Metabolomics-Driven Insights into Biomarkers for Poor Ovarian Response: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Comparison of Metabolomic Profiles in Serum Samples Between Women with Poor Ovarian Reserve and Women with Normal Ovarian Reserve
3.2. Comparison of Metabolomic Profiles in Follicular Fluid Samples Between Women with Poor Ovarian Reserve and Women with Normal Ovarian Reserve
3.3. Indicative Metabolomics Studies Investigating the Impact of Adjuvant Therapies in Follicular Fluid Metabolomic Profile of Women with POR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaiarelli, A.; Cimadomo, D.; Ubaldi, N.; Rienzi, L.; Ubaldi, F.M. What is new in the management of poor ovarian response in IVF? Curr. Opin. Obstet. Gynecol. 2018, 30, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ferraretti, A.P.; La Marca, A.; Fauser, B.C.; Tarlatzis, B.; Nargund, G.; Gianaroli, L.; ESHRE working group on Poor Ovarian Response Definition. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteria. Hum. Reprod. 2011, 26, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Poseidon, G.; Alviggi, C.; Andersen, C.Y.; Buehler, K.; Conforti, A.; De Placido, G.; Esteves, S.C.; Fischer, R.; Galliano, D.; Polyzos, N.P.; et al. A new more detailed stratification of low responders to ovarian stimulation: From a poor ovarian response to a low prognosis concept. Fertil. Steril. 2016, 105, 1452–1453. [Google Scholar] [CrossRef]
- Abu-Musa, A.; Haahr, T.; Humaidan, P. Novel Physiology and Definition of Poor Ovarian Response; Clinical Recommendations. Int. J. Mol. Sci. 2020, 21, 2110. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Testing and interpreting measures of ovarian reserve: A committee opinion. Fertil. Steril. 2020, 114, 1151–1157. [Google Scholar] [CrossRef]
- Chang, Y.; Li, J.; Li, X.; Liu, H.; Liang, X. Egg Quality and Pregnancy Outcome in Young Infertile Women with Diminished Ovarian Reserve. Med. Sci. Monit. 2018, 24, 7279–7284. [Google Scholar] [CrossRef]
- Jaswa, E.G.; McCulloch, C.E.; Simbulan, R.; Cedars, M.I.; Rosen, M.P. Diminished ovarian reserve is associated with reduced euploid rates via preimplantation genetic testing for aneuploidy independently from age: Evidence for concomitant reduction in oocyte quality with quantity. Fertil. Steril. 2021, 115, 966–973. [Google Scholar] [CrossRef]
- Potiris, A.; Stavros, S.; Voros, C.; Christopoulos, P.; Pouliakis, A.; Savvidis, M.; Papapanagiotou, A.; Karampitsakos, T.; Topis, S.; Vrantza, T.; et al. Intraovarian Platelet-Rich Plasma Administration for Anovulatory Infertility: Preliminary Findings of a Prospective Cohort Study. J. Clin. Med. 2024, 13, 5292. [Google Scholar] [CrossRef]
- Potiris, A.; Perros, P.; Drakaki, E.; Mavrogianni, D.; Machairiotis, N.; Sfakianakis, A.; Karampitsakos, T.; Vrachnis, D.; Antonakopoulos, N.; Panagopoulos, P.; et al. Investigating the Association of Assisted Reproduction Techniques and Adverse Perinatal Outcomes. J. Clin. Med. 2024, 13, 328. [Google Scholar] [CrossRef]
- Drakopoulos, P.; Bardhi, E.; Boudry, L.; Vaiarelli, A.; Makrigiannakis, A.; Esteves, S.C.; Tournaye, H.; Blockeel, C. Update on the management of poor ovarian response in IVF: The shift from Bologna criteria to the Poseidon concept. Ther. Adv. Reprod. Health 2020, 14, 2633494120941480. [Google Scholar] [CrossRef]
- Jirge, P.R. Poor ovarian reserve. J. Hum. Reprod. Sci. 2016, 9, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Theofanakis, C.; Athanasiou, V.; Liokari, E.; Stavrou, S.; Sakellariou, M.; Athanassiou, A.I.; Athanassiou, A.; Drakakis, P.; Loutradis, D. The impact of HCG in IVF Treatment: Does it depend on age or on protocol? J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Song, J.; Sa, Y.; Yuan, L.; Guo, J.; Sun, Z. The Mechanisms of Improving IVF Outcomes of Liu-Wei-Di-Huang Pill Acting on DOR Patients. Evid. Based Complement. Alternat. Med. 2020, 2020, 5183017. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef]
- Chacko, S.; Haseeb, Y.B.; Haseeb, S. Metabolomics Work Flow and Analytics in Systems Biology. Curr. Mol. Med. 2022, 22, 870–881. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.34.31–30.34.32. [Google Scholar] [CrossRef]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30.2.1–30.2.24. [Google Scholar] [CrossRef]
- Rodgaard, T.; Heegaard, P.M.; Callesen, H. Non-invasive assessment of in-vitro embryo quality to improve transfer success. Reprod. Biomed. Online 2015, 31, 585–592. [Google Scholar] [CrossRef]
- Sciorio, R.; Miranian, D.; Smith, G.D. Non-invasive oocyte quality assessment. Biol. Reprod. 2022, 106, 274–290. [Google Scholar] [CrossRef]
- Gao, J.; Xiao, Y. Metabolomics and its applications in assisted reproductive technology. IET Nanobiotechnol. 2023, 17, 399–405. [Google Scholar] [CrossRef]
- Nazou, E.; Potiris, A.; Mavrogianni, D.; Drakaki, E.; Vogiatzis, A.A.; Sarli, V.; Vrantza, T.; Zikopoulos, A.; Louis, K.; Skentou, C.; et al. Oocyte Maturation and miRNAs: Studying a Complicate Interaction to Reveal Possible Biomarkers for Female Infertility. Diseases 2024, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S. Metabolomics for the identification of biomarkers in endometriosis. Arch. Gynecol. Obstet. 2024, 310, 2823–2827. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Pang, Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Borges, E., Jr.; Montani, D.A.; Setti, A.S.; Zanetti, B.F.; Figueira, R.C.S.; Iaconelli, A., Jr.; Oliveira-Silva, D.; Braga, D. Serum metabolites as predictive molecular markers of ovarian response to controlled stimulation: A pilot study. JBRA Assist. Reprod. 2019, 23, 323–327. [Google Scholar] [CrossRef]
- Song, H.; Qin, Q.; Yuan, C.; Li, H.; Zhang, F.; Fan, L. Metabolomic Profiling of Poor Ovarian Response Identifies Potential Predictive Biomarkers. Front. Endocrinol. 2021, 12, 774667. [Google Scholar] [CrossRef]
- An, N.; Zhang, M.; Zhu, Q.F.; Chen, Y.Y.; Deng, Y.L.; Liu, X.Y.; Zeng, Q.; Feng, Y.Q. Metabolomic Analysis Reveals Association between Decreased Ovarian Reserve and In Vitro Fertilization Outcomes. Metabolites 2024, 14, 143. [Google Scholar] [CrossRef]
- Cataldi, T.; Cordeiro, F.B.; Costa Ldo, V.; Pilau, E.J.; Ferreira, C.R.; Gozzo, F.C.; Eberlin, M.N.; Bertolla, R.P.; Cedenho, A.P.; Turco, E.G. Lipid profiling of follicular fluid from women undergoing IVF: Young poor ovarian responders versus normal responders. Hum. Fertil. 2013, 16, 269–277. [Google Scholar] [CrossRef]
- de la Barca, J.M.C.; Boueilh, T.; Simard, G.; Boucret, L.; Ferre-L’Hotellier, V.; Tessier, L.; Gadras, C.; Bouet, P.E.; Descamps, P.; Procaccio, V.; et al. Targeted metabolomics reveals reduced levels of polyunsaturated choline plasmalogens and a smaller dimethylarginine/arginine ratio in the follicular fluid of patients with a diminished ovarian reserve. Hum. Reprod. 2017, 32, 2269–2278. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Qi, C.; Hu, H.; Zhang, Q.; Zhu, X.; Fu, Y. UHPLC-MS-MS analysis of oxylipins metabolomics components of follicular fluid in infertile individuals with diminished ovarian reserve. Reprod. Biol. Endocrinol. 2021, 19, 143. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L.; Gao, M.; Wei, L.; Liu, A.; Wang, B.; Wang, L.; Zhang, L.; Jia, T.; Wang, Y.; et al. The follicular fluid metabolome in infertile individuals between polycystic ovary syndrome and diminished ovarian reserve. Arch. Biochem. Biophys. 2022, 732, 109453. [Google Scholar] [CrossRef]
- He, F.; Wang, F.; Yang, Y.; Yuan, Z.; Sun, C.; Zou, H.; Chen, H.; Yi, H.; Gao, S.H.; Zhang, S.; et al. The effect of growth hormone on the metabolome of follicular fluid in patients with diminished ovarian reserve. Reprod. Biol. Endocrinol. 2023, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Viardot-Foucault, V.; Zhou, J.; Bi, D.; Takinami, Y.; Chan, J.K.Y.; Lee, Y.H. Dehydroepiandrosterone supplementation and the impact of follicular fluid metabolome and cytokinome profiles in poor ovarian responders. J. Ovarian Res. 2023, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Di Guardo, F.; Pluchino, N.; Drakopoulos, P. Treatment modalities for poor ovarian responders. Ther. Adv. Reprod. Health 2023, 17, 26334941221147464. [Google Scholar] [CrossRef] [PubMed]
- Giannelou, P.; Simopoulou, M.; Grigoriadis, S.; Makrakis, E.; Kontogeorgi, A.; Pantou, A.; Galatis, D.; Kalampokas, T.; Bakas, P.; Bolaris, S.; et al. The Conundrum of Poor Ovarian Response: From Diagnosis to Treatment. Diagnostics 2020, 10, 687. [Google Scholar] [CrossRef]
- Jeve, Y.B.; Bhandari, H.M. Effective treatment protocol for poor ovarian response: A systematic review and meta-analysis. J. Hum. Reprod. Sci. 2016, 9, 70–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Shu, J.; Guo, J.; Chang, H.M.; Leung, P.C.K.; Sheng, J.Z.; Huang, H. Adjuvant treatment strategies in ovarian stimulation for poor responders undergoing IVF: A systematic review and network meta-analysis. Hum. Reprod. Update 2020, 26, 247–263. [Google Scholar] [CrossRef]
- Cheng, J.; Lan, W.; Zheng, G.; Gao, X. Metabolomics: A High-Throughput Platform for Metabolite Profile Exploration. Methods Mol. Biol. 2018, 1754, 265–292. [Google Scholar] [CrossRef]
- Pinto, S.; Guerra-Carvalho, B.; Crisostomo, L.; Rocha, A.; Barros, A.; Alves, M.G.; Oliveira, P.F. Metabolomics Integration in Assisted Reproductive Technologies for Enhanced Embryo Selection beyond Morphokinetic Analysis. Int. J. Mol. Sci. 2023, 25, 491. [Google Scholar] [CrossRef]
- Potiris, A.; Alyfanti, E.; Drakaki, E.; Mavrogianni, D.; Karampitsakos, T.; Machairoudias, P.; Topis, S.; Zikopoulos, A.; Skentou, C.; Panagopoulos, P.; et al. The Contribution of Proteomics in Understanding Endometrial Protein Expression in Women with Recurrent Implantation Failure. J. Clin. Med. 2024, 13, 2145. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, R.K. Effect of prostaglandins E2 and F2α on granulosa cell apoptosis in goat ovarian follicles. Iran. J. Vet. Res. 2020, 21, 97–102. [Google Scholar] [CrossRef]
- Takahashi, T.; Igarashi, H.; Amita, M.; Hara, S.; Kurachi, H. Roles of Prostaglandins During Oocyte Maturation: Lessons from Knockout Mice. J. Mamm. Ova Res. 2010, 27, 11–20. [Google Scholar] [CrossRef]
- Boruszewska, D.; Kowalczyk-Zieba, I.; Suwik, K.; Staszkiewicz-Chodor, J.; Jaworska, J.; Lukaszuk, K.; Woclawek-Potocka, I. Prostaglandin E(2) affects in vitro maturation of bovine oocytes. Reprod. Biol. Endocrinol. 2020, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Marei, W.F.; Abayasekara, D.R.; Wathes, D.C.; Fouladi-Nashta, A.A. Role of PTGS2-generated PGE2 during gonadotrophin-induced bovine oocyte maturation and cumulus cell expansion. Reprod. Biomed. Online 2014, 28, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Wei, Y.; Zhu, P.; Yin, T.; Wan, Q. Metabonomic analysis of follicular fluid in patients with diminished ovarian reserve. Front. Endocrinol. 2023, 14, 1132621. [Google Scholar] [CrossRef]
- He, R.; Zhao, Z.; Yang, Y.; Liang, X. Using bioinformatics and metabolomics to identify altered granulosa cells in patients with diminished ovarian reserve. PeerJ 2020, 8, e9812. [Google Scholar] [CrossRef]
- Lu, X.; Lv, X.; Dong, X.; Li, Y.; Turathum, B.; Liu, S.; Wang, X.; Shi, H.; Liu, Y. Increased serine synthesis in cumulus cells of young infertile women with diminished ovarian reserve. Hum. Reprod. 2023, 38, 1723–1732. [Google Scholar] [CrossRef]
- Gonzalez-Dominguez, A.; Estanyol-Torres, N.; Brunius, C.; Landberg, R.; Gonzalez-Dominguez, R. QComics: Recommendations and Guidelines for Robust, Easily Implementable and Reportable Quality Control of Metabolomics Data. Anal. Chem. 2024, 96, 1064–1072. [Google Scholar] [CrossRef]
Metabolite | Compared Groups | Altered Expression in Women with POR/DOR | Study |
---|---|---|---|
C34H70O2 (m/z 533.51975) Attribution: Fatty alcohols | PR samples vs. NR vs. HR | Upregulated in PR | Borges Jr. et al. [24] |
C29H57N5O12 (m/z 685.43505) Attribution: Amino acids, peptides, and analogs | PR samples vs. NR vs. HR | Upregulated in PR | |
C59H90O4 (m/z 880.7391) Attribution: Quinone and hydroquinone lipids | PR samples vs. NR vs. HR | Upregulated in PR | |
C34H56O9 (m/z 631.3793) Attribution: Steroidal glycosides | PR samples vs. NR vs. HR | Upregulated in PR | |
C48H72O2 (m/z 698.5985) Attribution: Quinone and hydroquinone lipids | PR samples vs. NR vs. HR | Downregulated in PR | |
C36H75N (m/z 522.5934) Attribution: Tertiary amines | PR samples vs. NR vs. HR | Downregulated in PR | |
C48H72O2 (m/z 698.6051) Attribution: Quinone and hydroquinone lipids | PR samples vs. NR vs. HR | Downregulated in PR | |
C55H102O6 (m/z 876.79465) Attribution: Triradylcglycerols | PR samples vs. NR vs. HR | Downregulated in PR | |
C56H94O6 (m/z 880.7497) Attribution: Triradylcglycerols | PR samples vs. NR vs. HR | Downregulated in PR | |
C17H26O3 (m/z 296.2295) Attribution: Methoxyphenols | PR samples vs. NR vs. HR | Downregulated in PR | |
Tetracosanoic acid | POR vs. NOR | Downregulated in POR | Song et al. [25] |
Pyracarbolid | POR vs. NOR | Upregulated in POR | |
Diphenylamine | POR vs. NOR | Upregulated in POR | |
Lanosterin | POR vs. NOR | Upregulated in POR | |
Pelargonic acid | POR vs. NOR | Upregulated in POR | |
Sebacic acid | POR vs. NOR | Upregulated in POR | |
2-arachidonoylglycerol | POR vs. NOR | Upregulated in POR | |
Lidocaine | POR vs. NOR | Upregulated in POR | |
Cortexolone | POR vs. NOR | Downregulated in POR | |
Prostaglandin H2 | POR vs. NOR | Downregulated in POR | |
1-naphthylamine | POR vs. NOR | Upregulated in POR | |
5-hydroxymethyl-2-furancarboxaldehyde | POR vs. NOR | Downregulated in POR | |
2,4-dinitrophenol | POR vs. NOR | Upregulated in POR | |
D-erythrulose1-phosphate | POR vs. NOR | Upregulated in POR | |
L-aspartic acid | POR vs. NOR | Upregulated in POR | |
6-hydroxynicotinate | POR vs. NOR | Upregulated in POR | |
Maleic acid | POR vs. NOR | Downregulated in POR | |
Succinic acid semialdehyde | POR vs. NOR | Downregulated in POR | |
Stearic acid | DOR vs. NOR | Upregulated in DOR | An et al. [26] |
Palmitic acid | DOR vs. NOR | Upregulated in DOR | |
PC(18:0/9:0(CHO)) | DOR vs. NOR | Downregulated in DOR | |
PC(16:0/9:0(CHO)) | DOR vs. NOR | Downregulated in DOR | |
LysoPC(9:0(CHO)/0:0) | DOR vs. NOR | Downregulated in DOR |
Metabolite | Compared Groups | Altered Expression in Women with POR/DOR | Study |
---|---|---|---|
C48H88NO8P (m/z 838.6785) Phosphatidylcholine subclass (PC) | POR vs. NOR | Upregulated in NOR | Cataldi et al. [27] |
C50H84NO8P (m/z 858.5918) Phosphatidylcholine subclass (PC) | POR vs. NOR | Upregulated in NOR | |
C40H72NO8P (m/z 726.5031) Phosphatidylcholine subclass (PC) | POR vs. NOR | Upregulated in NOR | |
C42H80NO8P (m/z 834.4541) Phosphatidylethanolamines subclass (PE) | POR vs. NOR | Upregulated in POR | |
C42H77O10P (m/z 811.4649) Phosphatidylglycerols subclass(PG) | POR vs. NOR | Upregulated in POR | |
C39H74NO8P (m/z 716.5332) Phosphatidylethanolamines subclass (PE) | POR vs. NOR | Upregulated in POR | |
C41H75O13P (m/z 807.4682) Phosphatidylinositols subclass (PI) | POR vs. NOR | Upregulated in POR | |
C47H72O5 (m/z 739.5157) Diacylglycerols subclass (DAG) | POR vs. NOR | Upregulated in POR | |
(m/z 844.4166) Not defined lipid subclass by HMDB database. | POR vs. NOR | Upregulated in POR | |
C38H76NO8P (m/z 706.5328) Phosphatidylethanolamines subclass (PE) | POR vs. NOR | Upregulated in POR | |
Polyunsaturated ChoPls (PUFA ae) | DOR vs. NOR | Downregulated in DOR | De La Barca et al. [28] |
Unsaturated-to-Saturated choline plasmalogens (UFA /SFA ae) ratios | DOR vs. NOR | Downregulated in DOR | |
Total Dimethylarginine-to-Arginine (Total DMA/Arginine) | DOR vs. NOR | Downregulated in DOR | |
±20-HDoHE | DOR vs. NOR | Downregulated in DOR | Liang et al. [29] |
±5-iso PGF2α-VI | DOR vs. NOR | Downregulated in DOR | |
12S-HHTrE | DOR vs. NOR | Downregulated in DOR | |
15-deoxy-Δ12,14-PGJ2 | DOR vs. NOR | Downregulated in DOR | |
1a,1b-dihomo PGE2 | DOR vs. NOR | Downregulated in DOR | |
1a,1b-dihomo PGF2α | DOR vs. NOR | Downregulated in DOR | |
20-COOH-AA | DOR vs. NOR | Downregulated in DOR | |
20-HETE | DOR vs. NOR | Downregulated in DOR | |
8S,15S-DiHETE | DOR vs. NOR | Downregulated in DOR | |
PGA2 | DOR vs. NOR | Downregulated in DOR | |
PGD2 | DOR vs. NOR | Downregulated in DOR | |
PGE1 | DOR vs. NOR | Downregulated in DOR | |
PGF1α | DOR vs. NOR | Downregulated in DOR | |
PGF2α | DOR vs. NOR | Downregulated in DOR | |
PGJ2 | DOR vs. NOR | Downregulated in DOR | |
(S)-nerolidol 3-O | DOR vs. NOR | Downregulated in DOR | Shen et al. [30] |
S-japonin | DOR vs. NOR | Downregulated in DOR | |
2-hydroxyestrone sulfate | DOR vs. NOR | Downregulated in DOR | |
Pregnanediol-3-glucuronide | DOR vs. NOR | Downregulated in DOR | |
3-O-acetylepisamarcandin | DOR vs. NOR | Downregulated in DOR | |
Isopropyl linoleate | DOR vs. NOR | Upregulated in DOR | |
DG (18:0/18:2(9Z,12Z)/0:0) | DOR vs. NOR | Upregulated in DOR | |
Mactraxanthin | DOR vs. NOR | Upregulated in DOR | |
DG (18:0/16:1(9Z)/0:0) | DOR vs. NOR | Upregulated in DOR | |
PE (16:1(9Z)/P-18:1(11Z)) | DOR vs. NOR | Upregulated in DOR |
Metabolite | Type of Sample | Compared Groups | Altered Expression in Women with POR/DOR | Study |
---|---|---|---|---|
Itaconic acid | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | He et al. [31] |
Glutathione | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
cis-Aconitic acid | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
N-alpha-acetyllysine | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
Stearic acid | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
Tridecane | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
3,6-Dianhydro-d-glucopyranose | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
Cyclotetrasiloxane | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
3H-Pyrazol-3-one, 2,4-dihydro | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
Bis(N-methoxy-N-methylamino)methane | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
Benzoic acid | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
1-Aziridineethanol | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
N-alpha-Acetyllycine | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
Conjugated linoleic acid | Follicular Fluid | DOR GH group vs. DOR control | Upregulated in GH group | |
S-adenosylme- thionine (SAM) | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
2-oxobutyric acid | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
Citramalic acid | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
Butylated hydroxytoluene | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
Linolelaidic acid | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
9-Heptadecenoic Acid | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
Palmitelaidic acid | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
Lysine | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
3-Pentenoic acid, 4-methyl | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
D-Norleucine, N-methoxycarbonyl | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
2,4-Imidazolidinenedione, 1-methyl | Follicular Fluid | DOR GH group vs. DOR control | Downregulated in GH group | |
Glycerophosphocholine | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Downregulated in DHEA+ group | Viardot-Foucault et al. [32] |
Linoleic acid | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Downregulated in DHEA+ group | |
Progesterone | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Downregulated in DHEA+ group | |
L-valine | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Downregulated in DHEA+ group | |
Cortisol | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Upregulated in DHEA+ group | |
MCP1 | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Downregulated in DHEA+ group | |
IFNγ | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Downregulated in DHEA+ group | |
LIF | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Downregulated in DHEA+ group | |
VEGF-D | Follicular Fluid | POR DHEA+ vs. POR DHEA- | Downregulated in DHEA+ group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potiris, A.; Stavros, S.; Alyfanti, E.; Machairiotis, N.; Drakaki, E.; Zikopoulos, A.; Moustakli, E.; Skentou, C.; Drakakis, P.; Domali, E. Metabolomics-Driven Insights into Biomarkers for Poor Ovarian Response: A Narrative Review. Biomedicines 2025, 13, 214. https://doi.org/10.3390/biomedicines13010214
Potiris A, Stavros S, Alyfanti E, Machairiotis N, Drakaki E, Zikopoulos A, Moustakli E, Skentou C, Drakakis P, Domali E. Metabolomics-Driven Insights into Biomarkers for Poor Ovarian Response: A Narrative Review. Biomedicines. 2025; 13(1):214. https://doi.org/10.3390/biomedicines13010214
Chicago/Turabian StylePotiris, Anastasios, Sofoklis Stavros, Eleni Alyfanti, Nikolaos Machairiotis, Eirini Drakaki, Athanasios Zikopoulos, Efthalia Moustakli, Charikleia Skentou, Peter Drakakis, and Ekaterini Domali. 2025. "Metabolomics-Driven Insights into Biomarkers for Poor Ovarian Response: A Narrative Review" Biomedicines 13, no. 1: 214. https://doi.org/10.3390/biomedicines13010214
APA StylePotiris, A., Stavros, S., Alyfanti, E., Machairiotis, N., Drakaki, E., Zikopoulos, A., Moustakli, E., Skentou, C., Drakakis, P., & Domali, E. (2025). Metabolomics-Driven Insights into Biomarkers for Poor Ovarian Response: A Narrative Review. Biomedicines, 13(1), 214. https://doi.org/10.3390/biomedicines13010214