Lambert, M.P.; et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture. Nat. Commun. 2016, 7, 11097. [Google Scholar] [CrossRef]
- Leinoe, E.; Brons, N.; Rasmussen, A.O.; Gabrielaite, M.; Zaninetti, C.; Palankar, R.; Zetterberg, E.; Rosthoj, S.; Ostrowski, S.R.; Rossing, M. The Copenhagen founder variant GP1BA c.58T>G is the most frequent cause of inherited thrombocytopenia in Denmark. J. Thromb. Haemost. 2021, 19, 2884–2892. [Google Scholar] [CrossRef]
- Sivapalaratnam, S.; Westbury, S.K.; Stephens, J.C.; Greene, D.; Downes, K.; Kelly, A.M.; Lentaigne, C.; Astle, W.J.; Huizinga, E.G.; Nurden, P.; et al. Rare variants in GP1BB are responsible for autosomal dominant macrothrombocytopenia. Blood 2017, 129, 520–524. [Google Scholar] [CrossRef]
- Lin, Q.; Zhou, R.; Meng, P.; Wu, L.; Yang, L.; Liu, W.; Wu, J.; Cheng, Y.; Shi, L.; Zhang, Y. Establishment of a Bernard-Soulier syndrome model in zebrafish. Haematologica 2022, 107, 1655–1668. [Google Scholar] [CrossRef]
- Morais, S.; Oliveira, J.; Lau, C.; Pereira, M.; Goncalves, M.; Monteiro, C.; Goncalves, A.R.; Matos, R.; Sampaio, M.; Cruz, E.; et al. αIIbβ3 variants in ten families with autosomal dominant macrothrombocytopenia: Expanding the mutational and clinical spectrum. PLoS ONE 2020, 15, e0235136. [Google Scholar] [CrossRef]
- Al Rimon, R.; Sayem, M.; Alam, S.; Al Saba, A.; Sanyal, M.; Amin, M.R.; Kabir, A.; Chakraborty, S.; Nabi, A. The polymorphic landscape analysis of GATA1 exons uncovered the genetic variants associated with higher thrombocytopenia in dengue patients. PLoS Negl. Trop. Dis. 2022, 16, e0010537. [Google Scholar] [CrossRef]
- Al-Abboh, H.; Zahra, A.; Adekile, A. A novel MECOM variant associated with congenital amegakaryocytic thrombocytopenia and radioulnar synostosis. Pediatr. Blood Cancer 2022, 69, e29761. [Google Scholar] [CrossRef]
- Vo, K.K.; Jarocha, D.J.; Lyde, R.B.; Hayes, V.; Thom, C.S.; Sullivan, S.K.; French, D.L.; Poncz, M. FLI1 level during megakaryopoiesis affects thrombopoiesis and platelet biology. Blood 2017, 129, 3486–3494. [Google Scholar] [CrossRef]
- Borst, S.; Nations, C.C.; Klein, J.G.; Pavani, G.; Maguire, J.A.; Camire, R.M.; Drazer, M.W.; Godley, L.A.; French, D.L.; Poncz, M.; et al. Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model. Stem Cell Rep. 2021, 16, 1458–1467. [Google Scholar] [CrossRef]
- Horvat-Switzer, R.D.; Thompson, A.A. HOXA11 mutation in amegakaryocytic thrombocytopenia with radio-ulnar synostosis syndrome inhibits megakaryocytic differentiation in vitro. Blood Cells Mol. Dis. 2006, 37, 55–63. [Google Scholar] [CrossRef]
- Faleschini, M.; Ammeti, D.; Papa, N.; Alfano, C.; Bottega, R.; Fontana, G.; Capaci, V.; Zanchetta, M.E.; Pozzani, F.; Montanari, F.; et al. ETV6-related thrombocytopenia: Dominant negative effect of mutations as common pathogenic mechanism. Haematologica 2022, 107, 2249–2254. [Google Scholar] [CrossRef]
- Faleschini, M.; Papa, N.; Morel-Kopp, M.C.; Marconi, C.; Giangregorio, T.; Melazzini, F.; Bozzi, V.; Seri, M.; Noris, P.; Pecci, A.; et al. Dysregulation of oncogenic factors by GFI1B p32: Investigation of a novel GFI1B germline mutation. Haematologica 2022, 107, 260–267. [Google Scholar] [CrossRef]
- Riley, R.; Khan, A.; Pai, S.; Warmke, L.; Winkler, M.; Gunning, W. A case of chronic thrombocytopenia in a 17-year-old female. Lab. Med. 2019, 50, 406–420. [Google Scholar] [CrossRef]
- Stapley, R.J.; Pisareva, V.P.; Pisarev, A.V.; Morgan, N.V. SLFN14 gene mutations associated with bleeding. Platelets 2020, 31, 407–410. [Google Scholar] [CrossRef]
- Cornish, N.; Aungraheeta, M.R.; FitzGibbon, L.; Burley, K.; Alibhai, D.; Collins, J.; Greene, D.; Downes, K.; BioResource, N.; Westbury, S.K.; et al. Monoallelic loss-of-function THPO variants cause heritable thrombocytopenia. Blood Adv. 2020, 4, 920–924. [Google Scholar] [CrossRef]
- Yang, L.; Wu, L.; Meng, P.; Zhang, X.; Zhao, D.; Lin, Q.; Zhang, Y. Generation of a thrombopoietin-deficient thrombocytopenia model in zebrafish. J. Thromb. Haemost. 2022, 20, 1900–1909. [Google Scholar] [CrossRef]
- Levin, C.; Koren, A.; Pretorius, E.; Rosenberg, N.; Shenkman, B.; Hauschner, H.; Zalman, L.; Khayat, M.; Salama, I.; Elpeleg, O.; et al. Deleterious mutation in the FYB gene is associated with congenital autosomal recessive small-platelet thrombocytopenia. J. Thromb. Haemost. 2015, 13, 1285–1292. [Google Scholar] [CrossRef]
- Marklin, M.; Tandler, C.; Kopp, H.G.; Hoehn, K.L.; Quintanilla-Martinez, L.; Borst, O.; Muller, M.R.; Saur, S.J. C-Cbl regulates c-MPL receptor trafficking and its internalization. J. Cell. Mol. Med. 2020, 24, 12491–12503. [Google Scholar] [CrossRef]
- Palma-Barqueros, V.; Revilla, N.; Zaninetti, C.; Galera, A.M.; Sanchez-Fuentes, A.; Zamora-Canovas, A.; Bohdan, N.; Padilla, J.; Marin-Quilez, A.; Rodriguez-Alen, A.; et al. Src-related thrombocytopenia: A fine line between a megakaryocyte dysfunction and an immune-mediated disease. Blood Adv. 2022, 6, 5244–5255. [Google Scholar] [CrossRef]
- Boussion, S.; Escande, F.; Jourdain, A.S.; Smol, T.; Brunelle, P.; Duhamel, C.; Alembik, Y.; Attie-Bitach, T.; Baujat, G.; Bazin, A.; et al. TAR syndrome: Clinical and molecular characterization of a cohort of 26 patients and description of novel noncoding variants of RBM8A. Hum. Mutat. 2020, 41, 1220–1225. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Palmer, E.L.; Botero, J.P. ANKRD26-related thrombocytopenia and predisposition to myeloid neoplasms. Curr. Hematol. Malig. Rep. 2022, 17, 105–112. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, T.; Zhang, X.; Wang, J.; Chen, Y.; Long, Y.; Zhang, G.; Wang, Y.; Chen, Y.; Fang, T.; et al. Compound heterozygous mutations in ABCG5 or ABCG8 causing Chinese familial Sitosterolemia. J. Gene Med. 2020, 22, e3185. [Google Scholar] [CrossRef]
- Kunishima, S.; Okuno, Y.; Yoshida, K.; Shiraishi, Y.; Sanada, M.; Muramatsu, H.; Chiba, K.; Tanaka, H.; Miyazaki, K.; Sakai, M.; et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am. J. Hum. Genet. 2013, 92, 431–438. [Google Scholar] [CrossRef]
- O’Sullivan, L.R.; Ajaykumar, A.P.; Dembicka, K.M.; Murphy, A.; Grennan, E.P.; Young, P.W. Investigation of calmodulin-like and rod domain mutations suggests common molecular mechanism for α-actinin-1-linked congenital macrothrombocytopenia. FEBS Lett. 2020, 594, 161–174. [Google Scholar] [CrossRef]
- Gueguen, P.; Rouault, K.; Chen, J.M.; Raguenes, O.; Fichou, Y.; Hardy, E.; Gobin, E.; Pan-Petesch, B.; Kerbiriou, M.; Trouve, P.; et al. A missense mutation in the α-actinin 1 gene (ACTN1) is the cause of autosomal dominant macrothrombocytopenia in a large French family. PLoS ONE 2013, 8, e74728. [Google Scholar] [CrossRef]
- Bottega, R.; Marconi, C.; Faleschini, M.; Baj, G.; Cagioni, C.; Pecci, A.; Pippucci, T.; Ramenghi, U.; Pardini, S.; Ngu, L.; et al. ACTN1-related thrombocytopenia: Identification of novel families for phenotypic characterization. Blood 2015, 125, 869–872. [Google Scholar] [CrossRef]
- Yasutomi, M.; Kunishima, S.; Okazaki, S.; Tanizawa, A.; Tsuchida, S.; Ohshima, Y. ACTN1 rod domain mutation associated with congenital macrothrombocytopenia. Ann. Hematol. 2016, 95, 141–144. [Google Scholar] [CrossRef]
- Luo, F.M.; Fan, L.L.; Sheng, Y.; Dong, Y.; Liu, L. Case report: Exome sequencing identified a novel frameshift mutation of α-actin 1 in a chinese family with macrothrombocytopenia and mild bleeding. Front. Pediatr. 2021, 9, 679279. [Google Scholar] [CrossRef]
- Vincenot, A.; Saultier, P.; Kunishima, S.; Poggi, M.; Hurtaud-Roux, M.F.; Roussel, A.; Actn Study, C.; Schlegel, N.; Alessi, M.C. Novel ACTN1 variants in cases of thrombocytopenia. Hum. Mutat. 2019, 40, 2258–2269. [Google Scholar] [CrossRef]
- Zanchetta, M.E.; Barozzi, S.; Isidori, F.; Marconi, C.; Farinasso, L.; Bottega, R.; Savoia, A.; Pecci, A.; Faleschini, M. ACTN1-related thrombocytopenia: Homozygosity for an ACTN1 variant results in a more severe phenotype. Br. J. Haematol. 2024, 204, 2453–2457. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J. Hematol. Oncol. 2019, 12, 26. [Google Scholar] [CrossRef]
- Bhatlekar, S.; Manne, B.K.; Basak, I.; Edelstein, L.C.; Tugolukova, E.; Stoller, M.L.; Cody, M.J.; Morley, S.C.; Nagalla, S.; Weyrich, A.S.; et al. miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood 2020, 136, 1760–1772. [Google Scholar] [CrossRef] [PubMed]
- Bem, D.; Smith, H.; Banushi, B.; Burden, J.J.; White, I.J.; Hanley, J.; Jeremiah, N.; Rieux-Laucat, F.; Bettels, R.; Ariceta, G.; et al. VPS33B regulates protein sorting into and maturation of α-granule progenitor organelles in mouse megakaryocytes. Blood 2015, 126, 133–143. [Google Scholar] [CrossRef]
- Psaila, B.; Mead, A.J. Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation. Blood 2019, 133, 1427–1435. [Google Scholar] [CrossRef]
- Rodriguez-Fraticelli, A.E.; Wolock, S.L.; Weinreb, C.S.; Panero, R.; Patel, S.H.; Jankovic, M.; Sun, J.; Calogero, R.A.; Klein, A.M.; Camargo, F.D. Clonal analysis of lineage fate in native haematopoiesis. Nature 2018, 553, 212–216. [Google Scholar] [CrossRef]
- Wang, H.; He, J.; Xu, C.; Chen, X.; Yang, H.; Shi, S.; Liu, C.; Zeng, Y.; Wu, D.; Bai, Z.; et al. Decoding human megakaryocyte development. Cell Stem Cell 2021, 28, 535–549 e538. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Huang, S.; Ma, Z.; Lin, X.; Li, X.; Huang, X.; Wang, J.; Ye, W.; Li, Y.; He, D.; et al. Ibrutinib suppresses early megakaryopoiesis but enhances proplatelet formation. Thromb. Haemost. 2021, 121, 192–205. [Google Scholar] [CrossRef]
- Lefrancais, E.; Ortiz-Munoz, G.; Caudrillier, A.; Mallavia, B.; Liu, F.; Sayah, D.M.; Thornton, E.E.; Headley, M.B.; David, T.; Coughlin, S.R.; et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017, 544, 105–109. [Google Scholar] [CrossRef]
- Suraneni, P.K.; Corey, S.J.; Hession, M.J.; Ishaq, R.; Awomolo, A.; Hasan, S.; Shah, C.; Liu, H.; Wickrema, A.; Debili, N.; et al. Dynamins 2 and 3 control the migration of human megakaryocytes by regulating CXCR4 surface expression and ITGB1 activity. Blood Adv. 2018, 2, 3540–3552. [Google Scholar] [CrossRef]
- Lefrancais, E.; Looney, M.R. Platelet biogenesis in the lung circulation. Physiology 2019, 34, 392–401. [Google Scholar] [CrossRef]
- Mbiandjeu, S.; Balduini, A.; Malara, A. Megakaryocyte cytoskeletal proteins in platelet biogenesis and diseases. Thromb. Haemost. 2022, 122, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Stritt, S.; Beck, S.; Becker, I.C.; Vogtle, T.; Hakala, M.; Heinze, K.G.; Du, X.; Bender, M.; Braun, A.; Lappalainen, P.; et al. Twinfilin 2a regulates platelet reactivity and turnover in mice. Blood 2017, 130, 1746–1756. [Google Scholar] [CrossRef]
- Bender, M.; Eckly, A.; Hartwig, J.H.; Elvers, M.; Pleines, I.; Gupta, S.; Krohne, G.; Jeanclos, E.; Gohla, A.; Gurniak, C.; et al. ADF/n-cofilin-dependent actin turnover determines platelet formation and sizing. Blood 2010, 116, 1767–1775. [Google Scholar] [CrossRef]
- Rosa, J.P.; Raslova, H.; Bryckaert, M. Filamin A: Key actor in platelet biology. Blood 2019, 134, 1279–1288. [Google Scholar] [CrossRef]
- Fritz, D.I.; Ding, Y.; Merrill-Skoloff, G.; Flaumenhaft, R.; Hanada, T.; Chishti, A.H. Dematin regulates calcium mobilization, thrombosis, and early Akt activation in platelets. Mol. Cell. Biol. 2023, 43, 283–299. [Google Scholar] [CrossRef]
- Pal, K.; Nowak, R.; Billington, N.; Liu, R.; Ghosh, A.; Sellers, J.R.; Fowler, V.M. Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease. Blood 2020, 135, 1887–1898. [Google Scholar] [CrossRef]
- Englert, M.; Aurbach, K.; Becker, I.C.; Gerber, A.; Heib, T.; Wackerbarth, L.M.; Kusch, C.; Mott, K.; Araujo, G.H.M.; Baig, A.A.; et al. Impaired microtubule dynamics contribute to microthrombocytopenia in RhoB-deficient mice. Blood Adv. 2022, 6, 5184–5197. [Google Scholar] [CrossRef]
- Ghalloussi, D.; Dhenge, A.; Bergmeier, W. New insights into cytoskeletal remodeling during platelet production. J. Thromb. Haemost. 2019, 17, 1430–1439. [Google Scholar] [CrossRef]
- Leon, C.; Eckly, A.; Hechler, B.; Aleil, B.; Freund, M.; Ravanat, C.; Jourdain, M.; Nonne, C.; Weber, J.; Tiedt, R.; et al. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood 2007, 110, 3183–3191. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Naveiras, O.; Balduini, A.; Mammoto, A.; Conti, M.A.; Adelstein, R.S.; Ingber, D.; Daley, G.Q.; Shivdasani, R.A. The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood 2007, 110, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Nurden, P.; Debili, N.; Coupry, I.; Bryckaert, M.; Youlyouz-Marfak, I.; Sole, G.; Pons, A.C.; Berrou, E.; Adam, F.; Kauskot, A.; et al. Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood 2011, 118, 5928–5937. [Google Scholar] [CrossRef] [PubMed]
- Kunishima, S.; Nishimura, S.; Suzuki, H.; Imaizumi, M.; Saito, H. TUBB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrothrombocytopenia. Eur. J. Haematol. 2014, 92, 276–282. [Google Scholar] [CrossRef]
- Ingrungruanglert, P.; Amarinthnukrowh, P.; Rungsiwiwut, R.; Maneesri-le Grand, S.; Sosothikul, D.; Suphapeetiporn, K.; Israsena, N.; Shotelersuk, V. Wiskott-Aldrich syndrome iPS cells produce megakaryocytes with defects in cytoskeletal rearrangement and proplatelet formation. Thromb. Haemost. 2015, 113, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Stritt, S.; Nurden, P.; Turro, E.; Greene, D.; Jansen, S.B.; Westbury, S.K.; Petersen, R.; Astle, W.J.; Marlin, S.; Bariana, T.K.; et al. A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood 2016, 127, 2903–2914. [Google Scholar] [CrossRef]
- Pleines, I.; Woods, J.; Chappaz, S.; Kew, V.; Foad, N.; Ballester-Beltran, J.; Aurbach, K.; Lincetto, C.; Lane, R.M.; Schevzov, G.; et al. Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia. J. Clin. Investig. 2017, 127, 814–829. [Google Scholar] [CrossRef]
- Raslova, H.; Kauffmann, A.; Sekkai, D.; Ripoche, H.; Larbret, F.; Robert, T.; Tronik Le Roux, D.; Kroemer, G.; Debili, N.; Dessen, P.; et al. Interrelation between polyploidization and megakaryocyte differentiation: A gene profiling approach. Blood 2007, 109, 3225–3234. [Google Scholar] [CrossRef]
- Wu, J.Q.; Bahler, J.; Pringle, J.R. Roles of a fimbrin and an α-actinin-like protein in fission yeast cell polarization and cytokinesis. Mol. Biol. Cell 2001, 12, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Porter, M.E.; Pollard, T.D. α-actinin localization in the cleavage furrow during cytokinesis. J. Cell Biol. 1978, 79, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Elagib, K.E.; Rubinstein, J.D.; Delehanty, L.L.; Ngoh, V.S.; Greer, P.A.; Li, S.; Lee, J.K.; Li, Z.; Orkin, S.H.; Mihaylov, I.S.; et al. Calpain 2 activation of P-TEFb drives megakaryocyte morphogenesis and is disrupted by leukemogenic GATA1 mutation. Dev. Cell 2013, 27, 607–620. [Google Scholar] [CrossRef]
- Mukhina, S.; Wang, Y.L.; Murata-Hori, M. α-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev. Cell 2007, 13, 554–565. [Google Scholar] [CrossRef]
- Feng, S.; Resendiz, J.C.; Christodoulides, N.; Lu, X.; Arboleda, D.; Berndt, M.C.; Kroll, M.H. Pathological shear stress stimulates the tyrosine phosphorylation of α-actinin associated with the glycoprotein Ib-IX complex. Biochemistry 2002, 41, 1100–1108. [Google Scholar] [CrossRef]
- Poulter, N.S.; Pollitt, A.Y.; Davies, A.; Malinova, D.; Nash, G.B.; Hannon, M.J.; Pikramenou, Z.; Rappoport, J.Z.; Hartwig, J.H.; Owen, D.M.; et al. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat. Commun. 2015, 6, 7254. [Google Scholar] [CrossRef]
- Lin, X.; Gao, H.; Xin, M.; Huang, J.; Li, X.; Zhou, Y.; Lv, K.; Huang, X.; Wang, J.; Zhou, Y.; et al. α-Actinin-1 deficiency in megakaryocytes causes low platelet count, platelet dysfunction, and mitochondrial impairment. Blood Adv. 2025, 9, 1185–1201. [Google Scholar] [CrossRef]
- Noureddine, M.; Mikolajek, H.; Morgan, N.V.; Denning, C.; Loughna, S.; Gehmlich, K.; Mohammed, F. Structural and functional insights into α-actinin isoforms and their implications in cardiovascular disease. J. Gen. Physiol. 2025, 157, e202413684. [Google Scholar] [CrossRef]
- Pinotsis, N.; Zielinska, K.; Babuta, M.; Arolas, J.L.; Kostan, J.; Khan, M.B.; Schreiner, C.; Salmazo, A.; Ciccarelli, L.; Puchinger, M.; et al. Calcium modulates the domain flexibility and function of an α-actinin similar to the ancestral α-actinin. Proc. Natl. Acad. Sci. USA 2020, 117, 22101–22112. [Google Scholar] [CrossRef]
- Sjoblom, B.; Salmazo, A.; Djinovic-Carugo, K. α-Actinin structure and regulation. Cell. Mol. Life Sci. 2008, 65, 2688–2701. [Google Scholar] [CrossRef]
- Murphy, A.C.; Lindsay, A.J.; McCaffrey, M.W.; Djinovic-Carugo, K.; Young, P.W. Congenital macrothrombocytopenia-linked mutations in the actin-binding domain of α-actinin-1 enhance F-actin association. FEBS Lett. 2016, 590, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.C.; Young, P.W. The actinin family of actin cross-linking proteins—A genetic perspective. Cell Biosci. 2015, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Westbury, S.K.; Shoemark, D.K.; Mumford, A.D. ACTN1 variants associated with thrombocytopenia. Platelets 2017, 28, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Izdebska, M.; Zielinska, W.; Halas-Wisniewska, M.; Grzanka, A. Involvement of actin and actin-binding proteins in carcinogenesis. Cells 2020, 9, 2245. [Google Scholar] [CrossRef]
- Oikonomou, K.G.; Zachou, K.; Dalekos, G.N. α-Actinin: A multidisciplinary protein with important role in B-cell driven autoimmunity. Autoimmun Rev. 2011, 10, 389–396. [Google Scholar] [CrossRef]
- Otey, C.A.; Vasquez, G.B.; Burridge, K.; Erickson, B.W. Mapping of the α-actinin binding site within the β1 integrin cytoplasmic domain. J. Biol. Chem. 1993, 268, 21193–21197. [Google Scholar] [CrossRef]
- Roca-Cusachs, P.; del Rio, A.; Puklin-Faucher, E.; Gauthier, N.C.; Biais, N.; Sheetz, M.P. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc. Natl. Acad. Sci. USA 2013, 110, E1361–E1370. [Google Scholar] [CrossRef]
- Wang, R.; Gao, Y.; Zhang, H. ACTN1 interacts with ITGA5 to promote cell proliferation, invasion and epithelial-mesenchymal transformation in head and neck squamous cell carcinoma. Iran. J. Basic Med. Sci. 2023, 26, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Collin, G.B.; Marshall, J.D.; King, B.L.; Milan, G.; Maffei, P.; Jagger, D.J.; Naggert, J.K. The Alstrom syndrome protein, ALMS1, interacts with α-actinin and components of the endosome recycling pathway. PLoS ONE 2012, 7, e37925. [Google Scholar] [CrossRef]
- Reinhard, M.; Zumbrunn, J.; Jaquemar, D.; Kuhn, M.; Walter, U.; Trueb, B. An α-actinin binding site of zyxin is essential for subcellular zyxin localization and α-actinin recruitment. J. Biol. Chem. 1999, 274, 13410–13418. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.; Kratzer, M.; Otte, M.; de Quintana, K.L.; Hagmann, J.; Arnold, G.J.; Eckerskorn, C.; Lottspeich, F.; Siess, W. Human CLP36, a PDZ-domain and LIM-domain protein, binds to α-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 2000, 96, 4236–4245. [Google Scholar] [CrossRef] [PubMed]
- Eich, F.; Nonis, D.F.; Sen, N.-E.; Nowock, J.; Auburger, G. Ataxin-2 Binds α-Actinin-1. Preprints, 2019; 2019110399. [Google Scholar] [CrossRef]
- Merrill, M.A.; Malik, Z.; Akyol, Z.; Bartos, J.A.; Leonard, A.S.; Hudmon, A.; Shea, M.A.; Hell, J.W. Displacement of α-actinin from the NMDA receptor NR1 C0 domain By Ca2+/calmodulin promotes CaMKII binding. Biochemistry 2007, 46, 8485–8497. [Google Scholar] [CrossRef]
- Jahan, F.; Madhavan, S.; Rolova, T.; Viazmina, L.; Gronholm, M.; Gahmberg, C.G. Phosphorylation of the α-chain in the integrin LFA-1 enables β2-chain phosphorylation and α-actinin binding required for cell adhesion. J. Biol. Chem. 2018, 293, 12318–12330. [Google Scholar] [CrossRef]
- Stanley, P.; Smith, A.; McDowall, A.; Nicol, A.; Zicha, D.; Hogg, N. Intermediate-affinity LFA-1 binds α-actinin-1 to control migration at the leading edge of the T cell. EMBO J. 2008, 27, 62–75. [Google Scholar] [CrossRef]
- Le, S.; Hu, X.; Yao, M.; Chen, H.; Yu, M.; Xu, X.; Nakazawa, N.; Margadant, F.M.; Sheetz, M.P.; Yan, J. Mechanotransmission and mechanosensing of human α-actinin 1. Cell Rep. 2017, 21, 2714–2723. [Google Scholar] [CrossRef]
- Iyer, S.S.; Kusner, D.J. Association of phospholipase D activity with the detergent-insoluble cytoskeleton of U937 promonocytic leukocytes. J. Biol. Chem. 1999, 274, 2350–2359. [Google Scholar] [CrossRef]
- Park, J.B.; Kim, J.H.; Kim, Y.; Ha, S.H.; Yoo, J.S.; Du, G.; Frohman, M.A.; Suh, P.G.; Ryu, S.H. Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by α-actinin in an ADP-ribosylation factor-reversible manner. J. Biol. Chem. 2000, 275, 21295–21301. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, X.W.; Zhang, A.J.; He, K. ACTN1 supports tumor growth by inhibiting Hippo signaling in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 23. [Google Scholar] [CrossRef]
- Torii, T.; Miyamoto, Y.; Nakamura, K.; Maeda, M.; Yamauchi, J.; Tanoue, A. Arf6 guanine-nucleotide exchange factor, cytohesin-2, interacts with actinin-1 to regulate neurite extension. Cell Signal. 2012, 24, 1872–1882. [Google Scholar] [CrossRef]
- Milanini, J.; Fayad, R.; Partisani, M.; Lecine, P.; Borg, J.P.; Franco, M.; Luton, F. EFA6 proteins regulate lumen formation through α-actinin 1. J. Cell Sci. 2018, 131, jcs209361. [Google Scholar] [CrossRef]
- Turner, M.; Anderson, D.E.; Bartels, P.; Nieves-Cintron, M.; Coleman, A.M.; Henderson, P.B.; Man, K.N.M.; Tseng, P.Y.; Yarov-Yarovoy, V.; Bers, D.M.; et al. α-Actinin-1 promotes activity of the L-type Ca2+ channel Cav1.2. EMBO J. 2020, 39, e102622. [Google Scholar] [CrossRef]
- Li, Q.; Montalbetti, N.; Shen, P.Y.; Dai, X.Q.; Cheeseman, C.I.; Karpinski, E.; Wu, G.; Cantiello, H.F.; Chen, X.Z. α-Actinin associates with polycystin-2 and regulates its channel activity. Hum. Mol. Genet. 2005, 14, 1587–1603. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Dai, X.Q.; Shen, P.Y.; Wu, Y.; Long, W.; Chen, C.X.; Hussain, Z.; Wang, S.; Chen, X.Z. Direct binding of α-actinin enhances TRPP3 channel activity. J. Neurochem. 2007, 103, 2391–2400. [Google Scholar] [CrossRef] [PubMed]
- Cabello, N.; Remelli, R.; Canela, L.; Soriguera, A.; Mallol, J.; Canela, E.I.; Robbins, M.J.; Lluis, C.; Franco, R.; McIlhinney, R.A.; et al. Actin-binding protein α-actinin-1 interacts with the metabotropic glutamate receptor type 5b and modulates the cell surface expression and function of the receptor. J. Biol. Chem. 2007, 282, 12143–12153. [Google Scholar] [CrossRef] [PubMed]
- Christerson, L.B.; Vanderbilt, C.A.; Cobb, M.H. MEKK1 interacts with α-actinin and localizes to stress fibers and focal adhesions. Cell Motil. 1999, 43, 186–198. [Google Scholar] [CrossRef]
- Cao, Y.; Cao, W.; Qiu, Y.; Zhou, Y.; Guo, Q.; Gao, Y.; Lu, N. Oroxylin A suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis. Pharmacol. Res. 2020, 159, 104981. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Durrant, T.N.; van den Bosch, M.T.; Hers, I. Integrin αIIbβ3 outside-in signaling. Blood 2017, 130, 1607–1619. [Google Scholar] [CrossRef]
- Antenucci, L.; Hytonen, V.P.; Ylanne, J. Phosphorylated immunoreceptor tyrosine-based activation motifs and integrin cytoplasmic domains activate spleen tyrosine kinase via distinct mechanisms. J. Biol. Chem. 2018, 293, 4591–4602. [Google Scholar] [CrossRef]
- Bury, L.; Malara, A.; Gresele, P.; Balduini, A. Outside-in signalling generated by a constitutively activated integrin αIIbβ3 impairs proplatelet formation in human megakaryocytes. PLoS ONE 2012, 7, e34449. [Google Scholar] [CrossRef]
- Bennett, J.S. Structure and function of the platelet integrin αIIbβ3. J. Clin. Investig. 2005, 115, 3363–3369. [Google Scholar] [CrossRef]
- Coller, B.S. αIIbβ3: Structure and function. J. Thromb. Haemost. 2015, 13 (Suppl. S1), S17–S25. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, Y.; Xi, X.; Kieffer, N. Recent advances in the understanding of the molecular mechanisms regulating platelet integrin αIIbβ3 activation. Protein Cell 2010, 1, 627–637. [Google Scholar] [CrossRef]
- Xin, H.; Huang, J.; Song, Z.; Mao, J.; Xi, X.; Shi, X. Structure, signal transduction, activation, and inhibition of integrin αIIbβ3. Thromb. J. 2023, 21, 18. [Google Scholar] [CrossRef]
- Deshmukh, L.; Gorbatyuk, V.; Vinogradova, O. Integrin β3 phosphorylation dictates its complex with the Shc phosphotyrosine-binding (PTB) domain. J. Biol. Chem. 2010, 285, 34875–34884. [Google Scholar] [CrossRef] [PubMed]
- Gahmberg, C.G.; Gronholm, M.; Uotila, L.M. Regulation of integrin activity by phosphorylation. Adv. Exp. Med. Biol. 2014, 819, 85–96. [Google Scholar] [PubMed]
- Kirk, R.I.; Sanderson, M.R.; Lerea, K.M. Threonine phosphorylation of the β3 integrin cytoplasmic tail, at a site recognized by PDK1 and Akt/PKB in vitro, regulates Shc binding. J. Biol. Chem. 2000, 275, 30901–30906. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, G.; Ye, S.; Zhang, R.; Huang, C.; Liu, J.; Tao, M.; Ruan, C.; Smyth, S.S.; Whiteheart, S.W.; et al. Characterization of a novel integrin binding protein, VPS33B, which is important for platelet activation and in vivo thrombosis and hemostasis. Circulation 2015, 132, 2334–2344. [Google Scholar] [CrossRef]
- Rodius, S.; Chaloin, O.; Moes, M.; Schaffner-Reckinger, E.; Landrieu, I.; Lippens, G.; Lin, M.; Zhang, J.; Kieffer, N. The talin rod IBS2 α-helix interacts with the β3 integrin cytoplasmic tail membrane-proximal helix by establishing charge complementary salt bridges. J. Biol. Chem. 2008, 283, 24212–24223. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Shi, X.; Xi, W.; Liu, P.; Long, Z.; Xi, X. Evaluation of targeting c-Src by the RGT-containing peptide as a novel antithrombotic strategy. J. Hematol. Oncol. 2015, 8, 62. [Google Scholar] [CrossRef]
- Su, X.; Mi, J.; Yan, J.; Flevaris, P.; Lu, Y.; Liu, H.; Ruan, Z.; Wang, X.; Kieffer, N.; Chen, S.; et al. RGT, a synthetic peptide corresponding to the integrin β3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin αIIbβ3 with Src kinase. Blood 2008, 112, 592–602. [Google Scholar] [CrossRef]
- Gong, H.; Shen, B.; Flevaris, P.; Chow, C.; Lam, S.C.; Voyno-Yasenetskaya, T.A.; Kozasa, T.; Du, X. G protein subunit Gα13 binds to integrin αIIbβ3 and mediates integrin “outside-in” signaling. Science 2010, 327, 340–343. [Google Scholar] [CrossRef]
- Shen, B.; Zhao, X.; O’Brien, K.A.; Stojanovic-Terpo, A.; Delaney, M.K.; Kim, K.; Cho, J.; Lam, S.C.; Du, X. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 2013, 503, 131–135. [Google Scholar] [CrossRef]
- Honda, S.; Shirotani-Ikejima, H.; Tadokoro, S.; Maeda, Y.; Kinoshita, T.; Tomiyama, Y.; Miyata, T. Integrin-linked kinase associated with integrin activation. Blood 2009, 113, 5304–5313. [Google Scholar] [CrossRef]
- Eigenthaler, M.; Hofferer, L.; Shattil, S.J.; Ginsberg, M.H. A conserved sequence motif in the integrin β3 cytoplasmic domain is required for its specific interaction with β3-endonexin. J. Biol. Chem. 1997, 272, 7693–7698. [Google Scholar] [CrossRef]
- Goult, B.T.; Bouaouina, M.; Elliott, P.R.; Bate, N.; Patel, B.; Gingras, A.R.; Grossmann, J.G.; Roberts, G.C.; Calderwood, D.A.; Critchley, D.R.; et al. Structure of a double ubiquitin-like domain in the talin head: A role in integrin activation. EMBO J. 2010, 29, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Harburger, D.S.; Bouaouina, M.; Calderwood, D.A. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J. Biol. Chem. 2009, 284, 11485–11497. [Google Scholar] [CrossRef] [PubMed]
- Legate, K.R.; Fassler, R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J. Cell Sci. 2009, 122, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.; Gilmore, A.; Burridge, K.; Gidwitz, S.; White, G.C., II. Integrin-mediated activation of focal adhesion kinase is independent of focal adhesion formation or integrin activation. Studies with activated and inhibitory β3 cytoplasmic domain mutants. J. Biol. Chem. 1997, 272, 22538–22547. [Google Scholar]
- Tadokoro, S.; Nakazawa, T.; Kamae, T.; Kiyomizu, K.; Kashiwagi, H.; Honda, S.; Kanakura, Y.; Tomiyama, Y. A potential role for α-actinin in inside-out αIIbβ3 signaling. Blood 2011, 117, 250–258. [Google Scholar]
- Feng, S.; Lu, X.; Resendiz, J.C.; Kroll, M.H. Pathological shear stress directly regulates platelet αIIbβ3 signaling. Am. J. Physiol. Cell Physiol. 2006, 291, C1346–C1354. [Google Scholar] [CrossRef]
- Shams, H.; Mofrad, M.R.K. α-Actinin induces a kink in the transmembrane domain of β3-integrin and impairs activation via talin. Biophys. J. 2017, 113, 948–956. [Google Scholar] [CrossRef]
- Yan, B.; Calderwood, D.A.; Yaspan, B.; Ginsberg, M.H. Calpain cleavage promotes talin binding to the β3 integrin cytoplasmic domain. J. Biol. Chem. 2001, 276, 28164–28170. [Google Scholar] [CrossRef]
- Critchley, D.R.; Gingras, A.R. Talin at a glance. J. Cell Sci. 2008, 121, 1345–1347. [Google Scholar] [CrossRef]
- Favier, M.; Bordet, J.C.; Favier, R.; Gkalea, V.; Pillois, X.; Rameau, P.; Debili, N.; Alessi, M.C.; Nurden, P.; Raslova, H.; et al. Mutations of the integrin αIIbβ3 intracytoplasmic salt bridge cause macrothrombocytopenia and enlarged platelet α-granules. Am. J. Hematol. 2018, 93, 195–204. [Google Scholar] [CrossRef]
- Ghevaert, C.; Salsmann, A.; Watkins, N.A.; Schaffner-Reckinger, E.; Rankin, A.; Garner, S.F.; Stephens, J.; Smith, G.A.; Debili, N.; Vainchenker, W.; et al. A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the αIIbβ3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia. Blood 2008, 111, 3407–3414. [Google Scholar] [CrossRef]
- Kunishima, S.; Kashiwagi, H.; Otsu, M.; Takayama, N.; Eto, K.; Onodera, M.; Miyajima, Y.; Takamatsu, Y.; Suzumiya, J.; Matsubara, K.; et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the αIIbβ3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood 2011, 117, 5479–5484. [Google Scholar] [CrossRef] [PubMed]
- Pillois, X.; Guy, A.; Choquet, E.; James, C.; Tuffigo, M.; Viallard, J.F.; Garcia, C.; Bordet, J.C.; Jandrot-Perrus, M.; Payrastre, B.; et al. First description of an IgM monoclonal antibody causing αIIbβ3 integrin activation and acquired Glanzmann thrombasthenia associated with macrothrombocytopenia. J. Thromb. Haemost. 2019, 17, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Donada, A.; Balayn, N.; Sliwa, D.; Lordier, L.; Ceglia, V.; Baschieri, F.; Goizet, C.; Favier, R.; Tosca, L.; Tachdjian, G.; et al. Disrupted filamin A/αIIbβ3 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood 2019, 133, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Molina-Ortiz, P.; Polizzi, S.; Ramery, E.; Gayral, S.; Delierneux, C.; Oury, C.; Iwashita, S.; Schurmans, S. Rasa3 controls megakaryocyte Rap1 activation, integrin signaling and differentiation into proplatelet. PLoS Genet. 2014, 10, e1004420. [Google Scholar] [CrossRef]
- Jarocha, D.; Vo, K.K.; Lyde, R.B.; Hayes, V.; Camire, R.M.; Poncz, M. Enhancing functional platelet release in vivo from in vitro-grown megakaryocytes using small molecule inhibitors. Blood Adv. 2018, 2, 597–606. [Google Scholar] [CrossRef]
- Franzot, G.; Sjoblom, B.; Gautel, M.; Djinovic Carugo, K. The crystal structure of the actin binding domain from α-actinin in its closed conformation: Structural insight into phospholipid regulation of α-actinin. J. Mol. Biol. 2005, 348, 151–165. [Google Scholar] [CrossRef]
- Yan, R.; Ge, X.; Pang, N.; Ye, H.; Yuan, L.; Cheng, B.; Zhou, K.; Yang, M.; Sun, Y.; Zhang, S.; et al. Essential role of zyxin in platelet biogenesis and glycoprotein Ib-IX surface expression. Cell Death Dis. 2021, 12, 955. [Google Scholar] [CrossRef]
- Sampath, R.; Gallagher, P.J.; Pavalko, F.M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. Activation-dependent regulation of associations with talin and α-actinin. J. Biol. Chem. 1998, 273, 33588–33594. [Google Scholar] [CrossRef]
- Pavalko, F.M.; LaRoche, S.M. Activation of human neutrophils induces an interaction between the integrin β2-subunit (CD18) and the actin binding protein α-actinin. J. Immunol. 1993, 151, 3795–3807. [Google Scholar] [CrossRef]
- Gahmberg, C.G.; Gronholm, M. How integrin phosphorylations regulate cell adhesion and signaling. Trends Biochem. Sci. 2022, 47, 265–278. [Google Scholar] [CrossRef]
- Fox, N.E.; Kaushansky, K. Engagement of integrin α4β1 enhances thrombopoietin-induced megakaryopoiesis. Exp. Hematol. 2005, 33, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, S.; Thompson, C.R.; Ng, S.K.; Ward, C.M.; Karagianni, A.; Mazzeo, C.; Malara, A.; Balduini, A.; Ravid, K. Adhesion to fibronectin via α5β1 integrin supports expansion of the megakaryocyte lineage in primary myelofibrosis. Blood 2020, 135, 2286–2291. [Google Scholar] [CrossRef]
- Mazzarini, M.; Verachi, P.; Martelli, F.; Migliaccio, A.R. Role of β1 integrin in thrombocytopoiesis. Fac. Rev. 2021, 10, 68. [Google Scholar] [CrossRef]
- Zou, Z.; Schmaier, A.A.; Cheng, L.; Mericko, P.; Dickeson, S.K.; Stricker, T.P.; Santoro, S.A.; Kahn, M.L. Negative regulation of activated α2 integrins during thrombopoiesis. Blood 2009, 113, 6428–6439. [Google Scholar] [CrossRef]
- Habart, D.; Cheli, Y.; Nugent, D.J.; Ruggeri, Z.M.; Kunicki, T.J. Conditional knockout of integrin α2β1 in murine megakaryocytes leads to reduced mean platelet volume. PLoS ONE 2013, 8, e55094. [Google Scholar] [CrossRef]
- Stritt, S.; Thielmann, I.; Dutting, S.; Stegner, D.; Nieswandt, B. Phospholipase D is a central regulator of collagen I-induced cytoskeletal rearrangement and podosome formation in megakaryocytes. J. Thromb. Haemost. 2014, 12, 1364–1371. [Google Scholar] [CrossRef]
- Bolomini-Vittori, M.; Mennens, S.F.B.; Joosten, B.; Fransen, J.; Du, G.; van den Dries, K.; Cambi, A. PLD-dependent phosphatidic acid microdomains are signaling platforms for podosome formation. Sci. Rep. 2019, 9, 3556. [Google Scholar] [CrossRef] [PubMed]
- Kam, Y.; Exton, J.H. Phospholipase D activity is required for actin stress fiber formation in fibroblasts. Mol. Cell. Biol. 2001, 21, 4055–4066. [Google Scholar] [CrossRef] [PubMed]
- Bolomini-Vittori, M.; Montresor, A.; Giagulli, C.; Staunton, D.; Rossi, B.; Martinello, M.; Constantin, G.; Laudanna, C. Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module. Nat. Immunol. 2009, 10, 185–194. [Google Scholar] [CrossRef]
- Chen, C.; Wang, N.; Zhang, X.; Fu, Y.; Zhong, Z.; Wu, H.; Wei, Y.; Duan, Y. Highly efficient generation of mature megakaryocytes and functional platelets from human embryonic stem cells. Stem Cell Res. Ther. 2024, 15, 454. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, L.; Li, X.; Xu, W.; Yang, S.; Song, J.; Zhang, W.; Zhan, J.; Luo, J.; Zhang, H. Oxidative stress-CBP axis modulates MOB1 acetylation and activates the Hippo signaling pathway. Nucleic Acids Res. 2022, 50, 3817–3834. [Google Scholar] [CrossRef]
- Lorthongpanich, C.; Jiamvoraphong, N.; Klaihmon, P.; Lueangamornnara, U.; U-Pratya, Y.; Laowtammathron, C.; Issaragrisil, S. Effect of YAP/TAZ on megakaryocyte differentiation and platelet production. Biosci. Rep. 2020, 40, BSR20201780. [Google Scholar] [CrossRef]
- Lorthongpanich, C.; Jiamvoraphong, N.; Supraditaporn, K.; Klaihmon, P.; U-Pratya, Y.; Issaragrisil, S. The Hippo pathway regulates human megakaryocytic differentiation. Thromb. Haemost. 2017, 117, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Florindo, C.; Perdigao, J.; Fesquet, D.; Schiebel, E.; Pines, J.; Tavares, A.A. Human Mob1 proteins are required for cytokinesis by controlling microtubule stability. J. Cell Sci. 2012, 125, 3085–3090. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.; Lawrence, M.; Guerrero, J.A.; Stritt, S.; Waller, A.K.; Yan, Y.; Mifsud, R.W.; Ballester-Beltran, J.; Baig, A.; Mueller, A.; et al. CRLF3 plays a key role in the final stage of platelet genesis and is a potential therapeutic target for thrombocythemia. Blood 2022, 139, 2227–2239. [Google Scholar] [CrossRef]
- Ito, H.; Morishita, R.; Noda, M.; Ishiguro, T.; Nishikawa, M.; Nagata, K.I. The synaptic scaffolding protein CNKSR2 interacts with CYTH2 to mediate hippocampal granule cell development. J. Biol. Chem. 2021, 297, 101427. [Google Scholar] [CrossRef]
- van den Bosch, M.T.; Poole, A.W.; Hers, I. Cytohesin-2 phosphorylation by protein kinase C relieves the constitutive suppression of platelet dense granule secretion by ADP-ribosylation factor 6. J. Thromb. Haemost. 2014, 12, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Nyman-Huttunen, H.; Tian, L.; Ning, L.; Gahmberg, C.G. α-Actinin-dependent cytoskeletal anchorage is important for ICAM-5-mediated neuritic outgrowth. J. Cell Sci. 2006, 119, 3057–3066. [Google Scholar]
- Derrien, V.; Couillault, C.; Franco, M.; Martineau, S.; Montcourrier, P.; Houlgatte, R.; Chavrier, P. A conserved C-terminal domain of EFA6-family ARF6-guanine nucleotide exchange factors induces lengthening of microvilli-like membrane protrusions. J. Cell Sci. 2002, 115, 2867–2879. [Google Scholar] [CrossRef]
- Franssen, E.H.; Zhao, R.R.; Koseki, H.; Kanamarlapudi, V.; Hoogenraad, C.C.; Eva, R.; Fawcett, J.W. Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. J. Neurosci. 2015, 35, 8359–8375. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ng, S.S.; Wang, J.; Lai, L.; Leung, S.Y.; Franco, M.; Peng, Y.; He, M.L.; Kung, H.F.; Lin, M.C. EFA6A enhances glioma cell invasion through ADP ribosylation factor 6/extracellular signal-regulated kinase signaling. Cancer Res. 2006, 66, 1583–1590. [Google Scholar]
- Chomphoo, S.; Sakagami, H.; Kondo, H.; Hipkaeo, W. Localization of EFA6A, an exchange factor for Arf6, in Z-lines and sarcoplasmic reticulum membranes in addition to myofilaments in I-domains of skeletal myofibers of peri-natal mice. Acta Histochem. 2024, 126, 152187. [Google Scholar]
- Ostrowski, L.A.; Hall, A.C.; Mekhail, K. Ataxin-2: From RNA control to human health and disease. Genes 2017, 8, 157. [Google Scholar] [CrossRef]
- Amado, D.A.; Robbins, A.B.; Whiteman, K.R.; Smith, A.R.; Chillon, G.; Chen, Y.; Fuller, J.A.; Patty, N.A.; Izda, A.; Cheng, C.; et al. AAV-based delivery of RNAi targeting ataxin-2 improves survival and pathology in TDP-43 mice. Nat. Commun. 2025, 16, 5334. [Google Scholar] [CrossRef] [PubMed]
- Yokoshi, M.; Li, Q.; Yamamoto, M.; Okada, H.; Suzuki, Y.; Kawahara, Y. Direct binding of Ataxin-2 to distinct elements in 3’ UTRs promotes mRNA stability and protein expression. Mol. Cell 2014, 55, 186–198. [Google Scholar] [CrossRef]
- Ochoa, E.; Iriondo, M.; Bielsa, A.; Ruiz-Irastorza, G.; Estonba, A.; Zubiaga, A.M. Thrombotic antiphospholipid syndrome shows strong haplotypic association with SH2B3-ATXN2 locus. PLoS ONE 2013, 8, e67897. [Google Scholar]
- Hansen, M.; Zeddies, S.; Meinders, M.; di Summa, F.; van Alphen, F.P.J.; Hoogendijk, A.J.; Moore, K.S.; Halbach, M.; Gutierrez, L.; van den Biggelaar, M.; et al. The RNA-binding protein ATXN2 is expressed during megakaryopoiesis and may control timing of gene expression. Int. J. Mol. Sci. 2020, 21, 967. [Google Scholar] [CrossRef]
- Gimona, M.; Djinovic-Carugo, K.; Kranewitter, W.J.; Winder, S.J. Functional plasticity of CH domains. FEBS Lett. 2002, 513, 98–106. [Google Scholar] [PubMed]
- Sjoblom, B.; Ylanne, J.; Djinovic-Carugo, K. Novel structural insights into F-actin-binding and novel functions of calponin homology domains. Curr. Opin. Struct. Biol. 2008, 18, 702–708. [Google Scholar] [CrossRef]
- Neu, C.T.; Gutschner, T.; Haemmerle, M. Post-transcriptional expression control in platelet biogenesis and function. Int. J. Mol. Sci. 2020, 21, 7614. [Google Scholar] [CrossRef]
- Matsui, M.; Bouchareb, R.; Storto, M.; Hussain, Y.; Gregg, A.; Marx, S.O.; Pitt, G.S. Increased Ca2+ influx through CaV1.2 drives aortic valve calcification. JCI Insight 2022, 7, e155569. [Google Scholar] [CrossRef]
- Backman, L. Calcium affinity of human α-actinin 1. PeerJ 2015, 3, e944. [Google Scholar] [CrossRef]
- Maruoka, N.D.; Steele, D.F.; Au, B.P.; Dan, P.; Zhang, X.; Moore, E.D.; Fedida, D. α-Actinin-2 couples to cardiac Kv1.5 channels, regulating current density and channel localization in HEK cells. FEBS Lett. 2000, 473, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yu, Z.; Wang, L.; Li, X.; Li, N.; Bai, Q.; Wang, Y.; Li, R.; Meng, Y.; Xu, H.; et al. Structural bases of inhibitory mechanism of Ca(V)1.2 channel inhibitors. Nat. Commun. 2024, 15, 2772. [Google Scholar] [CrossRef]
- Ajanel, A.; Andrianova, I.; Kowalczyk, M.; Menendez-Perez, J.; Bhatt, S.R.; Portier, I.; Boone, T.C.; Ballard-Kordeliski, A.; Kosaka, Y.; Chaudhuri, D.; et al. Mitochondrial Calcium Uniporter Regulates ITAM-Dependent Platelet Activation. Circ. Res. 2025, 137, 474–492. [Google Scholar] [CrossRef] [PubMed]
- Shehwar, D.; Barki, S.; Aliotta, A.; Calderara, D.B.; Veuthey, L.; Portela, C.P.; Alberio, L.; Alam, M.R. Platelets and mitochondria: The calcium connection. Mol. Biol. Rep. 2025, 52, 276. [Google Scholar] [CrossRef] [PubMed]
- Di Buduo, C.A.; Abbonante, V.; Marty, C.; Moccia, F.; Rumi, E.; Pietra, D.; Soprano, P.M.; Lim, D.; Cattaneo, D.; Iurlo, A.; et al. Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood 2020, 135, 133–144. [Google Scholar] [CrossRef]
- Yashiro, K.; Philpot, B.D. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008, 55, 1081–1094. [Google Scholar] [CrossRef]
- Genever, P.G.; Wilkinson, D.J.; Patton, A.J.; Peet, N.M.; Hong, Y.; Mathur, A.; Erusalimsky, J.D.; Skerry, T.M. Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes. Blood 1999, 93, 2876–2883. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, I.S.; Skerry, T.M.; Howard, M.R.; Genever, P.G. NMDA receptor-mediated regulation of human megakaryocytopoiesis. Blood 2003, 102, 1254–1259. [Google Scholar] [CrossRef]
- Hearn, J.I.; Green, T.N.; Hisey, C.L.; Bender, M.; Josefsson, E.C.; Knowlton, N.; Baumann, J.; Poulsen, R.C.; Bohlander, S.K.; Kalev-Zylinska, M.L. Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation. Blood 2022, 139, 2673–2690. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Pan, C.; Liu, Y.; Lei, M.; Guo, X.; Chen, Q.; Yang, X.; Ouyang, C.; Ren, Z. Functions of actin-binding proteins in cilia structure remodeling and signaling. Biol. Cell 2023, 115, e202300026. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.K.; Lee, I.C.; Bae, J.S. Antithrombotic activities of oroxylin A in vitro and in vivo. Arch. Pharm. Res. 2014, 37, 679–686. [Google Scholar] [CrossRef] [PubMed]


| Binding Partners | Experiments | Domain of α-Actinin-1 | References |
|---|---|---|---|
| Integrin β1 | Affinity chromatography, solid-phase binding, peptide-pin, and pull-down assays | Rod domain | [81,82] |
| Integrin β3 | Pull-down assays, immunoprecipitation | Spectrin-like repeats 1–2 | [82] |
| Integrin α5 | Coimmunoprecipitation | NA | [83] |
| Actin | Immunoprecipitation, | Actin-binding Domain | [81,82,84] |
| Zyxin | Blot overlay assays, solid phase binding assays | N-terminal domain | [85] |
| CLP36 | Coimmunoprecipitation, pull-down, and yeast two-hybrid | Spectrin-like repeats 2–3 | [86] |
| Ataxin-2 | GST-tag pull-down | Calponin homology domain | [87] |
| NMDA receptors | GST pull-down | Calmodulin domain | [88] |
| Binding Partners | Experiments | Domain of α-Actinin-1 | References |
|---|---|---|---|
| Integrin β2 | Solid phase binding assays, affinity chromatography experiments, and immunoprecipitation | Rod domain | [89,90] |
| Vinculin | Magnetic tweezers | Rod domain | [81,91] |
| PLD | PLD2 overlay assay, in vitro binding assay | N-terminal domain | [92,93] |
| MOB1 | Coimmunoprecipitation, immunofluorescence | NA | [94] |
| CYTH2 | Coimmunoprecipitation | EFh1 and EFh2 domains | [95] |
| EFA6 | Two-hybrid screen, GST pull-down | Spectrin-like repeats | [96] |
| CaV1.2 | NMR spectroscopy, fluorescence polarization assays, and cell surface biotinylation assays | EF3/4 domain | [97] |
| PC-2 and 3 | Yeast two-hybrid, coimmunoprecipitation, and in vitro binding assays | Spectrin-like repeats | [98,99] |
| mGlu5b receptor | Yeast two-hybrid, GST pull-down, and immunoprecipitation | 816–892 aa | [100] |
| ALMS1 | Yeast two-hybrid | Spectrin-like repeats, EF hand | [84] |
| MEKK1 | Yeast two-hybrid, immunoprecipitation | 371–892 aa | [101] |
| Oroxylin A | Cellular thermal shift assay, drug affinity responsive target stability, and molecular docking | Calponin homology domain | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Song, Z.; Zhou, Y.; Huang, J.; Huang, X. α-Actinin-1 in Megakaryocytes: Its Structure, Interacting Proteins and Implications for Thrombopoiesis. Biomedicines 2025, 13, 2479. https://doi.org/10.3390/biomedicines13102479
Wu L, Song Z, Zhou Y, Huang J, Huang X. α-Actinin-1 in Megakaryocytes: Its Structure, Interacting Proteins and Implications for Thrombopoiesis. Biomedicines. 2025; 13(10):2479. https://doi.org/10.3390/biomedicines13102479
Chicago/Turabian StyleWu, Lanlan, Zhiqun Song, Yulan Zhou, Jiansong Huang, and Xiaoxia Huang. 2025. "α-Actinin-1 in Megakaryocytes: Its Structure, Interacting Proteins and Implications for Thrombopoiesis" Biomedicines 13, no. 10: 2479. https://doi.org/10.3390/biomedicines13102479
APA StyleWu, L., Song, Z., Zhou, Y., Huang, J., & Huang, X. (2025). α-Actinin-1 in Megakaryocytes: Its Structure, Interacting Proteins and Implications for Thrombopoiesis. Biomedicines, 13(10), 2479. https://doi.org/10.3390/biomedicines13102479

