The Interactive Effects of Fruit Intake Frequency and Serum miR-484 Levels as Biomarkers for Incident Type 2 Diabetes in a Prospective Cohort of the Spanish Adult Population: The Di@bet.es Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Population
2.2. Data Collection and Laboratory Measurements
2.3. Definition of New Cases of T2DM
2.4. miR-484 Level Determination
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Population According to the miR-484 Categories
3.2. Relationship Between miR-484 Levels and Fruit Frequency Intake
3.3. miR-484 as T2DM Development Biomarker
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dianna, J.; Magliano, E.J.B. IDF Diabetes Atlas 10th Edition Scientific Committee; International Diabetes Federation: Brussels, Belgium, 2021; ISBN 13: 978-2-930229-98-0. [Google Scholar]
- Pearson, E.R. Type 2 diabetes: A multifaceted disease. Diabetologia 2019, 62, 1107–1112. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef]
- Van Huynh, T.; Rethi, L.; Rethi, L.; Chen, C.-H.; Chen, Y.-J.; Kao, Y.-H. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023, 12, 1223. [Google Scholar] [CrossRef]
- Yoon, Y.; Galloway, C.A.; Jhun, B.S.; Yu, T. Mitochondrial dynamics in diabetes. Antioxid. Redox Signal. 2011, 14, 439–457. [Google Scholar] [CrossRef]
- Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 45. [Google Scholar]
- Elsayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 3. Prevention or Delay of Type 2 Diabetes and Associated Comorbidities: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S41–S48. [Google Scholar] [CrossRef]
- Wronka, M.; Krzemińska, J.; Młynarska, E.; Rysz, J.; Franczyk, B. The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes. Int. J. Mol. Sci. 2022, 23, 15743. [Google Scholar] [CrossRef]
- Kong, M.; Xie, K.; Lv, M.; Li, J.; Yao, J.; Yan, K.; Wu, X.; Xu, Y.; Ye, D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed. Pharmacother. 2021, 133, 110975. [Google Scholar] [CrossRef]
- Farias-Pereira, R.; Zuk, J.B.; Khavaran, H. Plant bioactive compounds from Mediterranean diet improve risk factors for metabolic syndrome. Int. J. Food Sci. Nutr. 2023, 74, 403–423. [Google Scholar] [CrossRef]
- Timm, M.; Offringa, L.C.; Van Klinken, B.J.W.; Slavin, J. Beyond Insoluble Dietary Fiber: Bioactive Compounds in Plant Foods. Nutrients 2023, 15, 4138. [Google Scholar] [CrossRef]
- Jin, Y.; Arroo, R. The protective effects of flavonoids and carotenoids against diabetic complications-A review of in vivo evidence. Front. Nutr. 2023, 10, 1020950. [Google Scholar] [CrossRef]
- Metibemu, D.S.; Ogungbe, I.V. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022, 27, 6005. [Google Scholar] [CrossRef]
- Zin, C.A.J.C.M.; Mohamed, W.M.I.W.; Khan, N.A.K.; Ishak, W.R.W. Effects of Fruit and Vegetable Polyphenols on the Glycemic Control and Metabolic Parameters in Type 2 Diabetes Mellitus: A Review. Prev. Nutr. Food Sci. 2022, 27, 257–264. [Google Scholar] [CrossRef]
- Ansari, P.; Khan, J.T.; Chowdhury, S.; Reberio, A.D.; Kumar, S.; Seidel, V.; Abdel-Wahab, Y.H.A.; Flatt, P.R. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024, 16, 3709. [Google Scholar] [CrossRef]
- Di Salvo, E.; Gangemi, S.; Genovese, C.; Cicero, N.; Casciaro, M. Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria. Plants 2023, 12, 3579. [Google Scholar] [CrossRef]
- Muraki, I.; Imamura, F.; Manson, J.E.; Hu, F.B.; Willett, W.C.; Van Dam, R.M.; Sun, Q. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ 2013, 347, f5001. [Google Scholar] [CrossRef]
- Cooper, A.J.M.; Sharp, S.J.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. The association between a biomarker score for fruit and vegetable intake and incident type 2 diabetes: The EPIC-Norfolk study. Eur. J. Clin. Nutr. 2015, 69, 449–454. [Google Scholar] [CrossRef]
- Hegde, S.V.; Adhikari, P.; Nandini, M.; D’Souza, V. Effect of daily supplementation of fruits on oxidative stress indices and glycaemic status in type 2 diabetes mellitus. Complement. Ther. Clin. Pract. 2013, 19, 97–100. [Google Scholar] [CrossRef]
- Kurotani, K.; Nanri, A.; Goto, A.; Mizoue, T.; Noda, M.; Kato, M.; Inoue, M.; Tsugane, S. Vegetable and fruit intake and risk of type 2 diabetes: Japan Public Health Center-based Prospective Study. Br. J. Nutr. 2013, 109, 709–717. [Google Scholar] [CrossRef]
- Mamluk, L.; O’Doherty, M.G.; Orfanos, P.; Saitakis, G.; Woodside, J.V.; Liao, L.M.; Sinha, R.; Boffetta, P.; Trichopoulou, A.; Kee, F. Fruit and vegetable intake and risk of incident of type 2 diabetes: Results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES). Eur. J. Clin. Nutr. 2017, 71, 83–91. [Google Scholar] [CrossRef]
- Wu, C.; Liu, P.; Yuan, Z. Prospective association between fruit and vegetable intake and the risk of type 2 diabetes amongst Chinese adults: The China Health and Nutrition Survey. Int. J. Food Sci. Nutr. 2024, 75, 81–91. [Google Scholar] [CrossRef]
- Niu, K.; Lyu, Q.; Zhang, S.; Wang, C.; Mao, Z.; Cui, S.; Gu, R.; Li, L. The dose-response relationship of fruit and vegetable intake and risk of type 2 diabetes among rural China: The Henan Rural Cohort study. Prim. Care Diabetes 2023, 17, 161–167. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Grieco, G.E.; Besharat, Z.M.; Licata, G.; Fignani, D.; Brusco, N.; Nigi, L.; Formichi, C.; Po, A.; Sabato, C.; Dardano, A.; et al. Circulating microRNAs as clinically useful biomarkers for Type 2 Diabetes Mellitus: miRNomics from bench to bedside. Transl. Res. 2022, 247, 137–157. [Google Scholar] [CrossRef]
- Preethi, K.A.; Selvakumar, S.C.; Sekar, D. Diagnostic and Therapeutic Application of Exosomal microRNAs Inducing Inflammation in Type 2 Diabetes Mellitus. Crit. Rev. Immunol. 2022, 42, 1–11. [Google Scholar] [CrossRef]
- Palihaderu, P.A.D.S.; Mendis, B.I.L.M.; Premarathne, J.M.K.J.K.; Dias, W.K.R.R.; Yeap, S.K.; Ho, W.Y.; Dissanayake, A.S.; Rajapakse, I.H.; Karunanayake, P.; Senarath, U.; et al. Therapeutic Potential of miRNAs for Type 2 Diabetes Mellitus: An Overview. Epigenet. Insights 2022, 15, 25168657221130040. [Google Scholar] [CrossRef]
- Fontalba-Romero, M.I.; López-Enriquez, S.; Lago-Sampedro, A.; Garcia-Escobar, E.; Pastori, R.L.; Domínguez-Bendala, J.; Alvarez-Cubela, S.; Valdés, S.; Rojo-Martinez, G.; García-Fuentes, E.; et al. Association between the mediterranean diet and metabolic syndrome with serum levels of mirna in morbid obesity. Nutrients 2021, 13, 436. [Google Scholar] [CrossRef]
- Quintanilha, B.J.; Reis, B.Z.; Silva Duarte, G.B.; Cozzolino, S.M.F.; Rogero, M.M. Nutrimiromics: Role of micrornas and nutrition in modulating inflammation and chronic diseases. Nutrients 2017, 9, 1168. [Google Scholar] [CrossRef]
- Hernández-Alonso, P.; Giardina, S.; Salas-Salvadó, J.; Arcelin, P.; Bulló, M. Chronic pistachio intake modulates circulating microRNAs related to glucose metabolism and insulin resistance in prediabetic subjects. Eur. J. Nutr. 2017, 56, 2181–2191. [Google Scholar] [CrossRef]
- Jia, Y.Z.; Liu, J.; Wang, G.Q.; Song, Z.F. miR-484: A Potential Biomarker in Health and Disease. Front. Oncol. 2022, 12, 830420. [Google Scholar] [CrossRef]
- Choi, W.H.; Ahn, J.; Um, M.Y.; Jung, C.H.; Jung, S.E.; Ha, T.Y. Circulating microRNA expression profiling in young obese Korean women. Nutr. Res. Pract. 2020, 14, 412–422. [Google Scholar] [CrossRef]
- Tang, X.; Muniappan, L.; Tang, G.; Özcan, S. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA 2009, 15, 287–293. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Mauer, A.S.; Kumar, S.; Mott, J.L.; Malhi, H. Mmu-miR-615-3p regulates lipoapoptosis by inhibiting C/EBP homologous protein. PLoS ONE 2014, 9, e109637. [Google Scholar] [CrossRef]
- Raitoharju, E.; Seppälä, I.; Oksala, N.; Lyytikäinen, L.P.; Raitakari, O.; Viikari, J.; Ala-Korpela, M.; Soininen, P.; Kangas, A.J.; Waldenberger, M.; et al. Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: The cardiovascular risk in Young Finns Study. Mol. Cell. Endocrinol. 2014, 391, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Long, B.; Jiao, J.Q.; Wang, J.X.; Liu, J.P.; Li, Q.; Li, P.F. miR-484 regulates mitochondrial network through targeting Fis1. Nat. Commun. 2012, 3, 781. [Google Scholar] [CrossRef]
- Zheng, J.; Yan, X.; Lu, T.; Song, W.; Li, Y.; Liang, J.; Zhang, J.; Cai, J.; Sui, X.; Xiao, J.; et al. CircFOXK2 promotes hepatocellular carcinoma progression and leads to a poor clinical prognosis via regulating the Warburg effect. J. Exp. Clin. Cancer Res. 2023, 42, 63. [Google Scholar] [CrossRef]
- Soriguer, F.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; Castell, C.; Catalá, M.; et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: The Di@bet.es Study. Diabetologia 2012, 55, 88–93. [Google Scholar] [CrossRef]
- Rojo-Martínez, G.; Valdés, S.; Soriguer, F.; Vendrell, J.; Urrutia, I.; Pérez, V.; Ortega, E.; Ocón, P.; Montanya, E.; Menéndez, E.; et al. Incidence of diabetes mellitus in Spain as results of the nation-wide cohort di@bet.es study. Sci. Rep. 2020, 10, 2765. [Google Scholar] [CrossRef]
- Soriguer, F.; Rojo-Martínez, G.; Dobarganes, M.C.; García Almeida, J.M.; Esteva, I.; Beltrán, M.; Ruiz De Adana, M.S.; Tinahones, F.; Gómez-Zumaquero, J.M.; García-Fuentes, E.; et al. Hypertension is related to the degradation of dietary frying oils. Am. J. Clin. Nutr. 2003, 78, 1092–1097. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshal, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Association, A.D. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef]
- Rothman, K. Modern Epidemiology, 1st ed.; Little, Brown and Company: Boston, MA, USA, 1986. [Google Scholar]
- VanderWeele, T.J. Reconsidering the denominator of the attributable proportion for interaction. Eur. J. Epidemiol. 2013, 28, 779–784. [Google Scholar] [CrossRef]
- Knol, M.J.; VanderWeele, T.J.; Groenwold, R.H.H.; Klungel, O.H.; Rovers, M.M.; Grobbee, D.E. Estimating measures of interaction on an additive scale for preventive exposures. Eur. J. Epidemiol. 2011, 26, 433–438. [Google Scholar] [CrossRef]
- Zou, G.Y. On the estimation of additive interaction by use of the four-by-two table and beyond. Am. J. Epidemiol. 2008, 168, 212–224. [Google Scholar] [CrossRef]
- Nattagh-Eshtivani, E.; Gheflati, A.; Barghchi, H.; Rahbarinejad, P.; Hachem, K.; Shalaby, M.N.; Abdelbasset, W.K.; Ranjbar, G.; Olegovich Bokov, D.; Rahimi, P.; et al. The role of Pycnogenol in the control of inflammation and oxidative stress in chronic diseases: Molecular aspects. Phytother. Res. 2022, 36, 2352–2374. [Google Scholar] [CrossRef]
- Chen, V.; Khan, T.A.; Chiavaroli, L.; Ahmed, A.; Lee, D.; Kendall, C.W.C.; Sievenpiper, J.L. Relation of fruit juice with adiposity and diabetes depends on how fruit juice is defined: A re-analysis of the EFSA draft scientific opinion on the tolerable upper intake level for dietary sugars. Eur. J. Clin. Nutr. 2023, 77, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yan, N.; Jiang, H.; Cui, M.; Wu, M.; Wang, L.; Mi, B.; Li, Z.; Shi, J.; Fan, Y.; et al. Consumption of sugar sweetened beverages, artificially sweetened beverages and fruit juices and risk of type 2 diabetes, hypertension, cardiovascular disease, and mortality: A meta-analysis. Front. Nutr. 2023, 10, 1019534. [Google Scholar] [CrossRef]
- Zobeiri, M.; Parvizi, F.; Kalhori, M.R.; Majnooni, M.B.; Farzaei, M.H.; Abdollahi, M. Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. Evid.-Based. Complement. Altern. Med. 2021, 2021, 6641031. [Google Scholar] [CrossRef]
- Corrêa, T.A.; Rogero, M.M. Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition 2019, 59, 150–157. [Google Scholar] [CrossRef]
- Arola-Arnal, A.; Bladé, C. Proanthocyanidins modulate microRNA expression in human HepG2 cells. PLoS ONE 2011, 6, e25982. [Google Scholar] [CrossRef]
- Qin, N.; Chen, Y.; Jin, M.-N.; Zhang, C.; Qiao, W.; Yue, X.-L.; Duan, H.-Q.; Niu, W.-Y. Anti-obesity and anti-diabetic effects of flavonoid derivative (Fla-CN) via microRNA in high fat diet induced obesity mice. Eur. J. Pharm. Sci. 2016, 82, 52–63. [Google Scholar] [CrossRef]
- Luceri, C.; Bigagli, E.; Pitozzi, V.; Giovannelli, L. A nutrigenomics approach for the study of anti-aging interventions: Olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur. J. Nutr. 2017, 56, 865–877. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Rajendran, P.; Scherthan, H. The microRNA-202 as a Diagnostic Biomarker and a Potential Tumor Suppressor. Int. J. Mol. Sci. 2022, 23, 5870. [Google Scholar] [CrossRef]
- Boufraqech, M.; Zhang, L.; Jain, M.; Patel, D.; Ellis, R.; Xiong, Y.; He, M.; Nilubol, N.; Merino, M.J.; Kebebew, E. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3. Endocr. Relat. Cancer 2014, 21, 517–531. [Google Scholar] [CrossRef]
- Rothman, K.; Greenland, S.; Lash, T. Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Reshma, P.L.; Sainu, N.S.; Mathew, A.K.; Raghu, K.G. Mitochondrial dysfunction in H9c2 cells during ischemia and amelioration with Tribulus terrestris L. Life Sci. 2016, 152, 220–230. [Google Scholar] [CrossRef]
- Nunes, S.; Viana, S.D.; Preguiça, I.; Alves, A.; Fernandes, R.; Teodoro, J.S.; Matos, P.; Figueirinha, A.; Salgueiro, L.; André, A.; et al. Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics. Nutrients 2021, 13, 4192. [Google Scholar] [CrossRef]
Overall Population | Low miR-484 | High miR-484 | p-Value | |
---|---|---|---|---|
(n = 2234) | (n = 555) | (n = 1679) | ||
Age (%) | 0.1 | |||
18–30 years | 12.5 | 12 | 13 | |
31–45 years | 33.2 | 31 | 34 | |
46–60 years | 31.8 | 30 | 32 | |
61–75 years | 19 | 23 | 18 | |
>75 years | 3.5 | 4 | 3 | |
Sex (%men) | 39.2 | 38.2 | 39.5 | 0.61 |
BMI (Kg/m2) | 27.56 ± 4.73 | 26.98 ± 4.45 | 27.76 ± 4.81 | <0.001 |
Fasting serum glucose (mg/dL) | 91.69 ± 11.84 | 89.79 ± 12.08 | 92.31 ± 11.70 | <0.001 |
Fasting serum insulin (mU/dL) | 8.52 ± 5.31 | 7.70 ± 3.94 | 8.80 ± 5.67 | 0.01 |
Systolic blood pressure (mmHg) | 128.67 ± 18.47 | 129.04 ±19.22 | 128.55 ± 18.22 | 0.58 |
Diastolic blood pressure (mmHg) | 76.34 ± 10.30 | 76.34 ± 10.21 | 76.42 ± 10.42 | 0.68 |
Total cholesterol (mg/dL) | 197.78 ± 38.84 | 196.75 ± 37.82 | 198.12 ± 39.18 | 0.24 |
HDL cholesterol (mg/dL) | 53.01 ± 12.99 | 53.13 ± 12.31 | 50.97 ± 13.21 | 0.25 |
LDL cholesterol (mg/dL) | 106.26 ± 29.30 | 105.61 ± 28.31 | 106.47 ± 29.62 | 0.5 |
HOMA index | 1.98 ± 1.41 | 1.75 ± 1.01 | 2.06 ± 1.51 | <0.01 |
Prediabetes (%) | 27.8 | 23.2 | 29.3 | <0.01 |
Smoking (%current smoker) | 26.5 | 26.1 | 25.4 | 0.79 |
Alcohol consumption (%) | 0.06 | |||
Never | 23.9 | 26.8 | 22.9 | |
Low | 10.1 | 8.1 | 10.7 | |
Moderate | 50 | 51 | 49.7 | |
High | 16 | 14.1 | 16.6 | |
Educational level | <0.001 | |||
Unlettered | 8 | 5.9 | 8.6 | |
Primary/High School | 74.2 | 70.6 | 75.4 | |
University | 17.8 | 23.4 | 16 | |
SF-IPAQ score | 0.68 | |||
Low (%) | 42.4 | 41.3 | 42.8 | |
Moderate (%) | 34.2 | 35.7 | 33.7 | |
High (%) | 23.4 | 23.1 | 23.6 | |
Fruit intake (%Daily) | 75.4 | 77.5 | 74.7 | 0.21 |
M1 | M2 | |||
---|---|---|---|---|
OR (95%CI) | p | OR(95%CI) | p | |
Age (years) | ||||
18–30 | RC | RC | ||
31–45 | 5.61 (1.57–36.21) | 0.02 | 5.36 (1.49–34.68) | 0.03 |
46–60 | 8.18 (2.3–52.9) | p < 0.01 | 7.9 (2.2–51.27) | p < 0.01 |
61–75 | 15.1 (4.18–98.25) | p < 0.001 | 14.58 (3.96–95.57) | p < 0.001 |
>75 | 21.89 (4.98–156.2) | p < 0.001 | 19.69 (4.27–144.04) | p < 0.001 |
Sex (woman vs. male) | 0.74 (80.5–1.08) | 0.12 | 0.75 (0.49–1.16) | 0.20 |
BMI | 1.08 (1.03–1.12) | p < 0.001 | 1.07 (1.03–1.12) | p < 0.001 |
Fasting glucose level | 1.07 (1.05–1.09) | p < 0.001 | 1.07 (1.04–1.09) | p < 0.001 |
Family history of T2DM (yes vs. no) | 2.13 (1.43–3.2) | p < 0.001 | 2.11 (1.41–3.19 | p < 0.001 |
HOMA levels | 1.14 (1.01–1.28) | 0.03 | 1.15 (1.01–1.29) | 0.03 |
Fruit intake (Daily vs. occasionally) | 0.28 (0.13–0.64) | p < 0.01 | 0.28 (0.13–0.65) | p < 0.01 |
miR-484 levels (High vs. Low) | 0.29 (0.13–0.67) | p < 0.01 | 0.28 (0.12–0.63) | p < 0.01 |
Fruit intake*miR-484 levels | 2.86 (1.10–7.35) | 0.03 | 2.89 (1.11–7.48) | 0.03 |
Smoking habits (current vs. never/former) | 1.02 (0.62–1.66) | 0.94 | ||
Educacional level | ||||
Unlettered | RC | |||
Primary/High School | 0.79 (0.45–1.44) | 0.43 | ||
University | 0.55 (0.24–1.25) | 0.16 | ||
Alcohol consumption (%) | ||||
Never | RC | |||
Low | 1.09 (0.49–2.28) | 0.82 | ||
Moderate | 1.02 (0.63–1.7) | 0.93 | ||
High | 1.01 (0.54–1.87) | 0.99 | ||
SF-IPAQ score | ||||
Low (%) | RC | |||
Moderate (%) | 1.36 (0.88–2.09) | 0.16 | ||
High (%) | 0.95 (0.54–1.63) | 0.87 |
miR-484 Categories | ||||
---|---|---|---|---|
High | Low | ORs (95%CI) for miR-484_Low Within Strata of Fruit Consumption | ||
OR (95%CI) | OR (95%CI) | |||
- M1 | ||||
Fruit consumption | Daily | RC (1) | 1.2 (0.72, 2) | 1.2 (0.72, 2) |
Occasional | 1.25 (0.74, 2.12) | 4.3 (2.09, 8.86) | 3.43 (1.53, 7.7) | |
ORs (95%CI) for occasional fruit consumption within strata of miR-484 categories | 1.25 (0.74, 2.12) | 3.58 (1.6, 8.03) | ||
RERI (95%CI) | 2.85 (0.56, 7.28) | |||
AP (95%CI) | 0.66 (0.11, 0.82) | |||
SI (95%CI) | 7.3 (0.83, 64.36) | |||
- M2 | ||||
Fruit consumption | Daily | RC (1) | 1.25 (0.74, 2.09) | 1.25 (0.74, 2.09) |
Occasional | 1.22 (0.72, 2.09) | 4.41 (2.13, 9.12) | 3.61 (1.6, 8.13) | |
ORs (95%CI) for occasional fruit consumption within strata of miR-484 categories | 1.22 (0.72, 2.09) | 3.54 (1.57, 7.96) | ||
RERI (95%CI) | 2.94 (0.6, 7.52) | |||
AP (95%CI) | 0.67 (0.12, 0.82) | |||
SI (95%CI) | 7.27 (0.87, 60.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lago-Sampedro, A.; Oualla-Bachiri, W.; Maldonado-Araque, C.; Valdés, S.; González-Molero, I.; Doulatram-Gamgaram, V.; Delgado, E.; Chaves, F.J.; Castaño, L.; Calle-Pascual, A.; et al. The Interactive Effects of Fruit Intake Frequency and Serum miR-484 Levels as Biomarkers for Incident Type 2 Diabetes in a Prospective Cohort of the Spanish Adult Population: The Di@bet.es Study. Biomedicines 2025, 13, 160. https://doi.org/10.3390/biomedicines13010160
Lago-Sampedro A, Oualla-Bachiri W, Maldonado-Araque C, Valdés S, González-Molero I, Doulatram-Gamgaram V, Delgado E, Chaves FJ, Castaño L, Calle-Pascual A, et al. The Interactive Effects of Fruit Intake Frequency and Serum miR-484 Levels as Biomarkers for Incident Type 2 Diabetes in a Prospective Cohort of the Spanish Adult Population: The Di@bet.es Study. Biomedicines. 2025; 13(1):160. https://doi.org/10.3390/biomedicines13010160
Chicago/Turabian StyleLago-Sampedro, Ana, Wasima Oualla-Bachiri, Cristina Maldonado-Araque, Sergio Valdés, Inmaculada González-Molero, Viyey Doulatram-Gamgaram, Elias Delgado, Felipe J. Chaves, Luis Castaño, Alfonso Calle-Pascual, and et al. 2025. "The Interactive Effects of Fruit Intake Frequency and Serum miR-484 Levels as Biomarkers for Incident Type 2 Diabetes in a Prospective Cohort of the Spanish Adult Population: The Di@bet.es Study" Biomedicines 13, no. 1: 160. https://doi.org/10.3390/biomedicines13010160
APA StyleLago-Sampedro, A., Oualla-Bachiri, W., Maldonado-Araque, C., Valdés, S., González-Molero, I., Doulatram-Gamgaram, V., Delgado, E., Chaves, F. J., Castaño, L., Calle-Pascual, A., Franch-Nadal, J., Rojo-Martínez, G., García-Serrano, S., & García-Escobar, E. (2025). The Interactive Effects of Fruit Intake Frequency and Serum miR-484 Levels as Biomarkers for Incident Type 2 Diabetes in a Prospective Cohort of the Spanish Adult Population: The Di@bet.es Study. Biomedicines, 13(1), 160. https://doi.org/10.3390/biomedicines13010160