European System for Cardiac Operative Risk Evaluation II and Liver Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- -
- When computing performance parameters in all four scenarios, the conditional scenario (patients having both MELD Score ≥ 5.54 and EUROSCORE ≥ 10.37) had a similar accuracy in mortality prediction with the joint scenario, having an overall accuracy of 84.32% (slightly lower than EUROSCORE—85.41%); the conditional scenario gives an advantage in specificity and positive predictive value, while the joint scenario gives an advantage in sensitivity and negative predictive value.
- -
- The decision curve analysis shows that, while considering overall mortality as, as in this database, approximately 50%, the highest benefit in mortality prediction is given by the usage of EUROSCORE alone (green line), while the conditional scenario (purple line) and joint scenario (blue line) have an equal benefit, slightly lower than EUROSCORE.
- -
- However, the analysis shows that, as mortality prevalence increases, the benefit of conditional scenario usage in mortality prediction remains the highest, below the other criteria.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araujo, L.; Dombrovskiy, V.; Kamran, W.; Lemaire, A.; Chiricolo, A.; Lee, L.Y.; Lemaire, A. The effect of preoperative liver dysfunction on cardiac surgery outcomes. J. Cardiothorac. Surg. 2017, 12, 73. [Google Scholar] [CrossRef]
- Diab, M.; Sponholz, C.; Von Loeffelholz, C.; Scheffel, P.; Bauer, M.; Kortgen, A.; Lehmann, T.; Färber, G.; Pletz, M.W.; Doenst, T. Impact of perioperative liver dysfunction on in-hospital mortality and long-term survival in infective endocarditis patients. Infection 2017, 45, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardio-Thoracic Surg. 2012, 41, 734–745. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.G.; Wallach, J.D.; Ioannidis, J.P. Meta-Analysis Comparing Established Risk Prediction Models (EuroSCORE II, STS Score, and ACEF Score) for Perioperative Mortality During Cardiac Surgery. Am. J. Cardiol. 2016, 118, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Mendlovic, J.; Merin, O.; Fink, D.; Tauber, R.; Jacobzon, E.; Tager, S.; Mimouni, F.B.; Silberman, S. The need for cardiac surgery differential tariffs in Israel at the era of aging population and emerging technology: Importance of procedure type and patient complexity as assessed by EuroSCORE. Isr. J. Health Policy Res. 2021, 10, 53. [Google Scholar] [CrossRef]
- Patel, A.Y.; Eagle, K.A.; Vaishnava, P. Cardiac Risk of Noncardiac Surgery. J. Am. Coll. Cardiol. 2015, 66, 2140–2148. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Färber, G.; Marx, J.; Scherag, A.; Saqer, I.; Diab, M.; Sponholz, C.; Doenst, T. Risk stratification for isolated tricuspid valve surgery assisted using the Model for End-Stage Liver Disease score. J. Thorac. Cardiovasc. Surg. 2022, 166, 1433–1441.e1. [Google Scholar] [CrossRef]
- Grimm, J.C.; Shah, A.S.; Magruder, J.T.; Kilic, A.; Valero, V.; Dungan, S.P.; Tedford, R.J.; Russell, S.D.; Whitman, G.J.; Sciortino, C.M. MELD-XI Score Predicts Early Mortality in Patients After Heart Transplantation. Ann. Thorac. Surg. 2015, 100, 1737–1743. [Google Scholar] [CrossRef]
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of Liver Disease: 2023 Update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef] [PubMed]
- Wallwork, K.; Ali, J.M.; Abu-Omar, Y.; De Silva, R. Does liver cirrhosis lead to inferior outcomes following cardiac surgery? Interact. Cardiovasc. Thorac. Surg. 2018, 28, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Nezic, D. Early outcome of patients with liver cirrhosis undergoing cardiac surgery. Eur. J. Cardio-Thoracic Surg. 2022, 62, ezac356. [Google Scholar] [CrossRef]
- Dolapoglu, A.; Avci, E.; Argan, O.; Safak, O.; Gorcan, A.; Akgun, D.E.; Catalkaya, S.; Kiris, T. Impact of model for end-stage liver disease (MELD) score for mortality in patients undergoing coronary bypass surgery. Bratisl. Med. J. 2021, 122, 125–131. [Google Scholar] [CrossRef]
- Kırıs, T.; Avcı, E.; Çelik, A. Combined value of left ventricular ejection fraction and the Model for End-Stage Liver Disease (MELD) score for predicting mortality in patients with acute coronary syndrome who were undergoing percutaneous coronary intervention. BMC Cardiovasc. Disord. 2018, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, W.C.; Chen, P.C.; Corciova, F.-C.; Tinica, G. Liver dysfunction as an important predicting risk factor in patients undergoing cardiac surgery: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 20712–20721. [Google Scholar] [PubMed]
- Ostovar, R.; Schroeter, F.; Erb, M.; Hartrumpf, M.; Chopsonidou, S.; Albes, J.M. Liver cirrhosis: Still an elusive risk factor in the current EuroSCORE system. Eur. J. Cardio-Thoracic Surg. 2022, 62, ezac128. [Google Scholar] [CrossRef] [PubMed]
- Yoon, U.; Topper, J.; Goldhammer, J. Preoperative Evaluation and Anesthetic Management of Patients With Liver Cirrhosis Undergoing Cardiac Surgery. J. Cardiothorac. Vasc. Anesthesia 2022, 36, 1429–1448. [Google Scholar] [CrossRef] [PubMed]
- AlkhouriTarek, N.; Tamimi, T.A.-R.; Yerian, L.; Lopez, R.; Zein, N.N.; Feldstein, A.E. The Inflamed Liver and Atherosclerosis: A Link Between Histologic Severity of Nonalcoholic Fatty Liver Disease and Increased Cardiovascular Risk. Dig. Dis. Sci. 2009, 55, 2644–2650. [Google Scholar] [CrossRef] [PubMed]
- Gopaldas, R.R.; Chu, D.; Cornwell, L.D.; Dao, T.K.; LeMaire, S.A.; Coselli, J.S.; Bakaeen, F.G. Cirrhosis as a Moderator of Outcomes in Coronary Artery Bypass Grafting and Off-Pump Coronary Artery Bypass Operations: A 12-Year Population-Based Study. Ann. Thorac. Surg. 2013, 96, 1310–1315. [Google Scholar] [CrossRef]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, R.E.; Kim, R.W. A Model to Predict Survival in Patients With End–Stage Liver Disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef]
- Garcia-Valentin, A.; Mestres, C.A.; Bernabeu, E.; Bahamonde, J.A.; Martín, I.; Rueda, C.; Domenech, A.; Valencia, J.; Fletcher, D.; Machado, F.; et al. Validation and quality measurements for EuroSCORE and EuroSCORE II in the Spanish cardiac surgical population: A prospective, multicentre study. Eur. J. Cardio-Thorac. Surg. 2016, 49, 399–405. [Google Scholar] [CrossRef]
- Udompap, P.; Kim, D.; Kim, W.R. Current and Future Burden of Chronic Nonmalignant Liver Disease. Clin. Gastroenterol. Hepatol. 2015, 13, 2031–2041. [Google Scholar] [CrossRef]
- Ghoneim, S.; Dhorepatil, A.; Shah, A.R.; Ram, G.; Ahmad, S.; Kim, C.; Asaad, I. Non-alcoholic steatohepatitis and the risk of myocardial infarction: A population-based national study. World J. Hepatol. 2020, 12, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.; Brady, C.W.; Terrault, N.; Stotts, M.J.; Sarkar, M. Reproductive health and liver disease: A patient-friendly summary of the 2021 AASLD guidance. Clin. Liver Dis. 2023, 21, 19–35. [Google Scholar] [CrossRef]
- Zardi, E.M.; Abbate, A.; Zardi, D.M.; Dobrina, A.; Margiotta, D.; Van Tassel, B.W.; Afeltra, A.; Sanyal, A.J. Cirrhotic Cardiomyopathy. J. Am. Coll. Cardiol. 2010, 56, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, Z.W.; Liu, X.R.; Liu, X.Y.; Yang, J. The Effect of Liver Cirrhosis on Patients Undergoing Cardiac Surgery. Glob. Hear. 2023, 18, 54. [Google Scholar] [CrossRef]
- Garatti, A.; Daprati, A.; Cottini, M.; Russo, C.F.; Tomba, M.D.; Troise, G.; Salsano, A.; Santini, F.; Scrofani, R.; Nicolò, F.; et al. Cardiac Surgery in Patients With Liver Cirrhosis (CASTER) Study: Early and Long-Term Outcomes. Ann. Thorac. Surg. 2020, 111, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Delgado, J.C.; Esteve, F.; Javierre, C.; Torrado, H.; Carrio, M.L.; Rodríguez-Castro, D.; Farrero, E.; Ventura, J.L.; Manez, R. Predictors of long-term mortality in patients with cirrhosis undergoing cardiac surgery. J. Cardiovasc. Surg. 2014, 56, 647–654. [Google Scholar]
- Chou, H.-W.; Lin, M.-H.; Chen, Y.-S.; Yu, H.-Y. Impact of MELD score and cardiopulmonary bypass duration on post-operative hypoxic hepatitis in patients with liver cirrhosis undergoing open heart surgery. J. Formos. Med. Assoc. 2020, 119, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Kirov, H.; Caldonazo, T.; Audisio, K.; Rahouma, M.; Robinson, N.B.; Cancelli, G.; Soletti, G.J.; Demetres, M.; Ibrahim, M.; Faerber, G.; et al. Association of liver dysfunction with outcomes after cardiac surgery-A meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac280. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.R.; Lim, J.K. The Association Between Nonalcoholic Fatty Liver Disease and Cardiovascular Disease Outcomes [Review of The Association Between Nonalcoholic Fatty Liver Disease and Cardiovascular Disease Outcomes]. Clin. Liver Dis. 2018, 12, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, M.; De Maria, R.; Bortone, F.; Parolini, M.; Ceriani, R.; Solinas, C.; Arena, V.; Parodi, O. Long-Term Outcome of Survivors of Prolonged Intensive Care Treatment After Cardiac Surgery. Ann. Thorac. Surg. 2006, 82, 2080. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.; Patrick, W.; Mojica, J.; Ostryzniuk, P.; Patrick, M.; MacKnight, C.; Kraut, A.; Shafer, L.A. The ALERT scale: An observational study of early prediction of adverse hospital outcome for medical patients. BMJ Open 2015, 5, e005501. [Google Scholar] [CrossRef] [PubMed]
- Guida, P.; Mastro, F.; Scrascia, G.; Whitlock, R.; Paparella, D. Performance of the European System for Cardiac Operative Risk Evaluation II: A meta-analysis of 22 studies involving 145,592 cardiac surgery procedures. J. Thorac. Cardiovasc. Surg. 2014, 148, 3049–3057.e1. [Google Scholar] [CrossRef] [PubMed]
Variable | Survivors (n = 93) | Deceased (n = 92) | p |
---|---|---|---|
Age (years) (median (IQR)) | 70 (63–74.5) | 68 (63–74) | 0.828 * |
Gender (male) (Nr., %) | 65 (69.9%) | 68 (73.9%) | 0.624 ** |
Smoking (Nr., %) | 15 (16.1%) | 33 (35.9%) | 0.003 ** |
Alcohol consumption (Nr., %) | 28 (30.1%) | 42 (45.7%) | 0.034 ** |
Chronic lung disease (Nr., %) | 10 (10.8%) | 23 (25%) | 0.013 ** |
Extracardiac arteriopathy (Nr., %) | 22 (23.7%) | 81 (88%) | <0.001 ** |
Poor mobility (Nr., %) | 10 (10.8%) | 24 (26.1%) | 0.008 ** |
Previous cardiac surgery (Nr., %) | 0 (0%) | 1 (1.1%) | 0.497 ** |
Critical preoperative state (Nr., %) | 0 (0%) | 14 (15.2%) | <0.001 ** |
Renal impairment (Nr., %) | |||
Absent | 60 (64.5%) | 47 (51.1%) | 0.182 ** |
Moderate | 24 (25.8%) | 31 (33.7%) | |
Severe | 7 (7.5%) | 13 (14.1%) | |
Dialysis necessity | 2 (2.2%) | 1 (1.1%) | |
Renal impairment (Nr., %) | 33 (35.5%) | 45 (48.9%) | 0.075 ** |
Diabetes on Insulin (Nr., %) | 20 (21.5%) | 42 (45.7%) | 0.001 ** |
CCS angina class 4 (Nr., %) | 67 (72%) | 90 (97.8%) | <0.001 ** |
LV function (Nr., %) | |||
Good | 67 (72%) | 25 (27.2%) | <0.001 ** |
Moderate | 24 (25.8%) | 55 (59.8%) | |
Poor | 2 (2.2%) | 12 (13%) | |
LV function recoded (Nr., %) | |||
Good | 67 (72%) | 25 (27.2%) | <0.001 ** |
Moderate/poor | 26 (28%) | 67 (72.8%) | |
Recent MI (Nr., %) | 62 (66.7%) | 81 (88%) | 0.001 ** |
Pulmonary hypertension (Nr., %) | |||
Absent | 89 (95.7%) | 77 (83.7%) | 0.009 ** |
Moderate PH | 4 (4.3%) | 14 (15.2%) | |
Severe PH | 0 (0%) | 1 (1.1%) | |
Pulmonary hypertension (Nr., %) | 4 (4.3%) | 15 (16.3%) | 0.008 ** |
NYHA Class (Nr., %) | |||
Class III | 4 (4.3%) | 14 (15.2%) | <0.001 ** |
Class IV | 56 (60.2%) | 92 (100%) | |
Surgery on thoracic aorta (Nr., %) | 1 (1.1%) | 0 (0%) | 1.000** |
Urgency of operation (Nr., %) | |||
Elective | 9 (9.7%) | 9 (9.8%) | 1.000 ** |
Urgent | 35 (37.6%) | 35 (38%) | 1.000 ** |
Emergency | 49 (52.7%) | 48 (52.2%) | 1.000 ** |
Non-elective operation (Nr., %) | 84 (90.3%) | 83 (90.2%) | 1.000 ** |
Weight of operation (Nr., %) | |||
Two Procedures | 7 (7.5%) | 6 (6.5%) | 1.000 ** |
Three Procedures | 86 (92.5%) | 86 (93.5%) | |
Surgery type (Nr., %) | |||
Only bypass | 60 (64.5%) | 69 (75%) | 0.150 ** |
Bypass + other interventions | 33 (35.5%) | 23 (25%) | |
AST (U/L) (Median (IQR)) | 25 (20–38.5) | 31 (21–51.25) | 0.022 * |
ALT (U/L) (Median (IQR)) | 30 (21–54.5) | 28 (19.25–42.75) | 0.414 * |
Creatinine (mg/dL) (Median (IQR)) | 0.87 (0.79–1.02) | 1.11 (0.96–1.28) | <0.001 * |
Bilirubin (mg/dL) (Median (IQR)) | 0.53 (0.42–0.74) | 0.81 (0.67–1.02) | <0.001 * |
INR (Median (IQR)) | 0.98 (0.93–1.07) | 1.10 (1.02–1.25) | <0.001 * |
MELD Score (Median (IQR)) | 2.92 (2.12–4.23) | 8.28 (5.61–11.17) | <0.001 * |
EUROSCORE (Median (IQR)) | 7.46 (5.30–10.46) | 20.7 (13.97–31.28) | <0.001 * |
Overall survival (days) Mean (95% C.I.), (Median (IQR)) | 39.64 (28.26–51.02), 28 (15–49) | - |
MELD Score ≥ 5.54 | Mean (95% C.I.) | p * |
---|---|---|
Absent | 76.70 (12.71–140.69) | <0.001 |
Present | 24.73 (18.62–30.83) | |
EUROSCORE ≥ 10.37 | Mean (95% C.I.) | p * |
Absent | 91.73 (40.17–143.3) | <0.001 |
Present | 29.16 (20.53–37.8) |
Parameter | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% C.I.) | p | HR (95% C.I.) | p | |
MELD ≥ 5.54 | 4.062 (2.467–6.687) | <0.001 | 2.385 (1.435–3.964) | 0.001 |
EUROSCORE ≥ 10.37 | 12.56 (4.591–34.359) | <0.001 | 8.665 (3.091–24.293) | <0.001 |
Adjusted Cox-Proportional Multivariable Hazard Model with Age and Gender * | ||||
Parameter | HR (95% C.I.) | p | ||
MELD ≥ 5.54 | 2.409 (1.447–4.011) | 0.001 | ||
EUROSCORE ≥ 10.37 | 8.815 (3.143–24.718) | <0.001 | ||
Age | 0.981 (0.962–1.001) | 0.057 | ||
Gender (Male) | 0.931 (0.573–1.513) | 0.773 |
MELD Score ≥ 5.54/Death | Survivors | Deceased | p * | ||
---|---|---|---|---|---|
Nr. | % | Nr. | % | ||
Absent | 84 | 90.3% | 22 | 23.9% | <0.001 |
Present | 9 | 9.7% | 70 | 76.1% | |
Se = 76.09%, Sp = 90.32%, PPV = 88.61%, NPV = 79.25%, Accuracy = 83.24% | |||||
EUROSCORE ≥ 10.37/Death | Survivors | Deceased | p * | ||
Nr. | % | Nr. | % | ||
Absent | 70 | 75.3% | 4 | 4.3% | <0.001 |
Present | 23 | 24.7% | 88 | 95.7% | |
Se = 95.65%, Sp = 75.27%, PPV = 79.28%, NPV = 94.59%, Accuracy = 85.41% | |||||
MELD Score ≥ 5.54 OR EUROSCORE ≥ 10.37/Death (Joint Scenario) | Survivors | Deceased | p * | ||
Nr. | % | Nr. | % | ||
Absent | 65 | 69.9% | 1 | 1.1% | <0.001 |
Present | 28 | 30.1% | 91 | 98.9% | |
Se = 98.91%, Sp = 69.89%, PPV = 76.47%, NPV = 98.48%, Accuracy = 84.32% | |||||
MELD Score ≥ 5.54 AND EUROSCORE ≥ 10.37/Death (Conditional Scenario) | Survivors | Deceased | p * | ||
Nr. | % | Nr. | % | ||
Absent | 89 | 95.7% | 25 | 27.2% | <0.001 |
Present | 4 | 4.3% | 67 | 72.8% | |
Se = 72.83%, Sp = 95.70%, PPV = 94.37%, NPV = 78.07%, Accuracy = 84.32% |
Mortality Risk (Conditional Scenario) (MELD ≥ 5.54 and EUROSCORE ≥ 10.37) | Mean (95% C.I.) | p * |
---|---|---|
Absent | 74.76 (30.11–119.4) | <0.001 |
Present | 21.89 (16.78–27) |
Parameter | HR (95% C.I.) | p |
---|---|---|
MELD ≥ 5.54 and EUROSCORE ≥ 10.37 | 4.451 (2.747–7.211) | <0.001 |
Adjusted Cox-Proportional Multivariable Hazard Model with Age and Gender * | ||
Parameter | HR (95% C.I.) | p |
MELD ≥ 5.54 and EUROSCORE ≥ 10.37 | 4.541 (2.803–7.359) | <0.001 |
Age | 0.982 (0.962–1.001) | 0.069 |
Gender (Male) | 0.917 (0.565–1.487) | 0.725 |
Parameter | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% C.I.) | p | HR (95% C.I.) | p | |
MELD Score | 1.087 (1.053–1.121) | <0.001 | 1.044 (1.008–1.081) | 0.015 |
EUROSCORE | 1.035 (1.026–1.045) | <0.001 | 1.030 (1.019–1.041) | <0.001 |
Adjusted Cox-proportional multivariable hazard model with age and gender * | ||||
Parameter | HR (95% C.I.) | p | ||
MELD Score | 1.048 (1.008–1.089) | 0.017 | ||
EUROSCORE | 1.031 (1.020–1.043) | <0.001 | ||
Age | 1.009 (0.987–1.031) | 0.442 | ||
Gender (Male) | 1.105 (0.672–1.819) | 0.694 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludusanu, A.; Tanevski, A.; Ciuntu, B.M.; Bobeica, R.L.; Chiran, D.A.; Stan, C.I.; Radu, V.D.; Boiculese, V.L.; Tinica, G. European System for Cardiac Operative Risk Evaluation II and Liver Dysfunction. Biomedicines 2025, 13, 154. https://doi.org/10.3390/biomedicines13010154
Ludusanu A, Tanevski A, Ciuntu BM, Bobeica RL, Chiran DA, Stan CI, Radu VD, Boiculese VL, Tinica G. European System for Cardiac Operative Risk Evaluation II and Liver Dysfunction. Biomedicines. 2025; 13(1):154. https://doi.org/10.3390/biomedicines13010154
Chicago/Turabian StyleLudusanu, Andreea, Adelina Tanevski, Bogdan Mihnea Ciuntu, Razvan Lucian Bobeica, Dragos Andrei Chiran, Cristinel Ionel Stan, Viorel Dragos Radu, Vasile Lucian Boiculese, and Grigore Tinica. 2025. "European System for Cardiac Operative Risk Evaluation II and Liver Dysfunction" Biomedicines 13, no. 1: 154. https://doi.org/10.3390/biomedicines13010154
APA StyleLudusanu, A., Tanevski, A., Ciuntu, B. M., Bobeica, R. L., Chiran, D. A., Stan, C. I., Radu, V. D., Boiculese, V. L., & Tinica, G. (2025). European System for Cardiac Operative Risk Evaluation II and Liver Dysfunction. Biomedicines, 13(1), 154. https://doi.org/10.3390/biomedicines13010154