Extracorporeal Cardiopulmonary Resuscitation—Where Do We Currently Stand?
Abstract
:1. Introduction
2. Indications and Risk Factors
3. Technical Considerations
4. Post-Arrest Care
5. Trends in Outcomes
6. Complications Associated with eCPR
7. Cost Analysis
8. Ethical Considerations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McCarthy, J.J.; Carr, B.; Sasson, C.; Bobrow, B.J.; Neumar, R.W.; Ferrer, J.M.E.; Garvey, J.G.; Ornato, J.P.; Gonzales, L.; Granger, C.B.; et al. Out-of-Hospital Cardiac Arrest Resuscitation Systems of Care: A Scientific Statement from the American Heart Association. Circulation 2018, 137, e645–e660. [Google Scholar] [CrossRef] [PubMed]
- Gräsner, J.T.; Herlitz, J.; Tjelmeland, I.B.; Wnent, J.; Masterson, S.; Lilja, G.; Bein, B.; Böttiger, B.W.; Rosell-Ortiz, F.; Nolan, J.P.; et al. European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe. Resuscitation 2021, 161, 61–79. [Google Scholar] [CrossRef]
- Yamamoto, R.; Kaito, D.; Homma, K.; Inoue, A.; Hifumi, T.; Sakamoto, T.; Kuroda, Y.; Sasaki, J. Door-to-Needle Time for Extracorporeal Cardiopulmonary Resuscitation and Neurological Outcomes in Out-of-Hospital Cardiac Arrest: A Nationwide Study. J. Am. Heart Assoc. 2024, 13, e034971. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.P.; Neumar, R.W.; Adrie, C.; Aibiki, M.; Berg, R.A.; Bottiger, B.W.; Callaway, C.; Clarl, R.S.B.; Geocadin, R.G.; Jaunch, E.C.; et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation 2008, 79, 350–379. [Google Scholar] [CrossRef]
- Petermichl, W.; Philipp, A.; Hiller, K.A. Foltan. M.; Floerchinger, B.; Graf, B.; Lunz, D. Reliability of prognostic biomarkers after prehospital extracorporeal cardiopulmonary resuscitation with target temperature management. Scand. J. Trauma. Resusc. Emerg. Med. 2021, 29, 147. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.M. ECPR—Extracorporeal cardiopulmonary resuscitation. Indian J. Thorac. Cardiovasc. Surg. 2021, 37 (Suppl. 2), 294. [Google Scholar] [CrossRef]
- Mattox, K.L.; Beall, A.C. Resuscitation of the Moribund Patient Using Portable Cardiopulmonary Bypass. Ann. Thorac. Surg. 1976, 22, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Tonna, J.E.; Selzman, C.H.; Girotra, S.; Presson, A.P.; Thiagarajan, R.R.; Becker, L.B.; Zhang, C.; Rycus, P.; Keenan, H.T. Resuscitation Using ECPR During In-Hospital Cardiac Arrest (RESCUE-IHCA) Mortality Prediction Score and External Validation. JACC Cardiovasc. Interv. 2022, 15, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Perman, S.M.; Elmer, J.; Maciel, C.B.; Uzendu, A.; May, T.; Mumma, B.E.; Bartos, J.A.; Rodriguez, A.J.; Kurz, M.C.; Panchal, A.R.; et al. 2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2024, 149, e254–e273. [Google Scholar] [CrossRef]
- Alenazi, A.; Aljanoubi, M.; Yeung, J.; Madan, J.; Johnson, S.; Couper, K. Variability in patient selection criteria across extracorporeal cardiopulmonary resuscitation (ECPR) systems: A systematic review. Resuscitation 2024, 204, 110403. [Google Scholar] [CrossRef]
- Bellezzo, J.M.; Shinar, Z.; Davis, D.P.; Jaski, B.E.; Chillcott, S.; Stahovich, M.; Walker, C.; Baradarian, S.; Dembitsky, W. Emergency physician-initiated extracorporeal cardiopulmonary resuscitation. Resuscitation 2012, 83, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Conseil français de réanimation cardiopulmonaire; Société française d’anesthésie et de réanimation; Société française de cardiologie; Société française de chirurgie thoracique et cardiovasculaire; Société française de médecine d’urgence; Société française de pédiatrie; Groupe francophone de réanimation et d’urgence pédiatriques; Société française de perfusion; Société de réanimation de langue française. Guidelines for indications for the use of extracorporeal life support in refractory cardiac arrest. French Ministry of Health. Ann. Fr. Anesth. Reanim. 2009, 28, 182–190. [Google Scholar] [CrossRef]
- Schwarz, B.; Mair, P.; Margreiter, J.; Pomaroli, A.; Hoermann, C.; Bonatti, J.; Lindner, K.H. Experience with percutaneous venoarterial cardiopulmonary bypass for emergency circulatory support. Crit. Care Med. 2003, 31, 758–764. [Google Scholar] [CrossRef]
- Barcella, C.A.; Grunau, B.E.; Guan, M.; Hawkins, N.M.; Deyell, M.W.; Andrade, J.G.; Helmer, J.S.; Wong, G.C.; Kragholm, K.H.; Humphries, K.H.; et al. Long-term outcomes among out-of-hospital cardiac arrest survivors with reversible vs. non-reversible causes. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Debaty, G.; Babaz, V.; Durand, M.; Chevronnay, L.G.; Fournel, E.; Blancher, M.; Bouvaist, H.; Chavanon, O.; Maignan, M.; Bouzat, P.; et al. Prognostic factors for extracorporeal cardiopulmonary resuscitation recipients following out-of-hospital refractory cardiac arrest. A systematic review and meta-analysis. Resuscitation 2017, 112, 1–10. [Google Scholar] [CrossRef]
- Schmidt, M.; Burrell, A.; Roberts, L.; Bailey, M.; Sheldrake, J.; Rycus, P.T.; Hodgson, C.; Scheinkestel, C.; Cooper, D.C.; Thiagarajan, R.R.; et al. Predicting survival after ECMO for refractory cardiogenic shock: The survival after veno-arterial-ECMO (SAVE)-score. Eur. Heart J. 2015, 36, 2246–2256. [Google Scholar] [CrossRef] [PubMed]
- SAVE Score for VA ECMO. Available online: https://www.elso.org/savescore/index.html (accessed on 29 October 2024).
- Redfors, B.; Byttner, A.; Bengtsson, D.; Watson, P.; Lannemyr, L.; Lundgren, P.; Gabel, J.; Rawshani, A.; Hennigsonn, A. The Pre-ECPR Score: Developing and Validating a Multivariable Prediction Model for Favorable Neurological Outcomes in Patients Undergoing Extracorporeal Cardiopulmonary Resuscitation. J. Cardiothorac. Vasc. Anesth. 2024, 38, 3018–3028. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.; Lal, S.; Forrest, P.; Nichol, A.; Lamhaut, L.; Totaro, R.J.; Burns, B.; Sandroni, C. In-Depth Extracorporeal Cardiopulmonary Resuscitation in Adult Out-of-Hospital Cardiac Arrest. J. Am. Heart Assoc. 2020, 9, e016521. [Google Scholar] [CrossRef]
- Holmberg, M.J.; Geri, G.; Wiberg, S.; Guergueran, A.M.; Donnino, M.W.; Nolan, J.P.; Deakin, C.D.; Anderson, L.W. Extracorporeal cardiopulmonary resuscitation for cardiac arrest: A systematic review. Resuscitation 2018, 131, 91. [Google Scholar] [CrossRef]
- D’Arrigo, S.; Cacciola, S.; Dennis, M.; Jung, C.; Kagawa, E.; Antonelli, M.; Sandroni, C. Predictors of favourable outcome after in-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation: A systematic review and meta-analysis. Resuscitation 2017, 121, 62–70. [Google Scholar] [CrossRef]
- Kim, S.J.; Jung, J.S.; Park, J.H.; Park, J.S.; Hong, Y.S.; Lee, S.W. An optimal transition time to extracorporeal cardiopulmonary resuscitation for predicting good neurological outcome in patients with out-of-hospital cardiac arrest: A propensity-matched study. Crit. Care 2014, 18, 535. [Google Scholar] [CrossRef] [PubMed]
- Chahine, J.; Kosmopoulos, M.; Raveendran, G.; Yannopoulos, D.; Bartos, J.A. Impact of age on survival for patients receiving ECPR for refractory out-of-hospital VT/VF cardiac arrest. Resuscitation 2023, 193, 109998. [Google Scholar] [CrossRef] [PubMed]
- George, N.; Stephens, K.; Ball, E.; Crandall, C.; Ouchi, K.; Unruh, M.; Kamdar, N.; Myaskovsky, L. Extracorporeal Membrane Oxygenation for Cardiac Arrest: Does Age Matter? Crit. Care Med. 2024, 52, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Conrad, S.A. Extracorporeal cardiopulmonary resuscitation. Egypt. J. Crit. Care Med. 2016, 4, 11–15. [Google Scholar] [CrossRef]
- Brogan, T.V.; Lequier, L.; Lorusso, R.; MacLaren, G.; Peek, G. (Eds.) Extracorporeal Life Support: The ELSO Red Book; Extracorporeal Life Support Organization: Ann Arbor, MI, USA, 2017; Volume 5. [Google Scholar]
- Russo, J.J.; Aleksova, N.; Pitcher, I.; Couture, E.; Parlow, S.; Faraz, M.; Visintini, S.; Simard, T.; Santo, P.D.; Mathew, R. Left Ventricular Unloading During Extracorporeal Membrane Oxygenation in Patients with Cardiogenic Shock. J. Am. Coll. Cardiol. 2019, 73, 654–662. [Google Scholar] [CrossRef]
- Al-Fares, A.A.; Randhawa, V.K.; Englesakis, M.; McDonald, M.A.; Nagpal, A.D.; Estep, J.D.; Soltesz, E.G.; Fan, E. Optimal Strategy and Timing of Left Ventricular Venting During Veno-Arterial Extracorporeal Life Support for Adults in Cardiogenic Shock: A Systematic Review and Meta-Analysis. Circ. Heart Fail. 2019, 12, e006486. [Google Scholar] [CrossRef] [PubMed]
- Mangla, A.; Daya, M.R.; Gupta, S. Post-resuscitation care for survivors of cardiac arrest. Indian. Heart J. 2014, 66 (Suppl. 1), S105–S112. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, K.G.; Abella, B.S.; Amorim, E.; Bader, M.K.; Barletta, J.F.; Berg, K.; Callaway, C.W.; Friberg, H.; Gilmore, E.J.; Greer, D.M.; et al. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society. Circulation 2024, 149, e168–e200. [Google Scholar] [CrossRef]
- Johnson, N.J.; Dodampahala, K.; Rosselot, B.; Perman, S.M.; Mikkelsen, M.E.; Goyal, M.; Gaeiski, D.F.; Grossestreur, A.V. The association between arterial oxygen tension and neurological outcome after cardiac arrest. Ther. Hypothermia. Temp. Manag. 2017, 7, 36–41. [Google Scholar] [CrossRef]
- Roberts, B.W.; Kilgannon, J.H.; Hunter, B.R.; Puskarich, M.A.; Pierce, L.; Donnino, M.; Leary, M.; Kline, J.A.; Jones, A.E.; Shapiro, N.I.; et al. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: Prospective multicenter protocol-directed cohort study. Circulation 2018, 137, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Kuisma, M.; Boyd, J.; Voipio, V.; Rosenberg, P. Comparison of 30 and the 100% inspired oxygen concentrations during early post-resuscitation period: A randomised controlled pilot study. Resuscitation 2006, 69, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Jakkula, P.; Reinikainen, M.; Hastbacka, J.; Loisa, P.; Tiainen, M.; Pettila, V.; Toppila, J.; Lahde, M.; Backlund, M.; Okkonen, M.; et al. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: A randomised pilot trial. Intensive Care Med. 2018, 44, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, G.M.; Tanaka, A.; Espinoza, E.D.; Peck, L.; Young, H.; Martensson, J.; Zhang, L.; Glassford, N.J.; Hsiao, Y.F.F.; Suzuki, S.; et al. Conservative oxygen therapy in mechanically ventilated patients following cardiac arrest: A retrospective nested cohort study. Resuscitation 2016, 101, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.A.; Bray, J.E.; Smith, K.; Stephenson, M.; Finn, J.; Grantham, H.; Hein, C.; Masters, S.; Stub, D.; Perkins, G.D.; et al. Effect of Lower vs Higher Oxygen Saturation Targets on Survival to Hospital Discharge Among Patients Resuscitated After Out-of-Hospital Cardiac Arrest: The EXACT Randomized Clinical Trial. JAMA 2022, 328, 1818–1826. [Google Scholar] [CrossRef]
- Curley, G.; Kavanagh, B.P.; Laffey, J.G. Hypocapnia and the injured brain: More harm than benefit. Crit. Care Med. 2010, 38, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Pynnonen, L.; Falkenbach, P.; Kamarainen, A.; Lonnrot, K.; Hankala, A.Y.; Tenhunen, J. Therapeutic hypothermia after cardiac arrest—Cerebral perfusion and metabolism during upper and lower threshold normocapnia. Resuscitation 2011, 82, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Chang, W.T.; Huang, C.H.; Tsai, M.S.; Yu, P.H.; Wang, A.Y.; Chen, N.C.; Chen, W.J. The effect of hyperoxia on survival following adult cardiac arrest: A systematic review and meta-analysis of observational studies. Resuscitation 2014, 85, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.W.; Kilgannon, J.H.; Chansky, M.E.; Mittal, N.; Wooden, J.; Trezciak, S. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation 2013, 127, 2107–2113. [Google Scholar] [CrossRef]
- Schneider, A.G.; Eastwood, G.M.; Bellomo, R.; Bailey, M.; Lipscey, M.; Pilcher, D.; Young, P.; Stow, P.; Santamaria, J.; Stachowski, E.; et al. Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation 2013, 84, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Vaahersalo, J.; Bendel, S.; Reinikainen, M.; Kurola, J.; Tianen, M.; Raj, R.; Pettila, V.; Varpula, T.; Skrifvars, M. Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: Associations with long-term neurologic outcome. Crit. Care Med. 2014, 42, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.W.; Kilgannon, J.H.; Chansky, M.E.; Trzeciak, S. Association between initial prescribed minute ventilation and post-resuscitation partial pressure of arterial carbon dioxide in patients with post-cardiac arrest syndrome. Ann. Intensive Care 2014, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Jeung, K.W.; Lee, H.Y.; Lee, S.J.; Jung, Y.H.; Lee, W.K.; Heo, T.; Min, Y.I. Association between mean arterial blood gas tension and outcome in cardiac arrest patients treated with therapeutic hypothermia. Am. J. Emerg. Med. 2014, 32, 55–60. [Google Scholar] [CrossRef]
- Helmerhorst, H.J.; Roos-Blom, M.J.; van Westerloo, D.J.; Hanna, A.A.; Keizer, N.F.D.; Jonge, E.D. Associations of arterial carbon dioxide and arterial oxygen concentrations with hospital mortality after resuscitation from cardiac arrest. Crit. Care 2015, 19, 348. [Google Scholar] [CrossRef] [PubMed]
- Tolins, M.L.; Henning, D.J.; Gaieski, D.F.; Grossestreur, A.V.; Jaworski, A.; Johnson, N.J. Initial arterial carbon dioxide tension is associated with neurological outcome after resuscitation from cardiac arrest. Resuscitation 2017, 114, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, G.M.; Tanaka, A.; Bellomo, R. Cerebral oxygenation in mechanically ventilated early cardiac arrest survivors: The impact of hypercapnia. Resuscitation 2016, 102, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, G.M.; Schneider, A.G.; Suzuki, S.; Peck, L.; Young, H.; Tanaka, A.; Martensson, J.; Warrilow, S.; McGuinness, S.; Parke, R.; et al. Targeted therapeutic mild hypercapnia after cardiac arrest: A phase II multi-centre randomised controlled trial (the CCC trial). Resuscitation 2016, 104, 83–90. [Google Scholar] [CrossRef]
- Peberdy, M.A.; Callaway, C.W.; Neumar, R.W.; Geocadin, R.G.; Zimmerman, J.L.; Donnino, M.; Gabrielli, A.; Silvers, S.M.; Zaritsky, A.L.; Merchant, R.; et al. Part 9: Post–Cardiac Arrest Care. Circulation 2010, 122 (Suppl. 3), S768–S786. [Google Scholar] [CrossRef] [PubMed]
- HACA. Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002, 346, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.A.; Gray, T.W.; Buist, M.D.; Jones, B.M.; Silvester, W.; Gutteridge, G.; Smith, K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 2002, 346, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Belliard, G.; Catez, E.; Charron, C.; Caille, V.; Aegerter, P.; Dubourg, O.; Jardin, F.; Vieillard-Baron, A. Efficacy of therapeutic hypothermia after out-of-hospital cardiac arrest due to ventricular fibrillation. Resuscitation 2007, 75, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Castrejon, S.; Cortes, M.; Salto, M.L.; Benittez, L.C.; Rubio, R.; Juarez, M.; Lopez de Sa, E.; Bueno, H.; Sanchez, P.L.; Fernandez Aviles, F. Improved prognosis after using mild hypothermia to treat cardiorespiratory arrest due to a cardiac cause: Comparison with a control group. Rev. Esp. Cardiol. 2009, 62, 733–741. [Google Scholar] [CrossRef]
- Richardson, A.S.C.; Tonna, J.E.; Nanjayya, V.; Nixon, P.; Abrams, D.C.; Raman, L.; Bernard, S.; Finney, S.J.; Grunau, B.; Youngquist, S.T.; et al. Extracorporeal Cardiopulmonary Resuscitation in Adults. Interim Guideline Consensus Statement from the Extracorporeal Life Support Organization. ASAIO J. 2021, 67, 221–228. [Google Scholar] [CrossRef]
- Suverein, M.M.; Delnoij, T.S.R.; Lorusso, R.; Brunisma, G.J.; Otterspoor, L.; Kraemer, C.V.; Vlaar, A.; Heijden, J.J.; Scholten, E.; Uil, C.D.; et al. Early Extracorporeal CPR for Refractory Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2023, 388, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Yannopoulos, D.; Bartos, J.; Raveendran, G.; Walser, E.; Connett, J.; Murray, T.A.; Collins, G.; Zhang, L.; Kalra, R.; Kosmopoulos, M.; et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): A phase 2, single centre, open-label, randomised controlled trial. Lancet 2020, 396, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Belohlavek, J.; Smalcova, J.; Rob, D.; Franek, O.; Smid, O.; Pokorna, M.; Horak, J.; Mrazek, V.; Kovarnik, T.; Zemanek, D.; et al. Effect of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and immediate invasive assessment and treatment on functional neurologic outcome in refractory out-of-hospital cardiac arrest: A randomized clinical trial. JAMA 2022, 327, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.M.; van Diepen, S.; Hollenberg, S.M.; Bernard, S. Extracorporeal Cardiopulmonary Resuscitation: Life-saving or Resource Wasting? US Cardiol. 2024, 18, e12. [Google Scholar] [CrossRef] [PubMed]
- Stub, D.; Bernard, S.; Pellegrino, V.; Smith, K.; Walker, T.; Sheldrake, J.; Hockings, L.; Shaw, J.; Duffy, S.J.; Burrell, A.; et al. Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial). Resuscitation 2015, 86, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Low, C.J.W.; Ramanathan, K.; Ling, R.R.; Ho, M.J.C.; Chen, Y.; Lorusso, R.; MacLaren, G.; Shekar, K.; Brodie, D. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with cardiac arrest: A comparative meta-analysis and trial sequential analysis. Lancet Respir. Med. 2023, 11, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Singer, B.; Reynolds, J.C.; Davies, G.E.; Wrigley, F.; Whitbread, M.; Faulkner, M.; Brien, B.O.; Proudfoot, A.G.; Mathur, A.; Evens, T.; et al. Sub30: Protocol for the Sub30 feasibility study of a pre-hospital Extracorporeal membrane oxygenation (ECMO) capable advanced resuscitation team at achieving blood flow within 30 min in patients with refractory out-of-hospital cardiac arrest. Resusc. Plus 2020, 4, 100029. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.H.; Meurer, W.J.; Domeier, R.; Fowler, J.; Whitmore, S.P.; Bassin, B.S.; Gunnerson, K.J.; Haft, J.W.; Lynch, W.R.; Nallamothu, B.K.; et al. Extracorporeal Cardiopulmonary Resuscitation for Refractory Out-of-Hospital Cardiac Arrest (EROCA): Results of a Randomized Feasibility Trial of Expedited Out-of-Hospital Transport. Ann. Emerg. Med. 2021, 78, 92–101. [Google Scholar] [CrossRef]
- Miranda, D. On-Scene Initiation of Extracorporeal Cardiopulmonary Resuscitation During Refractory Out-of-Hospital Cardiac Arrest. ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04620070 (accessed on 9 December 2024).
- Link, M.S.; Berkow, L.C.; Kudenchuk, P.J.; Halperin, H.R.; Hess, E.P.; Moitra, V.K.; Neumar, R.W.; Neil, B.J.O.; Paxton, J.H.; Silvers, S.M.; et al. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132 (Suppl. 2), S444–S464. [Google Scholar] [CrossRef]
- Li, Z.; Gao, J.; Wang, J.; Xie, H.; Guan, Y.; Zhuang, X.; Liu, Q.; Fu, L.; Hou, X.; Hei, F. Mortality risk factors in patients receiving ECPR after cardiac arrest: Development and validation of a clinical prognostic prediction model. Am. J. Emerg. Med. 2024, 76, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, M.; Cesareo, E.; Pinero, D.; Dubien, P.Y.; Richard, J.C. Pre-hospital extracorporeal cardiopulmonary resuscitation for refractory out-of-hospital cardiac arrest: Preliminary results of a multidisciplinary approach. Resuscitation 2022, 176, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Marinaro, J.; Guliani, S.; Dettmer, T.; Pruett, K.; Dixon, D.; Braude, D. Out-of-hospital extracorporeal membrane oxygenation cannulation for refractory ventricular fibrillation: A case report. J. Am. Coll. Emerg. Physicians Open. 2020, 1, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Trial, O.-S. Instruction Videos for Professionals Online: On-Scene Trial 2023. Available online: https://onscenetrial.com/instruction-videos-for-professionals/ (accessed on 25 November 2024).
- Jones, D.; Daglish, F.M.; Tanner, B.M.; Wilkie, F.J.M. A review of pre-hospital extracorporeal cardiopulmonary resuscitation and its potential application in the North East of England. Int. J. Emerg. Med. 2024, 17, 7. [Google Scholar] [CrossRef]
- Haertel, F.; Babst, J.; Bruening, C.; Bogoviku, J.; Otto, S.; Fritzenwanger, M.; Gecks, T.; Ebelt, H.; Winkler, S.M.; Schulze, P.C.; et al. Effect of Hemolysis Regarding the Characterization and Prognostic Relevance of Neuron Specific Enolase (NSE) after Cardiopulmonary Resuscitation with Extracorporeal Circulation (eCPR). J. Clin. Med. 2023, 12, 3015. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Yang, J.H.; Lee, Y.H. Are serial neuron-specific enolase levels associated with neurologic outcome of ECPR patients: A retrospective multicenter observational study. Am. J. Emerg. Med. 2023, 69, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.L.; Gause, E.; Mills, B.; Tonna, J.E.; Alvey, H.; Saczkowski, R.; Grunau, B.; Becker, L.B.; Gaieski, D.F.; Youngquist, S.; et al. Traumatic and hemorrhagic complications after extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest. Resuscitation 2020, 157, 225–229. [Google Scholar] [CrossRef]
- Bartos, J.A.; Carlson, K.; Carlson, C.; Tonna, J.E.; Alvey, H.; Saczkowski, R.; Grunau, B.; Becker, L.B.; Gaieski, D.F.; Youngquist, S.; et al. Surviving refractory out-of-hospital ventricular fibrillation cardiac arrest: Critical care and extracorporeal membrane oxygenation management. Resuscitation 2018, 132, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Lu, A.; Pan, C.; Zhang, B.; Wa, Y.L.; Qu, W.; Bai, M. Limb Ischemia Complications of Veno-Arterial Extracorporeal Membrane Oxygenation. Front. Med. 2022, 9, 938634. [Google Scholar] [CrossRef]
- Bonicolini, E.; Martucci, G.; Simons, J.; Raffa, G.M.; Spina, C.; Coco, V.L.; Arcadipance, A.; Pilato, M.; Lorusso, R. Limb ischemia in peripheral veno-arterial extracorporeal membrane oxygenation: A narrative review of incidence, prevention, monitoring, and treatment. Crit. Care 2019, 23, 266. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Hachamovitch, R.; Kittleson, M.; Patel, J.; Arabia, F.; Moriguchi, J.; Esmailian, F.; Azarbal, B. Complications of Extracorporeal Membrane Oxygenation for Treatment of Cardiogenic Shock and Cardiac Arrest: A Meta-Analysis of 1866 Adult Patients. Ann. Thorac. Surg. 2014, 97, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Krasivskyi, I.; Großmann, C.; Dechow, M.; Djordjevic, I.; Ivanov, B.; Gerfer, S.; Bennour, W.; Kuhn, E.; Sabashnikov, A.; Rahmanian, P.B.; et al. Acute Limb Ischaemia during ECMO Support: A 6-Year Experience. Life 2023, 13, 485. [Google Scholar] [CrossRef] [PubMed]
- Kuo, G.; Chen, S.W.; Fan, P.C.; Wu, V.C.C.; Chou, A.H.; Lee, C.C.; Chu, P.H.; Tsai, F.C.; Tian, Y.C.; Chang, C.H. Analysis of survival after initiation of continuous renal replacement therapy in patients with extracorporeal membrane oxygenation. BMC Nephrol. 2019, 20, 318. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, M.S.; Ainslie, P.N.; Griesdale, D.E. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: A “two-hit” model. Crit. Care 2017, 21, 90. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.; Zmudzki, F.; Burns, B.; Scott, S.; Gattas, D.; Reynolds, C.; Buscher, H.; Forrest, P.; Sydney, E.R.I.G. Cost-effectiveness and quality of life analysis of extracorporeal cardiopulmonary resuscitation (ECPR) for refractory cardiac arrest. Resuscitation 2019, 139, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Ubel, P.A.; Hirth, R.A.; Chernew, M.E.; Fendrick, A.M. What Is the Price of Life and Why Doesn’t It Increase at the Rate of Inflation? Arch. Intern. Med. 2003, 163, 1637–1641. [Google Scholar] [CrossRef]
- Braithwaite, R.S.; Meltzer, D.O.; King, J.T.J.; Leslie, D.; Roberts, M.S. What Does the Value of Modern Medicine Say About the $50,000 per Quality-Adjusted Life-Year Decision Rule? Med. Care 2008, 46, 349. [Google Scholar] [CrossRef] [PubMed]
- Bharmal, M.I.; Venturini, J.M.; Chua, R.F.M.; Sharp, W.W.; Beiser, D.G.; Tabit, C.E.; Hirai, T.; Rosenberg, J.R.; Friant, J.; Blair, J.E.A.; et al. Cost-utility of extracorporeal cardiopulmonary resuscitation in patients with cardiac arrest. Resuscitation 2019, 136, 126–130. [Google Scholar] [CrossRef]
- Kawashima, T.; Uehara, H.; Miyagi, N.; Shimajiri, M.; Nakamura, K.; Chinen, T.; Hatano, S.; Nago, C.; Chiba, S.; Nakane, H.; et al. Impact of first documented rhythm on cost-effectiveness of extracorporeal cardiopulmonary resuscitation. Resuscitation 2019, 140, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Riggs, K.R.; Becker, L.B.; Sugarman, J. Ethics in the use of extracorporeal cardiopulmonary resuscitation in adults. Resuscitation 2015, 91, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Morimura, N.; Nagao, K.; Asai, Y.; Yokota, H.; Nara, S.; Hase, M.; Tahara, Y.; Atsumi, T. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: A prospective observational study. Resuscitation 2014, 85, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, R.A.; Cain, K.C.; Patrick, D.L.; Maizel, M.A.; Starks, H.E.; Jecker, N.S.; Uhlmann, R.F. Insights pertaining to patient assessments of states worse than death. J. Clin. Ethics 1993, 4, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Yumoto, T.; Tsukahara, K.; Obara, T.; Hongo, T.; Nojima, T.; Naito, H.; Nakao, A. Organ donation after extracorporeal cardiopulmonary resuscitation: A nationwide retrospective cohort study. Crit. Care 2024, 28, 160. [Google Scholar] [CrossRef] [PubMed]
- Bonizzoni, M.A.; Scquizzato, T.; Pieri, M.; Delrio, S.; Nardelli, P.; Ortalda, A.; Dell’Acqua, A.; Scandroglio, A.M. Organ donation after extracorporeal cardiopulmonary resuscitation for refractory out-of-hospital cardiac arrest in a metropolitan cardiac arrest centre in Milan, Italy. Resuscitation 2024, 200, 110214. [Google Scholar] [CrossRef] [PubMed]
Study | Region | Age | Presentation | Intervention | Time to Cannulation (minutes) | Sample Size | Hospital Survival |
---|---|---|---|---|---|---|---|
ARREST [56] | Single-center, University of Minnesota, USA | 18–75 | OHCA, VF or VT, no ROSC after 3 shocks, transfer time < 30 min | ACLS | N/A | 15 | 1 (7%) |
eCPR | 59 (SD: 28) | 15 | 6 (43%) | ||||
PRAGUE [57] | Single-center, Charles University, Prague, Czech Republic | 18–65 | Witnessed OHCA, >5 min ACLS | ACLS | N/A | 132 | 29 (22%) |
eCPR | 61 (IQR: 55–70) | 124 | 39 (32%) | ||||
INCEPTION [55] | Multicenter, The Netherlands | 18–70 | Witnessed VT/VF OHCA, refractory (>15 min ACLS) | ACLS | N/A | 64 | 13 (20%) |
eCPR | 74 (IQR: 63–87) | 70 | 14 (20%) | ||||
CHEER [59] | Single-center, The Alfred Hospital, Australia | 18–65 | VF IHCA or OHCA, CPR within 10 min of arrest | eCPR | 56 (IQR: 40–85) | 26 | 14 (54%) |
Sub30 [61] | Multicenter, London | 18–65 | Witnessed OHCA, CPR within 3 min of arrest, refractory arrest > 20 min | eCPR | Goal < 30 min after arrest | Ongoing | Ongoing |
EROCA [62] | Single-center, The University of Michigan, USA | 18–70 | OHCA, initial shockable rhythm, transfer time of <30 min | eCPR | 66.2 (SD: 16.7) | 15 (5 qualified for eCPR) | 0 (0%) |
ON-SCENE [63] | Multicenter, Netherlands | 18–50 | Witnessed VT/VF OHCA, refractory arrest > 20 min | eCPR | Ongoing | Ongoing | Ongoing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrell, B.E.; Thomas, J.; Skendelas, J.P.; Uehara, M.; Sugiura, T. Extracorporeal Cardiopulmonary Resuscitation—Where Do We Currently Stand? Biomedicines 2025, 13, 204. https://doi.org/10.3390/biomedicines13010204
Ferrell BE, Thomas J, Skendelas JP, Uehara M, Sugiura T. Extracorporeal Cardiopulmonary Resuscitation—Where Do We Currently Stand? Biomedicines. 2025; 13(1):204. https://doi.org/10.3390/biomedicines13010204
Chicago/Turabian StyleFerrell, Brandon E., Jason Thomas, John P. Skendelas, Mayuko Uehara, and Tadahisa Sugiura. 2025. "Extracorporeal Cardiopulmonary Resuscitation—Where Do We Currently Stand?" Biomedicines 13, no. 1: 204. https://doi.org/10.3390/biomedicines13010204
APA StyleFerrell, B. E., Thomas, J., Skendelas, J. P., Uehara, M., & Sugiura, T. (2025). Extracorporeal Cardiopulmonary Resuscitation—Where Do We Currently Stand? Biomedicines, 13(1), 204. https://doi.org/10.3390/biomedicines13010204