Prolonged 3.5 GHz and 24 GHz RF-EMF Exposure Alters Testicular Immune Balance, Apoptotic Gene Expression, and Sperm Function in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Exposure Setup
2.1.1. Animal
2.1.2. Exposure Experimental Setup
2.2. Measurement of the Testicular Inflammatory Cytokines
2.3. Testicular Apoptosis Markers by Quantitative Polymerase Chain Reaction (qPCR)
2.4. Evaluation of Sperm Quality
2.5. Statistical Analysis
3. Results
3.1. Expression Level of IL-10, IL-6, IL-1β, and TNF-α
3.2. mRNA Expression of Tp53, Bcl2, Bax, and Casp3
3.3. Sperm Concentration, Motility, and Viability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, L.; Yao, C.; Wang, H.; Dong, J.; Zhang, J.; Xu, X.; Wang, H.; Yao, B.; Ren, K.; Sun, L.; et al. Immune Responses to Multi-Frequencies of 1.5 GHz and 4.3 GHz Microwave Exposure in Rats: Transcriptomic and Proteomic Analysis. Int. J. Mol. Sci. 2022, 23, 6949. [Google Scholar] [CrossRef]
- Zhou, G.Q.; Wang, X.; Gao, P.; Qin, T.Z.; Guo, L.; Zhang, Z.W.; Huang, Z.F.; Lin, J.J.; Jing, Y.T.; Wang, H.N.; et al. Intestinal microbiota via NLRP3 inflammasome dependent neuronal pyroptosis mediates anxiety-like behaviour in mice exposed to 3.5 GHz radiofrequency radiation. Sci. Total Environ. 2024, 927, 172391. [Google Scholar] [CrossRef]
- Canovi, A.; Orlacchio, R.; Poulletier de Gannes, F.; Lévêque, P.; Arnaud-Cormos, D.; Lagroye, I.; Garenne, A.; Percherancier, Y.; Lewis, N. In vitro exposure of neuronal networks to the 5G-3.5 GHz signal. Front. Public Health 2023, 11, 1231360. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.R.; Chou, C.K.; Omar, A. Health Aspects of Millimeter-Wave Exposures in 5G and Beyond: Millimeter Waves and Health. IEEE Microw. Mag. 2025, 26, 70–82. [Google Scholar] [CrossRef]
- Taguchi, K.; Kodera, S.; Hirata, A.; Kashiwa, T. Computation of Absorbed Power Densities in High-Resolution Head Models by Considering Skin Thickness in Quasi-Millimeter and Millimeter Wave Bands. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 516–523. [Google Scholar] [CrossRef]
- Innamorati, G.; Benassi, B.; Consales, C. Electromagnetic Fields Redox Signaling Modulation in Brain. In Environmental Stressors and OxInflammatory Tissue Responses; CRC Press: Boca Raton, FL, USA, 2023; pp. 235–247. [Google Scholar]
- Kesari, K.K.; Kumar, S.; Behari, J. 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn. Biol. Med. 2011, 30, 219–234. [Google Scholar] [CrossRef]
- Schuermann, D.; Mevissen, M. Manmade electromagnetic fields and oxidative stress—Biological effects and consequences for health. Int. J. Mol. Sci. 2021, 22, 3772. [Google Scholar] [CrossRef]
- Gautam, R.; Jha, N.; Tomar, A.K.; Nirala, J.P.; Arora, T.; Rajamani, P. Oxidative stress and testicular damage induced by chronic exposure to 35.5 GHz millimeter wave radiation in male Wistar rats. Andrology, 2025; early view. [Google Scholar] [CrossRef]
- Bektas, H.; Dasdag, S. The effects of radiofrequency radiation on male reproductive health and potential mechanisms. Electromagn. Biol. Med. 2025, 44, 359–384. [Google Scholar] [CrossRef]
- Yao, B.; Zeng, J.; Shi, J.; Pang, Y.; Men, J.; Li, Y.; Wang, H.; Liu, J.; Hui, W.; Zhao, L.; et al. Transcriptomic and metabolic profiling reveals the effects of long-term microwave exposure on testicular tissue. Ecotoxicol. Environ. Saf. 2025, 293, 118040. [Google Scholar] [CrossRef]
- Zha, X.D.; Wang, W.W.; Xu, S.; Shang, X.J. Impacts of electromagnetic radiation from cellphones and Wi-Fi on spermatogenesis. Zhonghua Nan Ke Xue Natl. J. Androl. 2019, 25, 451–455. [Google Scholar] [CrossRef]
- Sepehrimanesh, M.; Saeb, M.; Nazifi, S.; Kazemipour, N.; Jelodar, G.; Saeb, S. Impact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: A Rattus norvegicus model. Int. J. Biometeorol. 2014, 58, 1657–1663. [Google Scholar] [CrossRef]
- Esmekaya, M.A.; Ozer, C.; Seyhan, N. 900 MHz pulse-modulated radiofrequency radiation induces oxidative stress on heart, lung, testis and liver tissues. Gen. Physiol. Biophys. 2011, 30, 84–89. [Google Scholar] [CrossRef]
- Saygin, M.; Caliskan, S.; Ozguner, M.F.; Gumral, N.; Comlekci, S.; Karahan, N. Impact of L-carnitine and selenium treatment on testicular apoptosis in rats exposed to 2.45 GHz microwave energy. West Indian Med. J. 2015, 64, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Marjanovic Cermak, A.M.; Pavicic, I.; Trosic, I. Oxidative stress response in SH-SY5Y cells exposed to short-term 1800 MHz radiofrequency radiation. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2018, 53, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ma, M.; Li, L.; Zhao, L.; Zhang, T.; Gao, X.; Zhang, D.; Zhu, Y.; Peng, Q.; Luo, X.; et al. The Protective Effect of Autophagy on DNA Damage in Mouse Spermatocyte-Derived Cells Exposed to 1800 MHz Radiofrequency Electromagnetic Fields. Cell. Physiol. Biochem. 2018, 48, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Katirci, E.; Kirimlioglu, E.; Oflamaz, A.O.; Hidisoglu, E.; Cernomorcenco, A.; Yargıcoğlu, P.; Ozen, S.; Demir, N. Expression levels of tam receptors and ligands in the testes of rats exposed to short and middle-term 2100 MHz radiofrequency radiation. Bioelectromagnetics 2024, 45, 235–248. [Google Scholar] [CrossRef]
- Shahin, N.N.; El-Nabarawy, N.A.; Gouda, A.S.; Mégarbane, B. The protective role of spermine against male reproductive aberrations induced by exposure to electromagnetic field—An experimental investigation in the rat. Toxicol. Appl. Pharmacol. 2019, 370, 117–130. [Google Scholar] [CrossRef]
- Yu, G.; Tang, Z.; Chen, H.; Chen, Z.; Wang, L.; Cao, H.; Wang, G.; Xing, J.; Shen, H.; Cheng, Q.; et al. Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3–MMP2-BTB axis in the testes of adult rats. Sci. Total Environ. 2020, 698, 133860. [Google Scholar] [CrossRef]
- Yu, G.; Zhu, Y.; Song, C.; Chen, L.; Tang, Z.; Wu, T. The ZIP9-centered androgen pathway compensates for the 2605 MHz radiofrequency electromagnetic radiation-mediated reduction in resistance to H2O2 damage in Sertoli cells of adult rats. Ecotoxicol. Environ. Saf. 2023, 254, 114733. [Google Scholar] [CrossRef]
- Hedger, M.P.; Meinhardt, A. Cytokines and the immune-testicular axis. J. Reprod. Immunol. 2003, 58, 1–26. [Google Scholar] [CrossRef]
- Zakariah, M.; Molele, R.A.; Mahdy, M.A.A.; Ibrahim, M.I.A.; McGaw, L.J. Regulation of spermatogenic cell apoptosis by the pro-apoptotic proteins in the testicular tissues of mammalian and avian species. Anim. Reprod. Sci. 2022, 247, 107158. [Google Scholar] [CrossRef]
- Amara, S.; Bozec, A.; Benahmed, M.; Mauduit, C. Mort programmée des cellules germinales testiculaires: Causes et mécanismes mis en jeu. Andrologie 2005, 15, 263–277. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010; Volume 443. [Google Scholar]
- Li, N.; Wang, T.; Han, D. Structural, cellular and molecular aspects of immune privilege in the testis. Front. Immunol. 2012, 3, 152. [Google Scholar] [CrossRef]
- Fijak, M.; Bhushan, S.; Meinhardt, A. Immunoprivileged Sites: The Testis. In Methods in Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 677, pp. 459–470. [Google Scholar]
- Zhang, H.; Yin, Y.; Wang, G.; Liu, Z.; Liu, L.; Sun, F. Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci. Rep. 2014, 4, 4260. [Google Scholar] [CrossRef]
- Gupta, V.; Srivastava, R. 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochem. Biophys. Res. Commun. 2022, 629, 61–70. [Google Scholar] [CrossRef]
- Chauhan, V.; Mariampillai, A.; Kutzner, B.C.; Wilkins, R.C.; Ferrarotto, C.; Bellier, P.V.; Marro, L.; Gajda, G.B.; Lemay, E.; Thansandote, A.; et al. Evaluating the biological effects of intermittent 1.9 GHz pulse-modulated radiofrequency fields in a series of human-derived cell lines. Radiat. Res. 2007, 167, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Jin, Y.B.; Kim, T.H.; Pack, J.K.; Kim, N.; Choi, H.D.; Lee, J.S.; Lee, Y.S. The effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on rat testicular function. Bioelectromagnetics 2012, 33, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Yavas, M.C.; Kilitci, A.; Çelik, E.; Yegin, K.; Sirav, B.; Varol, S. Rat brain and testicular tissue effects of radiofrequency radiation exposure: Histopathological, DNA damage of brain and qRT-PCR analysis. Int. J. Radiat. Res. 2024, 22, 529–536. [Google Scholar] [CrossRef]
- Lee, H.J.; Pack, J.K.; Kim, T.H.; Kim, N.; Choi, S.Y.; Lee, J.S.; Kim, S.H.; Lee, Y.S. The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis. Bioelectromagnetics 2010, 31, 528–534. [Google Scholar] [CrossRef]
- Shahin, S.; Singh, S.P.; Chaturvedi, C.M. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: Involvement of a p53 dependent bax-caspase-3 mediated pathway. Environ. Toxicol. 2018, 33, 931–945. [Google Scholar] [CrossRef]
- Houston, B.J.; Nixon, B.; King, B.V.; De Iuliis, G.N.; Aitken, R.J. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction 2019, 157, R263–R276. [Google Scholar] [CrossRef]
- Haidar, J.; Nabos, P.; Orlacchio, R.; Hurtier, A.; de Gannes, F.P.; Rambert, J.; Cario-André, M.; Moisan, F.; Rezvani, H.R.; Lagroye, I.; et al. Impact of in vitro exposure to 5G-modulated 3.5 GHz fields on oxidative stress and DNA repair in skin cells. Sci. Rep. 2025, 15, 31214. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, D.J.; Bae, J.S.; Lee, J.H.; Jeon, S.; Choi, H.D.; Kim, N.; Kim, H.G.; Kim, H.R. Activation of matrix metalloproteinases and FoxO3a in HaCaT keratinocytes by radiofrequency electromagnetic field exposure. Sci. Rep. 2021, 11, 7680. [Google Scholar] [CrossRef] [PubMed]
- Karaman, I.P.; Coskun, O.; Senol, N.; Sahin, M.; Comlekci, S. Alleviative effect of quercetin on rat testicular against 2600 MHz electromagnetic field. Int. J. Radiat. Res. 2024, 22, 537–543. [Google Scholar] [CrossRef]
- Falzone, N.; Huyser, C.; Becker, P.; Leszczynski, D.; Franken, D.R. The effect of pulsed 900-MHz GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoa. Int. J. Androl. 2011, 34, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Lin, J.J.; Xue, Y.Z.; An, G.Z.; Zhang, J.P.; Zhang, K.Y.; He, W.; Wang, H.; Li, W.; Ding, G.R. Effects of 220 MHz pulsed modulated radiofrequency field on the sperm quality in rats. Int. J. Environ. Res. Public Health 2019, 16, 1286. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Z.; Guo, L.; Lai, P.; Lin, J.; Qin, T.; Jing, Y.; Wang, X.; Zhou, G.; Ding, G. Effects of 5G mobile phone radiation on sperm quality and sex hormone levels in mice. Fushe Yanjiu Yu Fushe Gongyi Xuebao/J. Radiat. Res. Radiat. Process. 2023, 41, 50–59. [Google Scholar] [CrossRef]
- Jamaludin, N.; Ibrahim, S.F.; Jaffar, F.H.F.; Zulkefli, A.F.; Osman, K. The Influence of 2.45 GHz Wi-Fi Exposure Duration on Sperm Quality and Testicular Histopathology: An Exploration of Peroxidative Injury. Antioxidants 2025, 14, 179. [Google Scholar] [CrossRef]
- Cordelli, E.; Ardoino, L.; Benassi, B.; Consales, C.; Eleuteri, P.; Marino, C.; Sciortino, M.; Villani, P.; Brinkworth, M.H.; Chen, G.; et al. Effects of radiofrequency electromagnetic field (RF-EMF) exposure on male fertility: A systematic review of experimental studies on non-human mammals and human sperm in vitro. Environ. Int. 2024, 185, 108509. [Google Scholar] [CrossRef]
- Dong, G.; Zhou, H.; Gao, Y.; Zhao, X.; Liu, Q.; Li, Z.; Zhao, X.; Yin, J.; Wang, C. Effects of 1.5-GHz high-power microwave exposure on the reproductive systems of male mice. Electromagn. Biol. Med. 2021, 40, 311–320. [Google Scholar] [CrossRef]
- Pawlak, K.; Bojarski, B.; Jagusiak, W.; Wojnar, T.; Nieckarz, Z.; Arent, Z.; Ludwiczak, M.; Lasko, M. An 1800 MHz Electromagnetic Field Affects Hormone Levels, Sperm Quality, and Behavior in Laboratory Rats (Rattus norvegicus). Appl. Sci. 2025, 15, 5160. [Google Scholar] [CrossRef]
- Oyewopo, A.O.; Olaniyi, S.K.; Oyewopo, C.I.; Jimoh, A.T. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats. Andrologia 2017, 49, e12772. [Google Scholar] [CrossRef]
- Meo, S.A.; Al-Drees, A.M.; Husain, S.; Khan, M.M.; Imran, M.B. Effects of mobile phone radiation on serum testosterone in Wistar albino rats. Saudi Med. J. 2010, 31, 869–873. [Google Scholar] [PubMed]
- Shahin, S.; Mishra, V.; Singh, S.P.; Chaturvedi, C.M. 2.45-GHz microwave irradiation adversely affects reproductive function in male mouse, Mus musculus by inducing oxidative and nitrosative stress. Free Radic. Res. 2014, 48, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Maluin, S.M.; Osman, K.; Jaffar, F.H.F.; Ibrahim, S.F. Effect of Radiation Emitted by Wireless Devices on Male Reproductive Hormones: A Systematic Review. Front. Physiol. 2021, 12, 732420. [Google Scholar] [CrossRef] [PubMed]
- Koohestanidehaghi, Y.; Khalili, M.A.; Dehghanpour, F.; Seify, M. Detrimental impact of cell phone radiation on sperm DNA integrity. Clin. Exp. Reprod. Med. 2024, 51, 13–19. [Google Scholar] [CrossRef]
- Shokri, S.; Soltani, A.; Kazemi, M.; Sardari, D.; Mofrad, F.B. Effects of Wi-Fi (2.45 GHz) Exposure on Apoptosis, Sperm Parameters and Testicular Histomorphometry in Rats: A Time Course Study. Cell J. 2015, 17, 322–331. [Google Scholar] [CrossRef]
- Kesari, K.K.; Agarwal, A.; Henkel, R. Radiations and male fertility. Reprod. Biol. Endocrinol. 2018, 16, 118. [Google Scholar] [CrossRef]
- Wang, P.; Qian, H.; Xiao, M.; Lv, J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects. Immun. Inflamm. Dis. 2023, 11, e762. [Google Scholar] [CrossRef]
- Ishikawa, T.; Hwang, K.; Lazzarino, D.; Morris, P.L. Sertoli cell expression of steroidogenic acute regulatory protein-related lipid transfer 1 and 5 domain-containing proteins and sterol regulatory element binding protein-1 are interleukin-1β regulated by activation of c-Jun N-terminal kinase and cyclooxygenase-2 and cytokine induction. Endocrinology 2005, 146, 5100–5111. [Google Scholar] [CrossRef]
- Guazzone, V.A.; Jacobo, P.; Theas, M.S.; Lustig, L. Cytokines and chemokines in testicular inflammation: A brief review. Microsc. Res. Tech. 2009, 72, 620–628. [Google Scholar] [CrossRef]
- Dang, Y.; Li, Z.; Wei, Q.; Zhang, R.; Xue, H.; Zhang, Y. Protective Effect of Apigenin on Acrylonitrile-Induced Inflammation and Apoptosis in Testicular Cells via the NF-κB Pathway in Rats. Inflammation 2018, 41, 1448–1459. [Google Scholar] [CrossRef] [PubMed]
- Washburn, R.L.; Hibler, T.; Kaur, G.; Dufour, J.M. Sertoli Cell Immune Regulation: A Double-Edged Sword. Front. Immunol. 2022, 13, 913502. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Huang, W.; Liu, S.; Cai, S.; Hong, L.; Xiao, W.; Thiele, K.; Zeng, Y.; Song, M.; Diao, L. Impacts of Immunometabolism on Male Reproduction. Front. Immunol. 2021, 12, 658432. [Google Scholar] [CrossRef]
- Winnall, W.R.; Muir, J.A.; Hedger, M.P. Rat resident testicular macrophages have an alternatively activated phenotype and constitutively produce interleukin-10 in vitro. J. Leukoc. Biol. 2011, 90, 133–143. [Google Scholar] [CrossRef]
- Lampiao, F.; du Plessis, S.S. TNF-α and IL-6 affect human sperm function by elevating nitric oxide production. Reprod. Biomed. Online 2008, 17, 628–631. [Google Scholar] [CrossRef]
- Moretti, E.; Cerretani, D.; Noto, D.; Signorini, C.; Iacoponi, F.; Collodel, G. Relationship Between Semen IL-6, IL-33 and Malondialdehyde Generation in Human Seminal Plasma and Spermatozoa. Reprod. Sci. 2021, 28, 2136–2143. [Google Scholar] [CrossRef]
- Bellavance, M.A.; Rivest, S. The HPA-Immune Axis and the Immunomodulatory Actions of Glucocorticoids in the Brain. Front. Immunol. 2014, 5, 136. [Google Scholar] [CrossRef]
- Turnbull, A.V.; Rivier, C.L. Regulation of the Hypothalamic-Pituitary-Adrenal Axis by Cytokines: Actions and Mechanisms of Action. Physiol. Rev. 1999, 79, 1–71. [Google Scholar] [CrossRef]
- Odacı, E.; Hancı, H.; Yuluğ, E.; Türedi, S.; Aliyazıcıoğlu, Y.; Kaya, H.; Çolakoğlu, S. Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality. Biotech. Histochem. 2016, 91, 9–19. [Google Scholar] [CrossRef]
- Xing, F.; Zhan, Q.; He, Y.; Cui, J.; He, S.; Wang, G. 1800MHz microwave induces p53 and p53-Mediated caspase-3 activation leading to cell apoptosis in vitro. PLoS ONE 2016, 11, e0163935. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, D.; Song, Y.; Pan, Y.; Zhu, L.; Bai, Y.; Xu, Y.; Zhang, J.; Shao, C. Fractionated irradiation of right thorax induces abscopal damage on testes leading to decline in fertility. Sci. Rep. 2019, 9, 15221. [Google Scholar] [CrossRef]
- Oosterhuis, G.J.E.; Vermes, I. Apoptosis in human ejaculated spermatozoa. J. Biol. Regul. Homeost. Agents 2004, 18, 115–119. [Google Scholar] [PubMed]
- Hirata, A. Review on human dosimetry for radio-frequency exposure above 6 GHz—International exposure standards. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 681–683. [Google Scholar]
- Okechukwu, C.E. Does the use of mobile phone affect male fertility? A mini-review. J. Hum. Reprod. Sci. 2020, 13, 174–183. [Google Scholar] [CrossRef]
- Chu, K.Y.; Khodamoradi, K.; Blachman-Braun, R.; Dullea, A.; Bidhan, J.; Campbell, K.; Zizzo, J.; Israeli, J.; Kim, M.; Petrella, F.; et al. Effect of Radiofrequency Electromagnetic Radiation Emitted by Modern Cellphones on Sperm Motility and Viability: An In Vitro Study. Eur. Urol. Focus 2023, 9, 69–74. [Google Scholar] [CrossRef]
- Soni, A.; Shiwani, S.; Aggarwal, P.V.; Pareek, M.; Ranawat, S.; Soni, R. 5G’s Journey and the Road Ahead: A Glimpse into 6G. In Proceedings of the 2nd International Conference on Pervasive Computing Advances and Applications (PerCAA 2024), Jaipur, India, 18–19 October 2024; pp. 188–197. [Google Scholar]
- Soldati, M.; Mikkonen, M.; Laakso, I.; Murakami, T.; Ugawa, Y.; Hirata, A. A multi-scale computational approach based on TMS experiments for the assessment of electro-stimulation thresholds of the brain at intermediate frequencies. Phys. Med. Biol. 2018, 63, 225006. [Google Scholar] [CrossRef]
- Hirata, A.; Funahashi, D.; Kodera, S. Setting exposure guidelines and product safety standards for radio-frequency exposure at frequencies above 6 GHz: Brief review. Ann. Telecommun. 2019, 74, 17–24. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, G.; Guo, L.; Qin, T.; Wang, X.; Ding, G. Effects of 5G mobile phone radiofrequency radiation exposure on male mouse fertility. Chin. J. Radiol. Health 2024, 33, 135–141. [Google Scholar] [CrossRef]
- Jaffar, F.H.F.; Osman, K.; Ismail, N.H.; Chin, K.Y.; Ibrahim, S.F. Adverse effects of wi-fi radiation on male reproductive system: A systematic review. Tohoku J. Exp. Med. 2019, 248, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Cermak, A.M.M.; Pavicic, I.; Lovakovic, B.T.; Pizent, A.; Trosic, I. In vitro non-thermal oxidative stress response after 1800 MHz radiofrequency radiation. Gen. Physiol. Biophys. 2017, 36, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Henschenmacher, B.; Bitsch, A.; de las Heras Gala, T.; Forman, H.J.; Fragoulis, A.; Ghezzi, P.; Kellner, R.; Koch, W.; Kuhne, J.; Sachno, D.; et al. The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: A protocol for a systematic review. Environ. Int. 2022, 158, 106932. [Google Scholar] [CrossRef]
- Meyer, F.; Bitsch, A.; Forman, H.J.; Fragoulis, A.; Ghezzi, P.; Henschenmacher, B.; Kellner, R.; Kuhne, J.; Ludwig, T.; Sachno, D.; et al. The effects of radiofrequency electromagnetic field exposure on biomarkers of oxidative stress in vivo and in vitro: A systematic review of experimental studies. Environ. Int. 2024, 194, 108940. [Google Scholar] [CrossRef]
- Simkó, M.; Mattsson, M.O. 5G wireless communication and health effects—A pragmatic review based on available studies regarding 6 to 100 GHz. Int. J. Environ. Res. Public Health 2019, 16, 3406. [Google Scholar] [CrossRef]
- Lin, J.; Li, J.; Ding, G. Absorption of 5G sub-6 GHz electromagnetic radiation from base station to male reproduction system. Int. J. Radiat. Biol. 2024, 100, 1085–1092. [Google Scholar] [CrossRef]
Gene | RefSeq | Forward Primer | Reverse Primer |
---|---|---|---|
Casp3 | NM_012922 | 5′-CCGACATCTGTGTGACTTCAC-3′ | 5′-CGTACAGTTTCAGCACATGG-3′ |
Tp53 | NM_030989 | 5′-TCGTAGGTAGGCAGCTACATG-3′ | 5′-CGATGTCTCATCCGACTGTG-3′ |
Bax | NM_017059 | 5′-CGCGGTTGCTGTTGAT-3′ | 5′-AAGGCTCAGGCCCATCTTCT-3′ |
Bcl2 | NM_016993 | 5′-GATGACTGAGTACCTGAACC-3′ | 5′-CCAGGAGAATCAAAAGGGT-3′ |
Actb | NM_031144 | 5′-TGCATAGGCAATGAGCGG-3′ | 5′-GGCATAGGCTTCTTACGGA-3′ |
Ccna2 | NM_053702 | 5′-AGGGAAATGGAGGTTAAATG-3′ | 5′-CTATCAATGTAGTTCACAGCC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed Taha, S.M.A.; Jaffar, F.H.F.; Hairulazam, A.; Vijay, S.; Jamaludin, N.; Zulkifli, A.F.; Mat Ros, M.F.; Osman, K.; Zakaria, Z.; Mohd Bahar, M.A.A.; et al. Prolonged 3.5 GHz and 24 GHz RF-EMF Exposure Alters Testicular Immune Balance, Apoptotic Gene Expression, and Sperm Function in Rats. Biomedicines 2025, 13, 2471. https://doi.org/10.3390/biomedicines13102471
Syed Taha SMA, Jaffar FHF, Hairulazam A, Vijay S, Jamaludin N, Zulkifli AF, Mat Ros MF, Osman K, Zakaria Z, Mohd Bahar MAA, et al. Prolonged 3.5 GHz and 24 GHz RF-EMF Exposure Alters Testicular Immune Balance, Apoptotic Gene Expression, and Sperm Function in Rats. Biomedicines. 2025; 13(10):2471. https://doi.org/10.3390/biomedicines13102471
Chicago/Turabian StyleSyed Taha, Syed Muhamad Asyraf, Farah Hanan Fathihah Jaffar, Atikah Hairulazam, Sivasatyan Vijay, Norazurashima Jamaludin, Aini Farzana Zulkifli, Mohd Farisyam Mat Ros, Khairul Osman, Zahriladha Zakaria, Mohd Amyrul Azuan Mohd Bahar, and et al. 2025. "Prolonged 3.5 GHz and 24 GHz RF-EMF Exposure Alters Testicular Immune Balance, Apoptotic Gene Expression, and Sperm Function in Rats" Biomedicines 13, no. 10: 2471. https://doi.org/10.3390/biomedicines13102471
APA StyleSyed Taha, S. M. A., Jaffar, F. H. F., Hairulazam, A., Vijay, S., Jamaludin, N., Zulkifli, A. F., Mat Ros, M. F., Osman, K., Zakaria, Z., Mohd Bahar, M. A. A., & Ibrahim, S. F. (2025). Prolonged 3.5 GHz and 24 GHz RF-EMF Exposure Alters Testicular Immune Balance, Apoptotic Gene Expression, and Sperm Function in Rats. Biomedicines, 13(10), 2471. https://doi.org/10.3390/biomedicines13102471