Shared Plasma Metabolites Mediate Causal Effects of Metabolic Diseases on Colorectal Cancer: A Two-Step Mendelian Randomization Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources
2.2.1. Exposure Data
2.2.2. Mediator Data
2.2.3. Outcome Data
2.3. Selection of IVs
2.4. Statistical Analyses
2.4.1. LDSC Analysis
2.4.2. TSMR Analysis
2.4.3. Sensitivity Analysis
2.4.4. Colocalization Analysis
2.4.5. Mediator Analysis
2.4.6. Observational Analysis
2.4.7. Gene Annotation, Differential Expression Analysis and Survival Analysis
2.4.8. Tissue-Specific Expression Analysis
2.4.9. Single-Cell RNA Sequencing Analysis
2.4.10. PPI Network, Enrichment Analysis and Druggability Assessment
3. Results
3.1. Causal Estimation of Metabolic Disease-Related Phenotypes for CRC
3.2. Effects of Five Metabolic Disease-Related Phenotypes on Plasma Metabolites
3.3. Effect of Intermediate Metabolites on CRC
3.4. Mediating Effects of Plasma Metabolites in the Association Between Metabolic Disease-Related Phenotypes and CRC Risk
3.5. Association Between BMI and WC and Plasma PC Levels in UK Biobank
3.6. Association Between Plasma PC Levels and CRC Incidence in the UK Biobank
3.7. Gene Annotation: Molecular Associations Between Plasma Metabolite Mediators and CRC
0.26857 × Exp (RAB3IL1) + 0.06046 × Exp (NRBP1)
3.8. Tissue- and Cell-Type-Specific Expression Landscape of FADS1
3.9. PPI Network, Enrichment Analysis and Druggability Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRC | colorectal cancer |
PPI | protein–protein interaction |
IARC | international agency for research on cancer |
MetS | metabolic syndrome |
IR | insulin resistance |
BMI | body mass index |
T2DM | type 2 diabetes mellitus |
NAFLD | non-alcoholic fatty liver disease |
MR | Mendelian randomization |
IVs | instrumental variables |
RCTs | randomized controlled trials |
TSMR | two-sample Mendelian randomization |
GWAS | genome-wide association study |
WC | waist circumference |
BMR | basal metabolic rate |
HTN | hypertension |
HLD | hyperlipidemia |
MRC IEU | Medical Research Council Integrative Epidemiology Unit |
LDSC | linkage disequilibrium score regression |
PC | phosphatidylcholine |
UKB | UK biobank |
SNP | single-nucleotide polymorphism |
TCGA | The Cancer Genome Atlas |
LD | linkage disequilibrium |
IVW | inverse variance weighted |
BWMR | Bayesian weighted Mendelian randomization |
FDR | false discovery rate |
PPH4 | posteriori probability of H4 |
OS | overall survival |
GEO | gene expression omnibus |
TISCH | tumor immune single-cell hub |
UMAP | uniform manifold approximation and projection |
GO | gene ontology |
KEGG | Kyoto encyclopedia of genes and genomes |
DAVID | Database for Annotation, Visualization and Integrated Discovery |
cDC1 | conventional dendritic cells type 1 |
cDC2B | conventional dendritic cell type 2 subtype B |
DCs | dendritic cells |
ALA | alpha-linolenic acid |
EPA | eicosapentaenoic acid |
AA | arachidonic acid |
LA | linoleic acid |
References
- Jasperson, K.W.; Tuohy, T.M.; Neklason, D.W.; Burt, R.W. Hereditary and familial colon cancer. Gastroenterology 2010, 138, 2044–2058. [Google Scholar] [CrossRef]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef]
- Papadimitriou, N.; Bull, C.J.; Jenab, M.; Hughes, D.J.; Bell, J.A.; Sanderson, E.; Timpson, N.J.; Smith, G.D.; Albanes, D.; Campbell, P.T.; et al. Separating the effects of early and later life adiposity on colorectal cancer risk: A Mendelian randomization study. BMC Med. 2023, 21, 5. [Google Scholar] [CrossRef]
- Murphy, C.C.; Zaki, T.A. Changing epidemiology of colorectal cancer—Birth cohort effects and emerging risk factors. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 25–34. [Google Scholar] [CrossRef]
- Yuan, C.; Shu, X.; Hu, Z.; Jie, Z. Genetic prediction of the relationship between metabolic syndrome and colorectal cancer risk: A Mendelian randomization study. Diabetol. Metab. Syndr. 2024, 16, 109. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, Z.; Wang, Y.; Yang, L.; Zhou, Z. Genetically predicted thyroid function and risk of colorectal cancer: A bidirectional Mendelian randomization study. J. Cancer Res. Clin. Oncol. 2023, 149, 14015–14024. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.; Carreras-Torres, R.; Song, M.; Chan, A.T.; Martin, R.M.; Papadimitriou, N.; Dimou, N.; Tsilidis, K.K.; Banbury, B.; Bradbury, K.E.; et al. Circulating levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 associate with risk of colorectal cancer based on serologic and Mendelian randomization analyses. Gastroenterology 2020, 158, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Mandic, M.; Safizadeh, F.; Niedermaier, T.; Hoffmeister, M.; Brenner, H. Association of overweight, obesity, and recent weight loss with colorectal cancer risk. J. Am. Med. Assoc. Netw. Open 2023, 6, e239556. [Google Scholar] [CrossRef] [PubMed]
- Lawler, T.; Walts, Z.L.; Steinwandel, M.; Lipworth, L.; Murff, H.J.; Zheng, W.; Andersen, S.W. Type 2 diabetes and colorectal cancer risk. J. Am. Med. Assoc. Netw. Open 2023, 6, e2343333. [Google Scholar] [CrossRef]
- Renehan, A.G.; Shalet, S.M. Diabetes, insulin therapy, and colorectal cancer. BMJ 2005, 330, 551–552. [Google Scholar] [CrossRef]
- Gutiérrez-Salmerón, M.; Lucena, S.R.; Chocarro-Calvo, A.; García-Martínez, J.M.; Orozco, R.M.M.; García-Jiménez, C. Metabolic and hormonal remodeling of colorectal cancer cell signalling by diabetes. Endocr. Relat. Cancer 2021, 28, R191–R206. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Petracca, G.; Beatrice, G.; Csermely, A.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: A meta-analysis of observational cohort studies. Gut 2022, 71, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Geijsen, A.J.; Brezina, S.; Keski-Rahkonen, P.; Baierl, A.; Bachleitner-Hofmann, T.; Bergmann, M.M.; Boehm, J.; Brenner, H.; Chang-Claude, J.; Duijnhoven, F.J.B.; et al. Plasma metabolites associated with colorectal cancer: A discovery-replication strategy. Int. J. Cancer 2019, 145, 1221–1231. [Google Scholar] [CrossRef]
- Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian Randomization. J. Am. Med. Assoc. 2017, 318, 1925–1926. [Google Scholar] [CrossRef]
- Zhao, S.S.; Mackie, S.L.; Zheng, J. Why clinicians should know about Mendelian randomization. Rheumatology 2021, 60, 1577–1579. [Google Scholar] [CrossRef] [PubMed]
- Elsworth, B.; Lyon, M.; Alexander, T.; Liu, Y.; Matthews, P.; Hallett, J.; Bates, P.; Palmer, T.; Haberland, V.; Smith, G.D.; et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv 2020. [Google Scholar] [CrossRef]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Z.; Fang, H.; Yang, J. A generalized linear mixed model association tool for biobank-scale data. Nat. Genet. 2021, 53, 1616–1621. [Google Scholar] [CrossRef]
- Walree, E.S.; Jansen, I.E.; Bell, N.Y.; Savage, J.E.; Leeuw, C.; Nieuwdorp, M.; Sluis, S.; Posthuma, D. Disentangling genetic risks for metabolic syndrome. Diabetes 2022, 71, 2447–2457. [Google Scholar] [CrossRef]
- Fairfield, C.J.; Drake, T.M.; Pius, R.; Bretherick, A.D.; Campbell, A.; Clark, D.W.; Fallowfield, J.A.; Hayward, C.; Henderson, N.C.; Joshi, P.K.; et al. Genome-wide association study of NAFLD using electronic health records. Hepatol. Commun. 2022, 6, 297–308. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, T.; Pettersson-Kymmer, U.; Stewart, I.D.; Butler-Laporte, G.; Nakanishi, T.; Cerani, A.; Liang, K.Y.H.; Yoshiji, S.; Willett, J.D.S.; et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023, 55, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, J.R.; Bien, S.A.; Harrison, T.A.; Kang, H.M.; Chen, S.; Schmit, S.L.; Conti, D.V.; Qu, C.; Jeon, J.; Edlund, C.K.; et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat. Genet. 2019, 51, 76–87. [Google Scholar] [CrossRef]
- Fernandez-Rozadilla, C.; Timofeeva, M.; Chen, Z.; Law, P.; Thomas, M.; Schmit, S.; Díez-Obrero, V.; Hsu, L.; Fernandez-Tajes, J.; Palles, C.; et al. Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries. Nat. Genet. 2023, 55, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Davey Smith, G.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, Q.; Wang, Z.; Lu, J.; Hou, J. Integrating plasma proteomes with genome-wide association data for causal protein identification in multiple myeloma. BMC Med. 2023, 21, 377. [Google Scholar] [CrossRef]
- Myers, T.A.; Chanock, S.J.; Machiela, M.J. LDlinkR: An R Package for Rapidly Calculating Linkage Disequilibrium Statistics in Diverse Populations. Front. Genet. 2020, 11, 157. [Google Scholar] [CrossRef]
- Bowden, J.; Spiller, W.; Greco, M.F.; Sheehan, N.; Thompson, J.; Minelli, C.; Smith, G.D. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int. J. Epidemiol. 2018, 47, 2100. [Google Scholar] [CrossRef]
- Gill, D.; Efstathiadou, A.; Cawood, K.; Tzoulaki, I.; Dehghan, A. Education protects against coronary heart disease and stroke independently of cognitive function: Evidence from Mendelian randomization. Int. J. Epidemiol. 2019, 48, 1468–1477. [Google Scholar] [CrossRef]
- Palmer, T.M.; A Lawlor, D.; Harbord, R.M.; A Sheehan, N.; Tobias, J.H.; Timpson, N.J.; Smith, G.D.; Sterne, J.A. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 2012, 21, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Dudbridge, F.; Thompson, S.G. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat. Med. 2016, 35, 1880–1906. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ming, J.; Hu, X.; Chen, G.; Liu, J.; Yang, C. Bayesian weighted Mendelian randomization for causal inference based on summary statistics. Bioinformatics 2020, 36, 1501–1508. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Yazdanpanah, N.; Gamache, I.; Ong, K.; Perry, J.R.B.; Manousaki, D. Metabolome-wide Mendelian randomization for age at menarche and age at natural menopause. Genome Med. 2024, 16, 69. [Google Scholar] [CrossRef]
- Zheng, S.; Tsao, P.S.; Pan, C. Abdominal aortic aneurysm and cardiometabolic traits share strong genetic susceptibility to lipid metabolism and inflammation. Nat. Commun. 2024, 15, 5652. [Google Scholar] [CrossRef]
- Relton, C.L.; Smith, G.D. Two-step epigenetic Mendelian randomization: A strategy for establishing the causal role of epigenetic processes in pathways to disease. Int. J. Epidemiol. 2012, 41, 161–176. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, M.; Dong, S.-S.; Wang, J.-H.; Zhang, K.; Guo, J.; Guo, Y.; Yang, T.-L. Bidirectional two-sample Mendelian randomization analysis identifies causal associations between relative carbohydrate intake and depression. Nat. Hum. Behav. 2022, 6, 1569–1576. [Google Scholar] [CrossRef]
- Ochoa, D.; Hercules, A.; Carmona, M.; Suveges, D.; Gonzalez-Uriarte, A.; Malangone, C.; Miranda, A.; Fumis, L.; Carvalho-Silva, D.; Spitzer, M.; et al. Open Targets Platform: Supporting systematic drug-target identification and prioritisation. Nucleic Acids Res. 2021, 49, D1302–D1310. [Google Scholar] [CrossRef]
- GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Wang, J.; Han, Y.; Dong, X.; Ge, J.; Zheng, R.; Shi, X.; Wang, B.; Li, Z.; Ren, P.; et al. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021, 49, D1420–D1430. [Google Scholar] [CrossRef]
- Uhlitz, F.; Bischoff, P.; Peidli, S.; Sieber, A.; Trinks, A.; Lüthen, M.; Obermayer, B.; Blanc, E.; Ruchiy, Y.; Sell, T.; et al. Mitogen-activated protein kinase activity drives cell trajectories in colorectal cancer. EMBO Mol. Med. 2021, 13, e14123. [Google Scholar] [CrossRef]
- Hildreth, A.D.; Ma, F.; Wong, Y.Y.; Sun, R.; Pellegrini, M.; O’Sullivan, T.E. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 2021, 22, 639–653. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Zhao, D.; Yu, X.; Shen, X.; Zhou, Y.; Wang, S.; Qiu, Y.; Chen, Y.; Zhu, F. TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024, 52, D1465–D1477. [Google Scholar] [CrossRef]
- Downie, J.M.; Joshi, A.D.; Geraghty, C.M.; Guercio, B.J.; A Zeleznik, O.; Song, M.; Bever, A.M.; A Drew, D.; Tabung, F.K.; Zhang, X.; et al. Novel metabolomic predictors of incident colorectal cancer in men and women. J. Natl. Cancer Inst. 2025, 117, 517–528. [Google Scholar] [CrossRef]
- Porsche, C.E.; Delproposto, J.B.; Patrick, E.; Zamarron, B.F.; Lumeng, C.N. Adipose tissue dendritic cell signals are required to maintain T cell homeostasis and obesity-induced expansion. Mol. Cell. Endocrinol. 2020, 505, 110740. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tian, J.; Tian, X.; Tang, X.; Rui, K.; Tong, J.; Lu, L.; Xu, H.; Wang, S.; Moser, M. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS ONE 2014, 9, e92450. [Google Scholar] [CrossRef]
- Xu, C.; Gu, L.; Hu, L.; Jiang, C.; Li, Q.; Sun, L.; Zhou, H.; Liu, Y.; Xue, H.; Li, J.; et al. FADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancer. Nat. Commun. 2023, 14, 2042. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Zhou, P.; Kong, F.; Cao, S.; Pan, X.; Cai, S.; Chen, X.; Wang, S.; Li, N.; He, B.; et al. PCDH17 induces colorectal cancer metastasis by destroying the vascular endothelial barrier. Cell Death Dis. 2025, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Onoe, T.; Yoshida, T.; Yamashita, Y.; Tanaka, Y.; Ohdan, H. Tumor endothelial cell-mediated antigen-specific T-cell suppression via the PD-1/PD-L1 pathway. Mol. Cancer Res. 2020, 18, 1427–1440. [Google Scholar] [CrossRef]
- Michielsen, A.J.; O’Sullivan, J.N.; Ryan, E.J. Tumor conditioned media from colorectal cancer patients inhibits dendritic cell maturation. Oncoimmunology 2012, 1, 751–753. [Google Scholar] [CrossRef]
- Dai, Z.-B.; Ren, X.-L.; Xue, Y.-L.; Tian, Y.; He, B.-B.; Xu, C.-L.; Yang, B. Association of dietary intake and biomarker of α-linolenic acid with incident colorectal cancer: A dose-response Meta-analysis of prospective cohort studies. Front. Nutr. 2022, 9, 948604. [Google Scholar] [CrossRef]
- Ralston, J.C.; Matravadia, S.; Gaudio, N.; Holloway, G.P.; Mutch, D.M. Polyunsaturated fatty acid regulation of adipocyte FADS1 and FADS2 expression and function. Obesity 2015, 23, 725–728. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, S162–S173. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhao, J.; Zhou, S.; Li, X.; Li, T.; Wang, L.; Yuan, S.; Chen, D.; Law, P.J.; Larsson, S.C.; et al. Systematic investigation of genetically determined plasma and urinary metabolites to discover potential interventional targets for colorectal cancer. J. Natl. Cancer Inst. 2024, 116, 1303–1312. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Hang, D.; Lau, H.C.-H.; Du, J.; Liu, C.; Xie, M.; Pan, Y.; Wang, L.; Liang, C.; et al. Integrative plasma and fecal metabolomics identify functional metabolites in adenoma-colorectal cancer progression and as early diagnostic biomarkers. Cancer Cell 2024, 42, 1386–1400.e8. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Naviaux, J.C.; Bright, A.T.; Wang, L.; Naviaux, R.K. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics. Metabolomics 2017, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Liu, D.; Zhao, Z.; Liang, L.; Pan, S.; Tian, F.; Yu, P.; Li, G.; Liu, Z. Short-term duration of diabetic retinopathy as a predictor for development of diabetic kidney disease. J. Transl. Intern. Med. 2023, 11, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Libert, D.M.; Nowacki, A.S.; Natowicz, M.R. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: Amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 2018, 6, e5410. [Google Scholar] [CrossRef] [PubMed]
- Trinder, M.; Vikulova, D.; Pimstone, S.; Mancini, G.B.J.; Brunham, L.R. Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis 2022, 340, 35–43. [Google Scholar] [CrossRef]
- Loh, P.R.; Kichaev, G.; Gazal, S.; Schoech, A.P.; Price, A.L. Mixed-model association for biobank-scale datasets. Nat. Genet. 2018, 50, 906–908. [Google Scholar] [CrossRef]
Metabolism-Related Phenotypes | Single Trait | Cross Trait | ||||
---|---|---|---|---|---|---|
h2 | se | p | h2 | se | p | |
BMI | 0.247 | 0.008 | <0.001 | 0.126 | 0.043 | 0.003 |
WC | 0.195 | 0.007 | <0.001 | 0.156 | 0.040 | <0.001 |
BMR | 0.305 | 0.012 | <0.001 | 0.108 | 0.039 | 0.005 |
HTN | 0.885 | 0.037 | <0.001 | 0.016 | 0.056 | 0.766 |
HLD | 0.011 | 0.003 | <0.001 | 0.014 | 0.107 | 0.900 |
T2DM | 0.035 | 0.003 | <0.001 | 0.088 | 0.062 | 0.158 |
IR | 0.057 | 0.012 | <0.001 | 0.473 | 0.142 | <0.001 |
Gout | 0.002 | 0.001 | 0.088 | 0.049 | 0.235 | 0.835 |
MetS | 0.128 | 0.005 | <0.001 | 0.197 | 0.044 | <0.001 |
NAFLD | 0.008 | 0.001 | <0.001 | 0.056 | 0.119 | 0.638 |
CRC | 0.099 | 0.021 | <0.001 |
Variable | Beta | SE | 95% CI | p-Value |
---|---|---|---|---|
PC ~ BMI/WC + age + sex + recruitment center (center) + metabolite measurement batch + sample processing delay time | ||||
BMI (adjusted) | −0.020 | 0.000 | (−0.021, −0.019) | <0.001 |
WC (adjusted) | −0.008 | 0.000 | (−0.008, −0.007) | <0.001 |
PC ~ BMI + WC + age + sex + recruitment center (center) + metabolite measurement batch + sample processing delay time | ||||
BMI (adjusted) | −0.015 | 0.001 | (−0.016, −0.013) | <0.001 |
WC (adjusted) | −0.003 | 0.000 | (−0.003, −0.002) | <0.001 |
Variable | HR | SE | 95% CI | p-Value |
---|---|---|---|---|
PC (adjusted) | 1.207 | 0.026 | (1.147, 1.270) | <0.001 |
PC-male (adjusted) | 1.341 | 0.036 | (1.250, 1.438) | <0.001 |
PC-female (adjusted) | 1.046 | 0.038 | (0.971, 1.127) | 0.233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Tang, Y.; Zhang, Y.; Cheng, Y.; Ma, Y.; Yan, F.; Liu, T. Shared Plasma Metabolites Mediate Causal Effects of Metabolic Diseases on Colorectal Cancer: A Two-Step Mendelian Randomization Study. Biomedicines 2025, 13, 2433. https://doi.org/10.3390/biomedicines13102433
Shi X, Tang Y, Zhang Y, Cheng Y, Ma Y, Yan F, Liu T. Shared Plasma Metabolites Mediate Causal Effects of Metabolic Diseases on Colorectal Cancer: A Two-Step Mendelian Randomization Study. Biomedicines. 2025; 13(10):2433. https://doi.org/10.3390/biomedicines13102433
Chicago/Turabian StyleShi, Xinyi, Yuxin Tang, Yu Zhang, Yu Cheng, Yingying Ma, Fangrong Yan, and Tiantian Liu. 2025. "Shared Plasma Metabolites Mediate Causal Effects of Metabolic Diseases on Colorectal Cancer: A Two-Step Mendelian Randomization Study" Biomedicines 13, no. 10: 2433. https://doi.org/10.3390/biomedicines13102433
APA StyleShi, X., Tang, Y., Zhang, Y., Cheng, Y., Ma, Y., Yan, F., & Liu, T. (2025). Shared Plasma Metabolites Mediate Causal Effects of Metabolic Diseases on Colorectal Cancer: A Two-Step Mendelian Randomization Study. Biomedicines, 13(10), 2433. https://doi.org/10.3390/biomedicines13102433