Harnessing the Power of AI to Improve Detection, Monitoring, and Public Health Interventions for Japanese Encephalitis
Abstract
:1. Introduction
2. Importance and Challenges with Current Surveillance of JEV
3. AI and Current Machine-Learning Models for JEV
4. Strategies to Further Develop and Improve AI Tools Through Mechanistic Modeling
5. Ethical Considerations and Design of Future AI Tools
6. Discussion: Implementation of Next-Generation AI Tools and Future Studies
6.1. Support from Government Regulation
6.2. Implementation in Public Health Systems
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Connell, J. ‘Like Shells off the Beach’. Climate Change and Health in Australia. In Climate Change and Human Health Scenarios: International Case Studies; Akhtar, R., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 15–31. [Google Scholar]
- van den Hurk, A.F.; Skinner, E.; Ritchie, S.A.; Mackenzie, J.S. The Emergence of Japanese Encephalitis Virus in Australia in 2022: Existing Knowledge of Mosquito Vectors. Viruses 2022, 14, 1208. [Google Scholar] [CrossRef]
- Kwa, F.A.A.; Kendal, E.; Xiao, J. An Overview of Japanese Encephalitis in Australia: Trends, Impact and Interventions. Appl. Sci. 2023, 13, 9184. [Google Scholar] [CrossRef]
- Marsland, M.J.; Thomson, T.N.; O’Brien, H.M.; Peach, E.; Bellette, J.; Humphreys, N.; McKeon, C.-A.; Cross, W.; Moso, M.A.; Batty, M.; et al. Serosurvey for Japanese Encephalitis Virus Antibodies Following an Outbreak in an Immunologically Naïve Population, Victoria, 2022: A Cross-sectional Study. MJA 2024, 220, 566–572. [Google Scholar] [CrossRef]
- McGuinness, S.L.; Lau, C.L.; Leder, K. Co-circulation of Murray Valley Encephalitis Virus and Japanese Encephalitis Virus in South-eastern Australia. J. Trav. Med. 2023, 30, taad059. [Google Scholar] [CrossRef]
- Furuya-Kanamori, L.; Gyawali, N.; Mills, D.J.; Hugo, L.E.; Devine, G.J.; Lau, C.L. The Emergence of Japanese Encephalitis in Australia and the Implications for a Vaccination Strategy. Trop. Med. Infect. Dis. 2022, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.R.; Webb, C.E.; Higgs, S.; van den Hurk, A.F. Japanese Encephalitis Virus Emergence in Australia: Public Health Importance and Implications for Future Surveillance. Vector Borne Zoonotic Dis. 2022, 22, 529–534. [Google Scholar] [CrossRef]
- Simon, L.V.; Sandhu, D.S.; Goyal, A.; Kruse, B. Japanese Encephalitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Robinson, J.S.; Featherstone, D.; Vasanthapuram, R.; Biggerstaff, B.J.; Desai, A.; Ramamurty, N.; Chowdhury, A.H.; Sandhu, H.S.; Cavallaro, K.F.; Johnson, B.W. Evaluation of Three Commercially Available Japanese Encephalitis Virus IgM Enzyme-linked Immunosorbent Assays. Am. J. Trop. Med. Hyg. 2010, 83, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, M.; Dhole, T.N.; Rogawski, E.T.; Chaturvedi, S. Public Health Laboratory Surveillance and Diagnosis of Japanese Encephalitis: Time to Revisit. Indian Pediatr. 2016, 53, 33–35. [Google Scholar] [CrossRef]
- Wu, X.; Lin, H.; Chen, S.; Xiao, L.; Yang, M.; An, W.; Wang, Y.; Yao, X.; Yang, Z. Development and Application of a Reverse Transcriptase Droplet Digital PCR (RT-ddPCR) for Sensitive and Rapid Detection of Japanese Encephalitis Virus. J. Virol. Methods 2017, 248, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Elizalde, M.; Cano-Gómez, C.; Llorente, F.; Pérez-Ramírez, E.; Casades-Martí, L.; Aguilera-Sepúlveda, P.; Ruiz-Fons, F.; Jiménez-Clavero, M.; Fernández-Pinero, J. A Duplex Quantitative Real-Time Reverse Transcription-PCR for Simultaneous Detection and Differentiation of Flaviviruses of the Japanese Encephalitis and Ntaya Serocomplexes in Birds. Front. Vet. Sci. 2020, 7, 203. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Japanese Encephalitis: Vaccine Preventable Diseases Surveillance Standards. Last Updated 5 September 2018. Available online: https://www.who.int/publications/m/item/vaccine-preventable-diseases-surveillance-standards-je (accessed on 27 October 2024).
- Morris, R.S.; Bingham, P.C. Japanese Encephalitis Virus: Epidemiology and Risk-based Surveillance Approaches for New Zealand. N. Z. Vet. J. 2023, 71, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.R.; Ismail, A.A.; Thergarajan, G.; Raju, C.S.; Yam, H.C.; Rishya, M.; Sekaran, S.D. Serological Cross-reactivity among Common Flaviviruses. Front. Cell Infect. Microbiol. 2022, 12, 975398. [Google Scholar] [CrossRef]
- Maeda, A.; Maeda, J. Review of Diagnostic Plaque Reduction Neutralization Tests for Flavivirus Infection. Vet. J. 2013, 195, 33–40. [Google Scholar] [CrossRef]
- Bharucha, T.; Gangadharan, B.; Kumar, A.; Myall, A.C.; Ayhan, N.; Pastorino, B.; Chanthongthip, A.; Vongsouvath, M.; Mayxay, M.; Sengvilaipaseuth, O.; et al. Consortium. Deep Proteomics Network and Machine Learning Analysis of Human Cerebrospinal Fluid in Japanese Encephalitis Virus Infection. J. Proteome Res. 2023, 22, 1614–1629. [Google Scholar] [CrossRef]
- Wei, Y.; Hao, Y.; Li, Y.; Dan, M.; Yang, Z.; Qiu, H.; Li, R.; Yin, R.; Fan, P. Machine Learning Reveals Neutrophil-to-lymphocyte Ratio as a Crucial Prognostic Indicator in Severe Japanese Encephalitis Patients. Front. Neurol. 2023, 14, 1242317. [Google Scholar] [CrossRef]
- Dunson, D.B.; Baird, D.D. A Flexible Parametric Model for Combining Current Status and Age at First Diagnosis Data. Biometrics 2004, 57, 396–403. [Google Scholar] [CrossRef]
- Mehra, R.; Pachpor, K.; Kottilingam, K.; Saranya, A. An Initiative To Prevent Japanese Encephalitis Using Genetic Algorithm And Artificial Neural Network. In Proceedings of the 2020 International Conference on Computational Intelligence (ICCI), Bandar Seri Iskandar, Malaysia, 8–9 October 2020. [Google Scholar]
- Murty, U.S.; Rao, M.S.; Arunachalam, N. Prediction of Japanese Encephalitis Vectors in Kurnool District of Andhra Pradesh, India by Using Bayesian Network. Appl. Artif. Intell. 2009, 23, 828–834. [Google Scholar] [CrossRef]
- Kaufmann, T.; Castela Forte, J.; Hiemstra, B.; Wiering, M.A.; Grzegorczyk, M.; Epema, A.H.; van der Horst, I.C.C.; SICS Study Group. A Bayesian Network Analysis of the Diagnostic Process and Its Accuracy to Determine How Clinicians Estimate Cardiac Function in Critically Ill Patients: Prospective Observational Cohort Study. JMIR Med. Inform. 2019, 7, e15358. [Google Scholar] [CrossRef] [PubMed]
- Parija, S.C.; Poddar, A. Artificial Intelligence in Parasitic Disease Control: A Paradigm Shift in Health Care. Trop. Parasitol. 2024, 14, 2–7. [Google Scholar] [CrossRef]
- Ranjan, P.; Mishra, S.; Swain, T.; Sahoo, K.S. Japanese Encephalitis Symptom Prediction Using Machine Learning Algorithm; Springer Nature: Singapore, 2024. [Google Scholar]
- Landi, I.; Glicksberg, B.S.; Lee, H.C.; Cherng, S.; Landi, G.; Danieletto, M.; Dudley, J.T.; Furlanello, C.; Miotto, R. Deep Representation Learning of Electronic Health Records to Unlock Patient Stratification at Scale. NPJ. Digit. Med. 2020, 3, 96. [Google Scholar] [CrossRef] [PubMed]
- Sofia, D.; Zhou, W.; Shahriyari, L. Mathematical and Machine Learning Models of Renal Cell Carcinoma: A Review. Bioengineering 2023, 10, 1320. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Guleria, K. A Comprehensive Review on Federated Learning Based Models for Healthcare Applications. Artif. Intell. Med. 2023, 146, 102691. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.A.; Feng, X.; Mir, Z.A.; Raina, A.; Siddique, K.H.M. Recent Advances in Artificial Intelligence, Mechanistic Models, and Speed Breeding Offer Exciting Opportunities for Precise and Accelerated Genomics-assisted Breeding. Physiol. Plant. 2023, 175, e13969. [Google Scholar] [CrossRef]
- Picault, S.; Niang, G.; Sicard, V.; Sorin-Dupont, B.; Assie, S.; Ezanno, P. Leveraging Artificial Intelligence and Software Engineering Methods in Epidemiology for the Co-creation of Decision-support Tools Based on Mechanistic Models. Prev. Vet. Med. 2024, 228, 106233. [Google Scholar] [CrossRef]
- Miotto, R.; Li, L.; Kidd, B.A.; Dudley, J.T. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci. Rep. 2016, 6, 26094. [Google Scholar] [CrossRef]
- Attia, Z.I.; Dugan, J.; Rideout, A.; Maidens, J.N.; Venkatraman, S.; Guo, L.; Noseworthy, P.A.; Pellikka, P.A.; Pham, S.L.; Kapa, S.; et al. Automated Detection of Low Ejection Fraction from a One-lead Electrocardiogram: Application of an AI Algorithm to an Electrocardiogram-enabled Digital Stethoscope. Eur. Heart J. Digit. Health 2022, 3, 373–379. [Google Scholar] [CrossRef]
- Tanaka, K.; Hayakawa, M.; Noda, C.; Nakamura, A.; Akiyama, C. Effects of Artificial Intelligence Aibo Intervention on Alleviating Distress and Fear in Children. Child Adolesc. Psychiatry Ment. Health 2022, 16, 87. [Google Scholar] [CrossRef]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for Cardiac Contractile Dysfunction using an Artificial Intelligence-enabled Electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, Z.; Fu, B.; Chen, S.; Li, X.; Wang, Y.; Wang, X.; Lv, B.; Xu, B.; Song, X.; et al. Feasibility of Using Deep Learning to Detect Coronary Artery Disease Based on Facial Photo. Eur. Heart J. 2020, 41, 4400–4411. [Google Scholar] [CrossRef]
- Hsu, J.-Y.; Hung, C.-C.; Tsou, T.-P.; Chen, W.-C. Epidemiology and Risk Factors of Japanese Encephalitis in Taiwan, 2010–2022. PLoS Negl. Trop. Dis. 2023, 17, e0011421. [Google Scholar] [CrossRef]
- Sahiner, B.; Chen, W.; Samala, R.K.; Petrick, N. Data Drift in Medical Machine Learning: Implications and Potential Remedies. Br. J. Radiol. 2023, 96, 20220878. [Google Scholar] [CrossRef]
- Taylor-Robinson, A.W. Harnessing Artificial Intelligence to Enhance Key Surveillance and Response Measures for Arbovirus Disease Outbreaks: The Examplar of Australia. Front. Microbiol. 2023, 14, 1284838. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xie, Z. The Responsibility of Thwarting and Managing Japanese Encephalitis Cannot be Understated–Outbreaks or Resurgences May Manifest, Catching Us Off Guard. PLoS Negl. Trop. Dis. 2023, 17, e0011698. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M. The Current Burden of Japanese Encephalitis and the Estimated Impacts of Vaccination: Combining Estimates of the Spatial Distribution and Transmission Intensity of a Zoonotic Pathogen. PLoS Negl. Trop. Dis. 2021, 15, e0009385. [Google Scholar] [CrossRef]
- Naik, N.; Zeeshan Hameed, B.M.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Ibrahim, S.; Patil, V.; Smriti, K.; et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsbility? Front. Surg. 2022, 9, 862322. [Google Scholar] [CrossRef]
- Murdoch, B. Privacy and Artificial Intelligence: Challenges for Protecting Health Information in a New Era. BMC Med. Ethics 2021, 22, 122. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Wada, O.J.; David-Olawade, A.C.; Kunonga, E.; Abaire, O.; Ling, J. Using Artificial Intelligence to Improve Public Health: A Narrative Review. Front. Public Health 2023, 11, 1196397. [Google Scholar] [CrossRef] [PubMed]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S. Generative AI in Healthcare: An Implementation Science Informed Translational Path on Application, Integration and Governance. Implement. Sci. 2024, 19, 27. [Google Scholar] [CrossRef]
- IMDRF. Software as Medical Device Working Group. “Software as a Medical Device”: Possible Framework for Risk Categorization and Corresponding Considerations. International Medical Device Regulators Forum, 18 September 2014. Available online: https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-140918-samd-framework-risk-categorization-141013.pdf (accessed on 27 October 2024).
- Farhud, D.D.; Zokaei, S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran. J. Public Health 2021, 50, i–v. [Google Scholar] [CrossRef] [PubMed]
- Alami, H.; Lehoux, P.; Denis, J.L.; Motulsky, A.; Petitgand, C.; Savoldelli, M.; Rouquet, R.; Gagnon, M.P.; Roy, D.; Fortin, J.P. Organizational Readiness for Artificial Intelligence in Health Care: Insights for Decision-making and Practice. J. Health Organ. Manag. 2020, 35, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Hegde, N.R.; Gore, M.M. Japanese Encephalitis Vaccines: Immunogenicity, Protective Efficacy, Effectiveness, and Impact on the Burden of Disease. Hum. Vaccin. Immunother. 2017, 13, 1320–1337. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Kendal, E.; Kwa, F.A.A. Harnessing the Power of AI to Improve Detection, Monitoring, and Public Health Interventions for Japanese Encephalitis. Biomedicines 2025, 13, 42. https://doi.org/10.3390/biomedicines13010042
Xiao J, Kendal E, Kwa FAA. Harnessing the Power of AI to Improve Detection, Monitoring, and Public Health Interventions for Japanese Encephalitis. Biomedicines. 2025; 13(1):42. https://doi.org/10.3390/biomedicines13010042
Chicago/Turabian StyleXiao, Junhua, Evie Kendal, and Faith A. A. Kwa. 2025. "Harnessing the Power of AI to Improve Detection, Monitoring, and Public Health Interventions for Japanese Encephalitis" Biomedicines 13, no. 1: 42. https://doi.org/10.3390/biomedicines13010042
APA StyleXiao, J., Kendal, E., & Kwa, F. A. A. (2025). Harnessing the Power of AI to Improve Detection, Monitoring, and Public Health Interventions for Japanese Encephalitis. Biomedicines, 13(1), 42. https://doi.org/10.3390/biomedicines13010042