Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds
Abstract
1. Introduction
2. Monoamine Receptor Modulators
2.1. TAAR1 Agonists
2.2. Dopaminergic and Serotoninergic Partial Agonists or Antagonists
3. Serotoninergic Antagonists and Partial Agonists
Drug | Mechanism of Action | Most Relevant Preclinical or Clinical Trials |
---|---|---|
AVN-211 (CD-008-0173, Avisetron) | 5-HT6 antagonist | [58,59] (phase II) |
Lu AE58054 (idalopirdine) | 5-HT6 antagonist | NCT00810667 (phase II) |
SB-742457 (intepirdine) | 5-HT6 antagonist | [62] (preclinical) |
WAY-181187 | 5-HT6 agonist | [62] (preclinical) |
SYN-120 (RO5025181, landipirdine) | 5-HT6 and 5-HT2 antagonist | NCT02258152 (phase II) |
Masupirdine (SUVN-502) | 5-HT6 antagonist | NCT02580305 (phase II) NCT05397639 (phase III) |
4. Glutamate Modulators
5. Muscarinic Modulators
6. Modulators of the Endocannabinoid System
7. Mixed/Other Receptors Modulators
8. Phosphodiesterase (PDE) Inhibitors
9. D-Amino Acid Oxidase (DAAO) Enzyme Inhibitors
10. Conclusions
11. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Haddad, P.M.; Correll, C.U. The Acute Efficacy of Antipsychotics in Schizophrenia: A Review of Recent Meta-Analyses. Ther. Adv. Psychopharmacol. 2018, 8, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Ceraso, A.; Lin, J.J.; Schneider-Thoma, J.; Siafis, S.; Tardy, M.; Komossa, K.; Heres, S.; Kissling, W.; Davis, J.M.; Leucht, S. Maintenance Treatment with Antipsychotic Drugs for Schizophrenia. Cochrane Database Syst. Rev. 2020, 8, CD008016. [Google Scholar] [CrossRef]
- Li, S.; Xu, C.; Hu, S.; Lai, J. Efficacy and Tolerability of FDA-Approved Atypical Antipsychotics for the Treatment of Bipolar Depression: A Systematic Review and Network Meta-Analysis. Eur. Psychiatry 2024, 67, e29. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez, L.; Burton, D.J.; Leonards, C.A.; Davey, C.G. Effectiveness of Atypical Antipsychotics for Unipolar and Bipolar Depression in Adolescents and Young Adults: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2023, 339, 633–639. [Google Scholar] [CrossRef] [PubMed]
- McKean, A.; Monasterio, E. Indications of Atypical Antipsychotics in the Elderly. Expert Rev. Clin. Pharmacol. 2015, 8, 5–7. [Google Scholar] [CrossRef]
- Candon, M.; Shen, S.; Fadeyibi, O.; Smith, J.L.; Rothbard, A. Trends in Antipsychotic Prescribing for Approved and Unapproved Indications to Medicaid-Enrolled Youth in Philadelphia, Pennsylvania between 2014 and 2018. BMC Psychiatry 2021, 21, 524. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Priller, J.; Davis, J.M. Antipsychotic Drugs: A Concise Review of History, Classification, Indications, Mechanism, Efficacy, Side Effects, Dosing, and Clinical Application. Am. J. Psychiatry 2024, 181, 865–878. [Google Scholar] [CrossRef] [PubMed]
- López-Muñoz, F.; Alamo, C.; cuenca, E.; Shen, W.; Clervoy, P.; Rubio, G. History of the Discovery and Clinical Introduction of Chlorpromazine. Ann. Clin. Psychiatry 2005, 17, 113–135. [Google Scholar] [CrossRef] [PubMed]
- Schotte, A.; Janssen, P.F.M.; Gommeren, W.; Luyten, W.H.M.L.; Van Gompel, P.; Lesage, A.S.; De Loore, K.; Leysen, J.E. Risperidone Compared with New and Reference Antipsychotic Drugs: In Vitro and in Vivo Receptor Binding. Psychopharmacology 1996, 124, 57–73. [Google Scholar] [CrossRef]
- Grinchii, D.; Dremencov, E. Mechanism of Action of Atypical Antipsychotic Drugs in Mood Disorders. Int. J. Mol. Sci. 2020, 21, 9532. [Google Scholar] [CrossRef] [PubMed]
- Scarselli, M.; Armogida, M.; Chiacchio, S.; DeMontis, M.G.; Colzi, A.; Corsini, G.U.; Maggio, R. Reconstitution of Functional Dopamine D2s Receptor by Co-Expression of Amino- and Carboxyl-Terminal Receptor Fragments. Eur. J. Pharmacol. 2000, 397, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Scarselli, M.; Annibale, P.; Gerace, C.; Radenovic, A. Enlightening G-Protein-Coupled Receptors on the Plasma Membrane Using Super-Resolution Photoactivated Localization Microscopy. Biochem. Soc. Trans. 2013, 41, 191–196. [Google Scholar] [CrossRef]
- Aringhieri, S.; Carli, M.; Kolachalam, S.; Verdesca, V.; Cini, E.; Rossi, M.; McCormick, P.J.; Corsini, G.U.; Maggio, R.; Scarselli, M. Molecular Targets of Atypical Antipsychotics: From Mechanism of Action to Clinical Differences. Pharmacol. Ther. 2018, 192, 20–41. [Google Scholar] [CrossRef]
- Vasiliu, O. Third-Generation Antipsychotics in Patients with Schizophrenia and Non-Responsivity or Intolerance to Clozapine Regimen: What Is the Evidence? Front. Psychiatry 2022, 13, 1069432. [Google Scholar] [CrossRef]
- Nucifora, F.C.; Woznica, E.; Lee, B.J.; Cascella, N.; Sawa, A. Treatment Resistant Schizophrenia: Clinical, Biological, and Therapeutic Perspectives. Neurobiol. Dis. 2019, 131, 104257. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S. Clozapine Resistant Schizophrenia: Newer Avenues of Management. World J. Psychiatry 2021, 11, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Lu, L.; Zhang, L.; Zhang, Y.-S.; Ng, C.H.; Ungvari, G.S.; Li, G.; Meng, X.; Wang, G.; Xiang, Y.-T. Quality of Life in Schizophrenia: A Meta-Analysis of Comparative Studies. Psychiatr. Q. 2019, 90, 519–532. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Papanastasiou, E.; Stahl, D.; Rocchetti, M.; Carpenter, W.; Shergill, S.; McGuire, P. Treatments of Negative Symptoms in Schizophrenia: Meta-Analysis of 168 Randomized Placebo-Controlled Trials. Schizophr. Bull. 2015, 41, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, S.; Mucci, A.; Buchanan, R.W.; Arango, C. Negative Symptoms of Schizophrenia: New Developments and Unanswered Research Questions. Lancet Psychiatry 2018, 5, 664–677. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Keefe, R.S.E.; McGuire, P.K. Cognitive Impairment in Schizophrenia: Aetiology, Pathophysiology, and Treatment. Mol. Psychiatry 2023, 28, 1902–1918. [Google Scholar] [CrossRef]
- Monteleone, P.; Cascino, G.; Rossi, A.; Rocca, P.; Bertolino, A.; Aguglia, E.; Amore, M.; Andriola, I.; Bellomo, A.; Biondi, M.; et al. Evolution of Antipsychotic-Induced Extrapyramidal Symptoms in Patients with Schizophrenia in the Real-Life: A 4-Year Follow-up Naturalistic Study. Schizophr. Res. 2022, 248, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Dedic, N.; Dworak, H.; Zeni, C.; Rutigliano, G.; Howes, O.D. Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int. J. Mol. Sci. 2021, 22, 13185. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.D. Mammalian Central Nervous System Trace Amines. Pharmacologic Amphetamines, Physiologic Neuromodulators. J. Neurochem. 2004, 90, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; et al. Trace Amines: Identification of a Family of Mammalian G Protein-Coupled Receptors. Proc. Natl. Acad. Sci. USA 2001, 98, 8966–8971. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R.; Hoener, M.C.; Berry, M.D. Trace Amines and Their Receptors. Pharmacol. Rev. 2018, 70, 549–620. [Google Scholar] [CrossRef]
- Xiao, G.; Chen, Y.-L.; Dedic, N.; Xie, L.; Koblan, K.S.; Galluppi, G.R. In Vitro ADME and Preclinical Pharmacokinetics of Ulotaront, a TAAR1/5-HT1A Receptor Agonist for the Treatment of Schizophrenia. Pharm. Res. 2022, 39, 837–850. [Google Scholar] [CrossRef]
- Heffernan, M.L.R.; Herman, L.W.; Brown, S.; Jones, P.G.; Shao, L.; Hewitt, M.C.; Campbell, J.E.; Dedic, N.; Hopkins, S.C.; Koblan, K.S.; et al. Ulotaront: A TAAR1 Agonist for the Treatment of Schizophrenia. ACS Med. Chem. Lett. 2022, 13, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Dedic, N.; Jones, P.G.; Hopkins, S.C.; Lew, R.; Shao, L.; Campbell, J.E.; Spear, K.L.; Large, T.H.; Campbell, U.C.; Hanania, T.; et al. SEP-363856, a Novel Psychotropic Agent with a Unique, Non-D2 Receptor Mechanism of Action. J. Pharmacol. Exp. Ther. 2019, 371, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Asif-Malik, A.; Hoener, M.C.; Canales, J.J. Interaction Between the Trace Amine-Associated Receptor 1 and the Dopamine D2 Receptor Controls Cocaine’s Neurochemical Actions. Sci. Rep. 2017, 7, 13901. [Google Scholar] [CrossRef] [PubMed]
- Rutigliano, G.; Zucchi, R. Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell. Mol. Neurobiol. 2020, 40, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Koblan, K.S.; Kent, J.; Hopkins, S.C.; Krystal, J.H.; Cheng, H.; Goldman, R.; Loebel, A. A Non–D2-Receptor-Binding Drug for the Treatment of Schizophrenia. N. Engl. J. Med. 2020, 382, 1497–1506. [Google Scholar] [CrossRef]
- Correll, C.U.; Koblan, K.S.; Hopkins, S.C.; Li, Y.; Dworak, H.; Goldman, R.; Loebel, A. Safety and Effectiveness of Ulotaront (SEP-363856) in Schizophrenia: Results of a 6-Month, Open-Label Extension Study. NPJ Schizophr. 2021, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Galluppi, G.R.; Polhamus, D.G.; Fisher, J.M.; Hopkins, S.C.; Koblan, K.S. Population Pharmacokinetic Analysis of Ulotaront in Subjects with Schizophrenia. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, S.H.; Goldstein, M.; Pahwa, R.; Singer, C.; Klos, K.; Pucci, M.; Zhang, Y.; Crandall, D.; Koblan, K.S.; Navia, B. Ulotaront, a Trace Amine-Associated Receptor 1/Serotonin 5-HT 1A Agonist, in Patients With Parkinson Disease Psychosis. Neurol. Clin. Pract. 2023, 13, e200175. [Google Scholar] [CrossRef]
- Ågren, R.; Betari, N.; Saarinen, M.; Zeberg, H.; Svenningsson, P.; Sahlholm, K. In Vitro Comparison of Ulotaront (SEP-363856) and Ralmitaront (RO6889450): Two TAAR1 Agonist Candidate Antipsychotics. Int. J. Neuropsychopharmacol. 2023, 26, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Li, J.-X. Potential of Ligands for Trace Amine-Associated Receptor 1 (TAAR1) in the Management of Substance Use Disorders. CNS Drugs 2021, 35, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Seaman, R.; Johnson, B.; Wu, R.; Vu, J.; Tian, J.; Zhang, Y.; Li, J. Activation of Trace Amine-Associated Receptor 1 Selectively Attenuates the Reinforcing Effects of Morphine. Br. J. Pharmacol. 2021, 178, 933–945. [Google Scholar] [CrossRef]
- Alnefeesi, Y.; Tamura, J.K.; Lui, L.M.W.; Jawad, M.Y.; Ceban, F.; Ling, S.; Nasri, F.; Rosenblat, J.D.; McIntyre, R.S. Trace Amine-Associated Receptor 1 (TAAR1): Potential Application in Mood Disorders: A Systematic Review. Neurosci. Biobehav. Rev. 2021, 131, 192–210. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, R.; Li, J.-X. TAAR1 as an Emerging Target for the Treatment of Psychiatric Disorders. Pharmacol. Ther. 2024, 253, 108580. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhang, J.; Feng, J.; Ge, J.; Zou, Y.; Chen, Y.; Xu, L.; Zeng, Y.; Li, J.-X.; Liu, J. Activation of Trace Amine-Associated Receptor 1 Ameliorates PTSD-like Symptoms. Biochem. Pharmacol. 2024, 228, 116236. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, L.; Kwon, S.; Huang, M.; Michael, E.; Bhat, L.; Cantillon, M.; Meltzer, H.Y. RP5063, an Atypical Antipsychotic Drug with a Unique Pharmacologic Profile, Improves Declarative Memory and Psychosis in Mouse Models of Schizophrenia. Behav. Brain Res. 2017, 332, 180–199. [Google Scholar] [CrossRef] [PubMed]
- Neill, J.C.; Grayson, B.; Kiss, B.; Gyertyán, I.; Ferguson, P.; Adham, N. Effects of Cariprazine, a Novel Antipsychotic, on Cognitive Deficit and Negative Symptoms in a Rodent Model of Schizophrenia Symptomatology. Eur. Neuropsychopharmacol. 2016, 26, 3–14. [Google Scholar] [CrossRef]
- Miyauchi, M.; Neugebauer, N.M.; Meltzer, H.Y. Dopamine D 4 Receptor Stimulation Contributes to Novel Object Recognition: Relevance to Cognitive Impairment in Schizophrenia. J. Psychopharmacol. 2017, 31, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Cantillon, M.; Prakash, A.; Alexander, A.; Ings, R.; Sweitzer, D.; Bhat, L. Dopamine Serotonin Stabilizer RP5063: A Randomized, Double-Blind, Placebo-Controlled Multicenter Trial of Safety and Efficacy in Exacerbation of Schizophrenia or Schizoaffective Disorder. Schizophr. Res. 2017, 189, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Cosi, C.; Martel, J.-C.; Auclair, A.L.; Collo, G.; Cavalleri, L.; Heusler, P.; Leriche, L.; Gaudoux, F.; Sokoloff, P.; Moser, P.C.; et al. Pharmacology Profile of F17464, a Dopamine D3 Receptor Preferential Antagonist. Eur. J. Pharmacol. 2021, 890, 173635. [Google Scholar] [CrossRef] [PubMed]
- Sokoloff, P.; Le Foll, B. The Dopamine D3 Receptor, a Quarter Century Later. Eur. J. Neurosci. 2017, 45, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Millan, M.J.; Fone, K.; Steckler, T.; Horan, W.P. Negative Symptoms of Schizophrenia: Clinical Characteristics, Pathophysiological Substrates, Experimental Models and Prospects for Improved Treatment. Eur. Neuropsychopharmacol. 2014, 24, 645–692. [Google Scholar] [CrossRef] [PubMed]
- Bitter, I.; Lieberman, J.A.; Gaudoux, F.; Sokoloff, P.; Groc, M.; Chavda, R.; Delsol, C.; Barthe, L.; Brunner, V.; Fabre, C.; et al. Randomized, Double-Blind, Placebo-Controlled Study of F17464, a Preferential D3 Antagonist, in the Treatment of Acute Exacerbation of Schizophrenia. Neuropsychopharmacology 2019, 44, 1917–1924. [Google Scholar] [CrossRef]
- Wu, J.; Kwan, A.T.; Rhee, T.G.; Ho, R.; d’Andrea, G.; Martinotti, G.; Teopiz, K.M.; Ceban, F.; McIntyre, R.S. A Narrative Review of Non-Racemic Amisulpride (SEP-4199) for Treatment of Depressive Symptoms in Bipolar Disorder and LB-102 for Treatment of Schizophrenia. Expert. Rev. Clin. Pharmacol. 2023, 16, 1085–1092. [Google Scholar] [CrossRef]
- Biernat, L.; Grattan, V.T.; Hixon, M.S.; Prensky, Z.; Vaino, A.R. A Randomized, Double-Blind, Placebo Controlled, Phase 1 Study of the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of LB-102, a Selective Dopamine D2/3/5-HT7 Inhibitor. Psychopharmacology 2022, 239, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Glatard, A.; Guidi, M.; Delacrétaz, A.; Dubath, C.; Grosu, C.; Laaboub, N.; von Gunten, A.; Conus, P.; Csajka, C.; Eap, C.B. Amisulpride: Real-World Evidence of Dose Adaptation and Effect on Prolactin Concentrations and Body Weight Gain by Pharmacokinetic/Pharmacodynamic Analyses. Clin. Pharmacokinet. 2020, 59, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.; Dyer, M.; Schroeder, E.; D’Souza, M.S. Invega Hafyera (Paliperidone Palmitate): Extended-Release Injectable Suspension for Patients With Schizophrenia. J. Pharm. Technol. 2023, 39, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.; Taylor, D. Newer Formulations of Risperidone: Role in the Management of Psychotic Disorders. CNS Drugs 2020, 34, 841–852. [Google Scholar] [CrossRef]
- Selvaraj, S.; Arnone, D.; Cappai, A.; Howes, O. Alterations in the Serotonin System in Schizophrenia: A Systematic Review and Meta-Analysis of Postmortem and Molecular Imaging Studies. Neurosci. Biobehav. Rev. 2014, 45, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Quednow, B.B.; Geyer, M.A.; Halberstadt, A.L. Serotonin and Schizophrenia. In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2020; pp. 711–743. [Google Scholar]
- Tsegay, E.W.; Demise, D.G.; Hailu, N.A.; Gufue, Z.H. Serotonin Type 6 and 7 Receptors as a Novel Therapeutic Target for the Treatment of Schizophrenia. Neuropsychiatr. Dis. Treat. 2020, 16, 2499–2509. [Google Scholar] [CrossRef] [PubMed]
- Morozova, M.A.; Lepilkina, T.A.; Rupchev, G.E.; Beniashvily, A.G.; Burminskiy, D.S.; Potanin, S.S.; Bondarenko, E.V.; Kazey, V.I.; Lavrovsky, Y.; Ivachtchenko, A.V. Add-on Clinical Effects of Selective Antagonist of 5HT6 Receptors AVN-211 (CD-008-0173) in Patients with Schizophrenia Stabilized on Antipsychotic Treatment: Pilot Study. CNS Spectr. 2014, 19, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Morozova, M.; Burminskiy, D.; Rupchev, G.; Lepilkina, T.; Potanin, S.; Beniashvili, A.; Lavrovsky, Y.; Vostokova, N.; Ivaschenko, A. 5-HT6 Receptor Antagonist as an Adjunct Treatment Targeting Residual Symptoms in Patients With Schizophrenia. J. Clin. Psychopharmacol. 2017, 37, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Arnt, J.; Bang-Andersen, B.; Grayson, B.; Bymaster, F.P.; Cohen, M.P.; DeLapp, N.W.; Giethlen, B.; Kreilgaard, M.; McKinzie, D.L.; Neill, J.C.; et al. Lu AE58054, a 5-HT6 Antagonist, Reverses Cognitive Impairment Induced by Subchronic Phencyclidine in a Novel Object Recognition Test in Rats. Int. J. Neuropsychopharmacol. 2010, 13, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Nirogi, R.; Jayarajan, P.; Shinde, A.; Mohammed, A.R.; Grandhi, V.R.; Benade, V.; Goyal, V.K.; Abraham, R.; Jasti, V.; Cummings, J. Progress in Investigational Agents Targeting Serotonin-6 Receptors for the Treatment of Brain Disorders. Biomolecules 2023, 13, 309. [Google Scholar] [CrossRef] [PubMed]
- Wesolowska, A.; Rychtyk, J.; Gdula-Argasinska, J.; Gorecka, K.; Wilczynska-Zawal, N.; Jastrzebska-Więsek, M.; Partyka, A. Effect of 5-HT6 Receptor Ligands Combined with Haloperidol or Risperidone on Antidepressant-/Anxiolytic-Like Behavior and BDNF Regulation in Hippocampus and Prefrontal Cortex of Rats. Neuropsychiatr. Dis. Treat. 2021, 17, 2105–2127. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, H.H.; Weintraub, D.; Macklin, E.; Litvan, I.; Schwarzschild, M.A.; Eberling, J.; Videnovic, A.; Kenney, C.J. Safety, Tolerability, and Preliminary Efficacy of SYN120, a Dual 5-HT6/5-HT2A Antagonist, for the Treatment of Parkinson Disease Dementia: A Randomized, Controlled, Proof-of-Concept Trial. Park. Relat. Disord. 2023, 114, 105511. [Google Scholar] [CrossRef]
- Nirogi, R.; Jayarajan, P.; Benade, V.; Shinde, A.; Goyal, V.K.; Jetta, S.; Ravula, J.; Abraham, R.; Grandhi, V.R.; Subramanian, R.; et al. Potential Beneficial Effects of Masupirdine (SUVN-502) on Agitation/Aggression and Psychosis in Patients with Moderate Alzheimer’s Disease: Exploratory Post Hoc Analyses. Int. J. Geriatr. Psychiatry 2022, 37, 1–12. [Google Scholar] [CrossRef]
- Swanson, C.J.; Bures, M.; Johnson, M.P.; Linden, A.-M.; Monn, J.A.; Schoepp, D.D. Metabotropic Glutamate Receptors as Novel Targets for Anxiety and Stress Disorders. Nat. Rev. Drug Discov. 2005, 4, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Rorick-Kehn, L.M.; Johnson, B.G.; Burkey, J.L.; Wright, R.A.; Calligaro, D.O.; Marek, G.J.; Nisenbaum, E.S.; Catlow, J.T.; Kingston, A.E.; Giera, D.D.; et al. Pharmacological and Pharmacokinetic Properties of a Structurally Novel, Potent, and Selective Metabotropic Glutamate 2/3 Receptor Agonist: In Vitro Characterization of Agonist (–)-(1R,4S,5S,6S)-4-Amino-2-sulfonylbicyclo[3.1.0]-hexane-4,6-dicarboxylic Acid (LY404039). J. Pharmacol. Exp. Ther. 2007, 321, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Marek, G. When Is a Proof-of-Concept (POC) Not a POC? Pomaglumetad (LY2140023) as a Case Study for Antipsychotic Efficacy. Curr. Pharm. Des. 2015, 21, 3788–3796. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.H.; Zhang, L.; Millen, B.A.; Kinon, B.J.; Gomez, J.-C. Pomaglumetad Methionil (LY2140023 Monohydrate) and Aripiprazole in Patients with Schizophrenia: A Phase 3, Multicenter, Double-Blind Comparison. Schizophr. Res. Treat. 2014, 2014, 758212. [Google Scholar] [CrossRef]
- Kinon, B.J.; Millen, B.A.; Zhang, L.; McKinzie, D.L. Exploratory Analysis for a Targeted Patient Population Responsive to the Metabotropic Glutamate 2/3 Receptor Agonist Pomaglumetad Methionil in Schizophrenia. Biol. Psychiatry 2015, 78, 754–762. [Google Scholar] [CrossRef]
- Sonnenschein, S.F.; Grace, A.A. The MGluR2/3 Agonist Pomaglumetad Methionil Normalizes Aberrant Dopamine Neuron Activity via Action in the Ventral Hippocampus. Neuropsychopharmacology 2020, 45, 2106–2113. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, K.; Ochi, M.; Iwata, K.; Fukasawa, M.; Yamaguchi, J. Preclinical Disposition of MGS0274 Besylate, a Prodrug of a Potent Group II Metabotropic Glutamate Receptor Agonist MGS0008 for the Treatment of Schizophrenia. Pharmacol. Res. Perspect. 2019, 7, e00520. [Google Scholar] [CrossRef]
- Watanabe, M.; Marcy, B.; Kinoshita, K.; Fukasawa, M.; Hikichi, H.; Chaki, S.; Okuyama, S.; Gevorkyan, H.; Yoshida, S. Safety and Pharmacokinetic Profiles of MGS0274 Besylate (TS-134), a Novel Metabotropic Glutamate 2/3 Receptor Agonist Prodrug, in Healthy Subjects. Br. J. Clin. Pharmacol. 2020, 86, 2286–2301. [Google Scholar] [CrossRef]
- Kantrowitz, J.T.; Grinband, J.; Goff, D.C.; Lahti, A.C.; Marder, S.R.; Kegeles, L.S.; Girgis, R.R.; Sobeih, T.; Wall, M.M.; Choo, T.-H.; et al. Proof of Mechanism and Target Engagement of Glutamatergic Drugs for the Treatment of Schizophrenia: RCTs of Pomaglumetad and TS-134 on Ketamine-Induced Psychotic Symptoms and PharmacoBOLD in Healthy Volunteers. Neuropsychopharmacology 2020, 45, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Hahn, M.K.; Bansal, Y.; Agarwal, S.M.; Remington, G. Evenamide: A Potential Pharmacotherapeutic Alternative for Treatment-Resistant Schizophrenia. Int. J. Neuropsychopharmacol. 2024, 27, pyae005. [Google Scholar] [CrossRef]
- Anand, R.; Turolla, A.; Chinellato, G.; Roy, A.; Hartman, R.D. Phase 2 Results Indicate Evenamide, A Selective Modulator of Glutamate Release, Is Associated With Clinically Important Long-Term Efficacy When Added to an Antipsychotic in Patients With Treatment-Resistant Schizophrenia. Int. J. Neuropsychopharmacol. 2023, 26, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Rosenbrock, H.; Desch, M.; Wunderlich, G. Development of the Novel GlyT1 Inhibitor, Iclepertin (BI 425809), for the Treatment of Cognitive Impairment Associated with Schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 273, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Fleischhacker, W.W.; Podhorna, J.; Gröschl, M.; Hake, S.; Zhao, Y.; Huang, S.; Keefe, R.S.E.; Desch, M.; Brenner, R.; Walling, D.P.; et al. Efficacy and Safety of the Novel Glycine Transporter Inhibitor BI 425809 Once Daily in Patients with Schizophrenia: A Double-Blind, Randomised, Placebo-Controlled Phase 2 Study. Lancet Psychiatry 2021, 8, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.J.; Bryant, Z.K.; Conn, P.J. Targeting Muscarinic Receptors to Treat Schizophrenia. Behav. Brain Res. 2021, 405, 113201. [Google Scholar] [CrossRef] [PubMed]
- Torjesen, I. Schizophrenia: US Approves First New Treatment in Decades. BMJ 2024, 386, q2133. [Google Scholar] [CrossRef]
- Shannon, H.E.; Bymaster, F.P.; Calligaro, D.O.; Greenwood, B.; Mitch, C.H.; Sawyer, B.D.; Ward, J.S.; Wong, D.T.; Olesen, P.H.; Sheardown, M.J.; et al. Xanomeline: A Novel Muscarinic Receptor Agonist with Functional Selectivity for M1 Receptors. J. Pharmacol. Exp. Ther. 1994, 269, 271–281. [Google Scholar] [PubMed]
- Kaul, I.; Sawchak, S.; Correll, C.U.; Kakar, R.; Breier, A.; Zhu, H.; Miller, A.C.; Paul, S.M.; Brannan, S.K. Efficacy and Safety of the Muscarinic Receptor Agonist KarXT (Xanomeline–Trospium) in Schizophrenia (EMERGENT-2) in the USA: Results from a Randomised, Double-Blind, Placebo-Controlled, Flexible-Dose Phase 3 Trial. Lancet 2024, 403, 160–170. [Google Scholar] [CrossRef]
- Bymaster, F.P.; Whitesitt, C.A.; Shannon, H.E.; DeLapp, N.; Ward, J.S.; Calligaro, D.O.; Shipley, L.A.; Buelke-Sam, J.L.; Bodick, N.C.; Farde, L.; et al. Xanomeline: A Selective Muscarinic Agonist for the Treatment of Alzheimer’s Disease. Drug Dev. Res. 1997, 40, 158–170. [Google Scholar] [CrossRef]
- Staskin, D.; Kay, G.; Tannenbaum, C.; Goldman, H.B.; Bhashi, K.; Ling, J.; Oefelein, M.G. Trospium Chloride Has No Effect on Memory Testing and Is Assay Undetectable in the Central Nervous System of Older Patients with Overactive Bladder. Int. J. Clin. Pract. 2010, 64, 1294–1300. [Google Scholar] [CrossRef]
- Breier, A.; Brannan, S.K.; Paul, S.M.; Miller, A.C. Evidence of Trospium’s Ability to Mitigate Cholinergic Adverse Events Related to Xanomeline: Phase 1 Study Results. Psychopharmacology 2023, 240, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Brannan, S.K.; Sawchak, S.; Miller, A.C.; Lieberman, J.A.; Paul, S.M.; Breier, A. Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N. Engl. J. Med. 2021, 384, 717–726. [Google Scholar] [CrossRef]
- Kaul, I.; Sawchak, S.; Claxton, A.; Sauder, C.; Hassman, H.H.; Kakar, R.; Walling, D.P.; Citrome, L.; Zhu, H.; Miller, A.C.; et al. Efficacy of Xanomeline and Trospium Chloride in Schizophrenia: Pooled Results from Three 5-Week, Randomized, Double-Blind, Placebo-Controlled, EMERGENT Trials. Schizophrenia 2024, 10, 102. [Google Scholar] [CrossRef]
- Krystal, J.H.; Kane, J.M.; Correll, C.U.; Walling, D.P.; Leoni, M.; Duvvuri, S.; Patel, S.; Chang, I.; Iredale, P.; Frohlich, L.; et al. Emraclidine, a Novel Positive Allosteric Modulator of Cholinergic M4 Receptors, for the Treatment of Schizophrenia: A Two-Part, Randomised, Double-Blind, Placebo-Controlled, Phase 1b Trial. Lancet 2022, 400, 2210–2220. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.C.; Huckstep, K.L.; Becker, H.C.; Langmead, C.J.; Lawrence, A.J. Targeting Muscarinic Receptors for the Treatment of Alcohol Use Disorders: Opportunities and Hurdles for Clinical Development. Br. J. Pharmacol. 2024, 181, 4385–4398. [Google Scholar] [CrossRef] [PubMed]
- Yohn, S.E.; Harvey, P.D.; Brannan, S.K.; Horan, W.P. The Potential of Muscarinic M1 and M4 Receptor Activators for the Treatment of Cognitive Impairment Associated with Schizophrenia. Front. Psychiatry 2024, 15, 1421554. [Google Scholar] [CrossRef] [PubMed]
- Müller-Vahl, K.R.; Emrich, H.M. Cannabis and Schizophrenia: Towards a Cannabinoid Hypothesis of Schizophrenia. Expert Rev. Neurother. 2008, 8, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkötter, J.; Hellmich, M.; Koethe, D. Cannabidiol Enhances Anandamide Signaling and Alleviates Psychotic Symptoms of Schizophrenia. Transl. Psychiatry 2012, 2, e94. [Google Scholar] [CrossRef] [PubMed]
- Martinez Naya, N.; Kelly, J.; Corna, G.; Golino, M.; Abbate, A.; Toldo, S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023, 28, 5980. [Google Scholar] [CrossRef]
- Schoevers, J.; Leweke, J.E.; Leweke, F.M. Cannabidiol as a Treatment Option for Schizophrenia: Recent Evidence and Current Studies. Curr. Opin. Psychiatry 2020, 33, 185–191. [Google Scholar] [CrossRef] [PubMed]
- McGuire, P.; Robson, P.; Cubala, W.J.; Vasile, D.; Morrison, P.D.; Barron, R.; Taylor, A.; Wright, S. Cannabidiol (CBD) as an Adjunctive Therapy in Schizophrenia: A Multicenter Randomized Controlled Trial. Am. J. Psychiatry 2018, 175, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Boggs, D.L.; Surti, T.; Gupta, A.; Gupta, S.; Niciu, M.; Pittman, B.; Schnakenberg Martin, A.M.; Thurnauer, H.; Davies, A.; D’Souza, D.C.; et al. The Effects of Cannabidiol (CBD) on Cognition and Symptoms in Outpatients with Chronic Schizophrenia a Randomized Placebo Controlled Trial. Psychopharmacology 2018, 235, 1923–1932. [Google Scholar] [CrossRef]
- Meltzer, H.Y.; Arvanitis, L.; Bauer, D.; Rein, W. Placebo-Controlled Evaluation of Four Novel Compounds for the Treatment of Schizophrenia and Schizoaffective Disorder. Am. J. Psychiatry 2004, 161, 975–984. [Google Scholar] [CrossRef]
- Boggs, D.L.; Kelly, D.L.; McMahon, R.P.; Gold, J.M.; Gorelick, D.A.; Linthicum, J.; Conley, R.R.; Liu, F.; Waltz, J.; Huestis, M.A.; et al. Rimonabant for Neurocognition in Schizophrenia: A 16-Week Double Blind Randomized Placebo Controlled Trial. Schizophr. Res. 2012, 134, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Saoud, J.; Staner, C.; Noel, N.; Luthringer, E.; Werner, S.; Reilly, J.; Schaffhauser, J.-Y.; Rabinowitz, J.; Weiser, M.; et al. Efficacy and Safety of MIN-101: A 12-Week Randomized, Double-Blind, Placebo-Controlled Trial of a New Drug in Development for the Treatment of Negative Symptoms in Schizophrenia. Am. J. Psychiatry 2017, 174, 1195–1202. [Google Scholar] [CrossRef]
- Davidson, M.; Saoud, J.; Staner, C.; Noel, N.; Werner, S.; Luthringer, E.; Walling, D.; Weiser, M.; Harvey, P.D.; Strauss, G.P.; et al. Efficacy and Safety of Roluperidone for the Treatment of Negative Symptoms of Schizophrenia. Schizophr. Bull. 2022, 48, 609–619. [Google Scholar] [CrossRef]
- James, S.H.; Ahmed, A.O.; Harvey, P.D.; Saoud, J.B.; Davidson, M.; Kuchibhatla, R.; Luthringer, R.; Strauss, G.P. Network Intervention Analysis Indicates That Roluperidone Achieves Its Effect on Negative Symptoms of Schizophrenia by Targeting Avolition. Eur. Neuropsychopharmacol. 2024, 87, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, J.; Staner, C.; Saoud, J.; Weiser, M.; Kuchibhatla, R.; Davidson, M.; Harvey, P.D.; Luthringer, R. Long-Term Effects of Roluperidone on Negative Symptoms of Schizophrenia. Schizophr. Res. 2023, 255, 9–13. [Google Scholar] [CrossRef]
- Khoury, R.; Marx, C.; Mirgati, S.; Velury, D.; Chakkamparambil, B.; Grossberg, G.T. AVP-786 as a Promising Treatment Option for Alzheimer’s Disease Including Agitation. Expert Opin. Pharmacother. 2021, 22, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Thomas, K.L.; Lucke-Wold, B.P.; Cavendish, J.Z.; Crowe, M.S.; Matsumoto, R.R. Dextromethorphan: An Update on Its Utility for Neurological and Neuropsychiatric Disorders. Pharmacol. Ther. 2016, 159, 1–22. [Google Scholar] [CrossRef]
- Schiffer, H.; Atienza, J.; Reichard, H.; Mulligan, V.; Cilia, J.; Monenschein, H.; Collia, D.; Ray, J.; Kilpatrick, G.; Brice, N.; et al. S180. The selective GPR139 agonist TAK-041 reverses anhedonia and social interaction deficits in rodent models related to negative symptoms in schizophrenia. Schizophr. Bull. 2020, 46, S106–S107. [Google Scholar] [CrossRef]
- Münster, A.; Sommer, S.; Kúkeľová, D.; Sigrist, H.; Koros, E.; Deiana, S.; Klinder, K.; Baader-Pagler, T.; Mayer-Wrangowski, S.; Ferger, B.; et al. Effects of GPR139 Agonism on Effort Expenditure for Food Reward in Rodent Models: Evidence for pro-Motivational Actions. Neuropharmacology 2022, 213, 109078. [Google Scholar] [CrossRef]
- Chien, Y.-L.; Liu, C.-M.; Shan, J.-C.; Lee, H.-J.; Hsieh, M.H.; Hwu, H.-G.; Chiou, L.-C. Elevated Plasma Orexin A Levels in a Subgroup of Patients with Schizophrenia Associated with Fewer Negative and Disorganized Symptoms. Psychoneuroendocrinology 2015, 53, 1–9. [Google Scholar] [CrossRef]
- Glen, A.; Bürli, R.W.; Livermore, D.; Buffham, W.; Merison, S.; Rowland, A.E.; Newman, R.; Fieldhouse, C.; Miller, D.J.; Dawson, L.A.; et al. Discovery and First-Time Disclosure of CVN766, an Exquisitely Selective Orexin 1 Receptor Antagonist. Bioorg. Med. Chem. Lett. 2024, 100, 129629. [Google Scholar] [CrossRef]
- Snyder, G.L.; Vanover, K.E. PDE Inhibitors for the Treatment of Schizophrenia. In Phosphodiesterases: CNS Functions and Diseases; Springer: Cham, Switzerland, 2017; pp. 385–409. [Google Scholar]
- Bender, A.T.; Beavo, J.A. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacol. Rev. 2006, 58, 488–520. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Brandon, N. Emerging Biology of PDE10A. Curr. Pharm. Des. 2014, 21, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Walling, D.P.; Banerjee, A.; Dawra, V.; Boyer, S.; Schmidt, C.J.; DeMartinis, N. Phosphodiesterase 10A Inhibitor Monotherapy Is Not an Effective Treatment of Acute Schizophrenia. J. Clin. Psychopharmacol. 2019, 39, 575–582. [Google Scholar] [CrossRef]
- DeMartinis, N.; Lopez, R.N.; Pickering, E.H.; Schmidt, C.J.; Gertsik, L.; Walling, D.P.; Ogden, A. A Proof-of-Concept Study Evaluating the Phosphodiesterase 10A Inhibitor PF-02545920 in the Adjunctive Treatment of Suboptimally Controlled Symptoms of Schizophrenia. J. Clin. Psychopharmacol. 2019, 39, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Macek, T.A.; McCue, M.; Dong, X.; Hanson, E.; Goldsmith, P.; Affinito, J.; Mahableshwarkar, A.R. A Phase 2, Randomized, Placebo-Controlled Study of the Efficacy and Safety of TAK-063 in Subjects with an Acute Exacerbation of Schizophrenia. Schizophr. Res. 2019, 204, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Lindenberg, A.; Nielsen, J.; Such, P.; Lemming, O.M.; Zambori, J.; Buller, R.; der Goltz, C. von A Double-Blind, Randomized, Placebo-Controlled Proof of Concept Study of the Efficacy and Safety of Lu AF11167 for Persistent Negative Symptoms in People with Schizophrenia. Eur. Neuropsychopharmacol. 2022, 61, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Layton, M.E.; Kern, J.C.; Hartingh, T.J.; Shipe, W.D.; Raheem, I.; Kandebo, M.; Hayes, R.P.; Huszar, S.; Eddins, D.; Ma, B.; et al. Discovery of MK-8189, a Highly Potent and Selective PDE10A Inhibitor for the Treatment of Schizophrenia. J. Med. Chem. 2023, 66, 1157–1171. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, S.G.; Dikkes, P.; Epstein, P.M.; Rosenberg, P.A. Expression of CGMP-Specific Phosphodiesterase 9A MRNA in the Rat Brain. J. Neurosci. 2001, 21, 9068–9076. [Google Scholar] [CrossRef] [PubMed]
- van der Staay, F.J.; Rutten, K.; Bärfacker, L.; DeVry, J.; Erb, C.; Heckroth, H.; Karthaus, D.; Tersteegen, A.; van Kampen, M.; Blokland, A.; et al. The Novel Selective PDE9 Inhibitor BAY 73-6691 Improves Learning and Memory in Rodents. Neuropharmacology 2008, 55, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.; Nakagome, K.; Cordes, J.; Brenner, R.; Gründer, G.; Keefe, R.S.E.; Riesenberg, R.; Walling, D.P.; Daniels, K.; Wang, L.; et al. Evaluation of the Efficacy, Safety, and Tolerability of BI 409306, a Novel Phosphodiesterase 9 Inhibitor, in Cognitive Impairment in Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled, Phase II Trial. Schizophr. Bull. 2019, 45, 350–359. [Google Scholar] [CrossRef]
- Fradley, R.; Goetghebeur, P.; Miller, D.; Burley, R.; Almond, S.; Gruart i Massó, A.; Delgado García, J.M.; Zhu, B.; Howley, E.; Neill, J.C.; et al. Luvadaxistat: A Novel Potent and Selective D-Amino Acid Oxidase Inhibitor Improves Cognitive and Social Deficits in Rodent Models for Schizophrenia. Neurochem. Res. 2023, 48, 3027–3041. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, P.; Dong, C.; Murthy, V.; Asgharnejad, M.; Du, X.; Summerfelt, A.; Lu, H.; Xu, L.; Wendland, J.R.; Dunayevich, E.; et al. The D-Amino Acid Oxidase Inhibitor Luvadaxistat Improves Mismatch Negativity in Patients with Schizophrenia in a Randomized Trial. Neuropsychopharmacology 2023, 48, 1052–1059. [Google Scholar] [CrossRef]
- Lane, H.; Wang, S.; Lin, C. Endogenous Antioxidants Predicted Outcome and Increased after Treatment: A Benzoate Dose-finding, Randomized, Double-blind, Placebo-controlled Trial for Alzheimer’s Disease. Psychiatry Clin. Neurosci. 2023, 77, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Seetharam, J.C.; Maiti, R.; Mishra, A.; Mishra, B.R. Efficacy and Safety of Add-on Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, in Treatment of Schizophrenia: A Systematic Review and Meta-Analysis. Asian J. Psychiatr. 2022, 68, 102947. [Google Scholar] [CrossRef]
Drug | Mechanism of Action | Most Relevant Clinical Trials |
---|---|---|
Ulotaront (SEP-363856) | TAAR1 agonist 5-HT1A agonist | Eudra CT number: 2019-000697-37 (phase III) NCT04115319, Eudra CT number: 2019-002259-40 (phase III) |
Ralmitaront (RO-6889450) | TAAR1 partial agonist | NCT03669640 (phase II) NCT04512066 (phase II) |
Drug | Mechanism of Action | Most Relevant Clinical Trials |
---|---|---|
Brilaroxazine (RP5063) | D2, D3, and D4 partial agonist 5-HT1A and 5-HT2A partial agonist 5-HT2B, 5-HT6, and 5-HT7 antagonist | NCT01490086 (phase II) NCT05184335 (phase III) |
F17464 | D3 antagonist 5-HT1A partial agonist | NCT02151656 (phase II) |
N-methylamisulpride (LB-102) | D2 and D2 antagonist 5-HT7 antagonist | NCT04187560 (phase I) NCT06179108 (phase II) |
Drug | Mechanism of Action | Most Relevant Clinical Trials |
---|---|---|
Pomaglumetad methionyl (POM, LY-2140023) LY-404039 (active moiety) | mGluR2/3 agonists | NCT01328093 (phase III) NCT02919774 (phase I) |
MGS0274 besylate (TS-134) MGS0008 (active moiety) | mGluR2/3 agonists | NCT03746067 (phase I) NCT03742791 (phase I) NCT03141658 (phase I) |
Evenamide | Inhibition of voltage-gated sodium channels NMDAR regulation | NW-3509/014/II/2019 (phase II) |
Iclepertin (BI 425809) | GlyT1 inhibitor | NCT02832037 (phase II) NCT04846868 (phase III) NCT04846881 (phase III) NCT04860830 (phase III) |
Drug | Mechanism of Action | Most Relevant Clinical Trials |
---|---|---|
Xanomeline–trospium (KarXT) (Approved in September 2024) | M1 and M4 agonist (xanomeline), pan-mAChR antagonist (trospium) | NCT03697252 (phase II) NCT04659161 (phase III) NCT04738123 (phase III) |
Emraclidine (CVL-231) | M4 positive allosteric modulator | NCT04136873 (phase Ib) NCT05443724; Eudra CT number: 2022-001151-16 (phase II) |
NBI-1117568 | M4 agonist | NCT05545111 (phase II) |
ML-007 | M1 and M4 agonist | NA |
NS-136 | M4 positive allosteric modulator | NCT06345703 (phase I) |
Drug | Mechanism of Action | Most Relevant Clinical Trials |
---|---|---|
CBD GWP42003 GWP42003-P | Increased anandamide signaling Increased GABA and adenosine tone PI3K/AKT, JAK/STAT, and MAPK/ERK pathways antagonism Inhibition of pro-inflammatory mediators | NCT04421456 (phase II) NCT02006628 (phase II) NCT00588731 (phase II) NCT04411225 (phase III) NCT04105231 (phase II) NCT02926859 (phase II) |
Rimonabant (SR141716) | CB1 antagonist/inverse agonist | NCT00547118 (phase II) |
Drug | Mechanism of Action | Most Relevant Clinical Trials |
---|---|---|
Roluperidone (MIN-101) | 5-HT2A antagonist σ2 antagonist α1A antagonist | NCT03397134 (phase III) |
Deudextromethorphan/quinidin | σ1 agonist SNRI NMDA uncompetitive antagonist mAChR agonist nicotinic α3β4 antagonist | NCT03896945 (phase II/III) [terminated] |
TAK-041 | GPR139 agonist | NCT03319953 (phase II) |
CVN766 | Ox1R antagonist | [108] (preclinical) NCT05105243 (phase I) |
Drug | Mechanism of Action | Most Relevant Clinical Trials |
---|---|---|
PF-02545920 | PDE10A inhibitor | NCT01175135 (phase II) NCT01939548 (phase Ib) NCT01829048 (phase II) |
TAK-063 | PDE10A inhibitor | NCT02477020 (phase II) |
Lu AF11167 | PDE10A inhibitor | NCT03793712 (phase II) [terminated] NCT03929497 (phase II) [terminated] |
MK-8189 | PDE10A inhibitor | NCT05406440 (phase I) NCT04624243 (phase IIb) |
BI-409306 (osoresnontrine) | PDE9 inhibitor | NCT02281773 (phase II) |
Drug | Mechanism of Action | Most Relevant Clinical Trials |
---|---|---|
Luvadaxistat (TAK-831) | DAAO inhibitor | NCT03359785 (phase II) NCT05182476 (phase II) |
Sodium benzoate | DAAO inhibitor | ACTRN12621000327886 (phase II) NCT03510741 (phase II) NCT06340789 (phase II) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biso, L.; Carli, M.; Scarselli, M.; Longoni, B. Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds. Biomedicines 2025, 13, 85. https://doi.org/10.3390/biomedicines13010085
Biso L, Carli M, Scarselli M, Longoni B. Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds. Biomedicines. 2025; 13(1):85. https://doi.org/10.3390/biomedicines13010085
Chicago/Turabian StyleBiso, Letizia, Marco Carli, Marco Scarselli, and Biancamaria Longoni. 2025. "Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds" Biomedicines 13, no. 1: 85. https://doi.org/10.3390/biomedicines13010085
APA StyleBiso, L., Carli, M., Scarselli, M., & Longoni, B. (2025). Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds. Biomedicines, 13(1), 85. https://doi.org/10.3390/biomedicines13010085