TrkB Receptor Antagonism Enhances Insulin Secretion and Increases Pancreatic Islet Size in Rats Fed a Cafeteria-Style Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Experimental Design
2.3. Determination of Glucose and Insulin Tolerance Curves
2.4. Sample Collection
2.5. Determination of Insulin Concentration by the ELISA Method
2.6. Histological Analysis
2.7. Statistical Analysis
3. Results
3.1. Analysis of Body Weight and Total Fat
3.2. Glucose and Insulin Tolerance Curves
3.3. Insulin Secretion Analysis and Pancreatic Histology
4. Discussion
- (1)
- Increased body fat.
- (2)
- Increased insulin resistance.
- (3)
- Increased circulating insulin levels and pancreatic islet size.
- (4)
- TrkB receptor antagonism enhanced the above effects.
- (5)
- The effects observed by antagonizing the trkB receptor suggest that the BDNF-trkB pathway is not the only mechanism involved in insulin secretion in obese conditions.
Limitations
- -
- Some studies show gender differences in the physiological and metabolic responses and the oxidative stress induced by a cafeteria-style diet in rodents [19,43,44], therefore, it would be important to evaluate the effects of BDNF-trkB pathway blockade on glucose and pancreas regulation in females in future studies.
- -
- Evaluating NGF levels and trkA receptor expression in the pancreas of rats fed a cafeteria-style diet with and without trkB receptor antagonism in future studies would improve our understanding of the involvement of both neurotrophins in the control of insulin secretion by pancreatic beta cells.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2001, 2, 24–32. [Google Scholar] [CrossRef]
- Gómez-Palacio-Schjetnan, A.; Escobar, M.L. Neurotrophins and synaptic plasticity. Curr. Top. Behav. Neurosci. 2013, 15, 117–136. [Google Scholar]
- Podyma, B.; Parekh, K.; Güler, A.D.; Deppmann, C.D. Metabolic homeostasis via BDNF and its receptors. Trends Endocrinol. Metab. 2021, 32, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Lourenço, C.; Ribeiro-Rodrigues, L.; Fonseca-Gomes, J.; Tanqueiro, S.R.; Belo, R.F.; Ferreira, C.B.; Rei, N.; Ferreira-Manso, M.; de Almeida-Borlido, C.; Costa-Coelho, T.; et al. Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol. Res. 2020, 162, 105281. [Google Scholar] [CrossRef]
- Fox, E.A.; Biddinger, J.E.; Jones, K.R.; McAdams, J.; Worman, A. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice. Neuroscience 2013, 229, 176–199. [Google Scholar] [CrossRef]
- Ichimura-Shimizu, M.; Kojima, M.; Suzuki, S.; Miyata, M.; Osaki, Y.; Matsui, K.; Mizui, T.; Tsuneyama, K. Brain-derived neurotrophic factor knock-out mice develop non-alcoholic steatohepatitis. J. Pathol. 2023, 261, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, P.; Ng, C.F.; Pang, B.P.S.; Chan, W.S.; Tse, M.C.L.; Bi, X.; Kwan, H.R.; Brobst, D.; Herlea-Pana, O.; Yang, X.; et al. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy 2022, 18, 1367–1384. [Google Scholar] [CrossRef]
- Unger, T.J.; Calderon, G.A.; Bradley, L.C.; Sena-Esteves, M.; Rios, M. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J. Neurosci. 2007, 27, 14265–14274. [Google Scholar] [CrossRef]
- Rios, M. Neurotrophins and the regulation of energy balance and body weight. Handb. Exp. Pharmacol. 2014, 220, 283–307. [Google Scholar]
- Moosaie, F.; Mohammadi, S.; Saghazadeh, A.; Dehghani Firouzabadi, F.; Rezaei, N. Brain-derived neurotrophic factor in diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0268816. [Google Scholar] [CrossRef] [PubMed]
- Rozanska, O.; Uruska, A.; Zozulinska-Ziolkiewicz, D. Brain-Derived Neurotrophic Factor and Diabetes. Int. J. Mol. Sci. 2020, 21, 841. [Google Scholar] [CrossRef]
- Krabbe, K.; Nielsen, A.; Krogh-Madsen, R.; Plomgaard, P.; Rasmussen, P.; Erikstrup, C.; Fischer, C.P.; Lindegaard, B.; Petersen, A.M.; Taudorf, S.; et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 2007, 50, 431–438. [Google Scholar] [CrossRef]
- Tsuchida, A.; Nonomura, T.; Nakagawa, T.; Itakura, Y.; Ono-Kishino, M.; Yamanaka, M.; Sugaru, E.; Taiji, M.; Noguchi, H. Brain-derived neurotrophic factor ameliorates lipid metabolism in diabetic mice. Diabetes Obes. Metab. 2002, 4, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Ogawa, Y.; Ebihara, K.; Yamanaka, M.; Tsuchida, A.; Taiji, M.; Noguchi, H.; Nakao, K. Anti-obesity and anti-diabetic effects of brain-derived neurotrophic factor in rodent models of leptin resistance. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 557–565. [Google Scholar] [CrossRef]
- Fulgenzi, G.; Hong, Z.; Tomassoni-Ardori, F.; Barella, L.F.; Becker, J.; Barrick, C.; Swing, D.; Yanpallewar, S.; Croix, B.S.; Wess, J.; et al. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat. Commun. 2020, 11, 1950. [Google Scholar] [CrossRef]
- Kalwat, M.A.; Huang, Z.; Binns, D.D.; McGlynn, K.; Cobb, M.H. α2-Adrenergic Disruption of β Cell BDNF-TrkB Receptor Tyrosine Kinase Signaling. Front. Cell Dev. Biol. 2020, 8, 576396. [Google Scholar] [CrossRef] [PubMed]
- Sampey, B.P.; Vanhoose, A.M.; Winfield, H.M.; Freemerman, A.J.; Muehlbauer, M.J.; Fueger, P.T.; Newgard, C.B.; Makowski, L. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: Comparison to high-fat diet. Obesity 2011, 19, 1109–1117. [Google Scholar] [CrossRef]
- Lalanza, J.F.; Caimari, A.; del Bas, J.M.; Torregrosa, D.; Cigarroa, I.; Pallàs, M.; Capdevila, L.; Arola, L.; Escorihuela, R.M. Effects of a post-weaning cafeteria diet in young rats: Metabolic syndrome, reduced activity and low anxiety-like behaviour. PLoS ONE 2014, 9, e85049. [Google Scholar] [CrossRef]
- Gual-Grau, A.; Guirro, M.; Boqué, N.; Arola, L. Physiological, metabolic and microbial responses to obesogenic cafeteria diet in rats: The impact of strain and sex. J. Nutr. Biochem. 2023, 117, 109338. [Google Scholar] [CrossRef] [PubMed]
- Lalanza, J.F.; Snoeren, E.M.S. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci. Biobehav. Rev. 2021, 122, 92–119. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, M.; Prémont, J.; Mann, A.; Girard, N.; Kellendonk, C.; Rognan, D. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J. Clin. Investig. 2011, 121, 1846–1857. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Chen, J.; Su, M.; Lin, Z.; Zhan, H.; Yang, F.; Li, W.; Xie, J.; Huang, Y.; Liu, X.; et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J. Neuroinflam. 2020, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, H.; Wang, Z.; Zhu, H.; Xie, M. ANA-12 inhibits spinal inflammation and alleviates acute and chronic pain in rats by targeted blocking of BDNF/TrkB signaling. Nan Fang. Yi Ke Da Xue Xue Bao 2022, 42, 232–237. [Google Scholar] [PubMed]
- Chen, X.; Chen, A.; Wei, J.; Huang, Y.; Deng, J.; Chen, P.; Yan, Y.; Lin, M.; Chen, L.; Zhang, J.; et al. Dexmedetomidine alleviates cognitive impairment by promoting hippocampal neurogenesis via BDNF/TrkB/CREB signaling pathway in hypoxic-ischemic neonatal rats. CNS Neurosci. Ther. 2024, 30, e14486. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Chin, K.Y.; Suhaimi, F.H.; Fairus, A.; Ima-Nirwana, S. Animal models of metabolic syndrome: A review. Nutr. Metab. 2016, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.E.; Newgard, C.B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 2021, 22, 142–158. [Google Scholar] [CrossRef]
- Stein, D.T.; Esser, V.; Stevenson, B.E.; Lane, K.E.; Whiteside, J.H.; Daniels, M.B.; Chen, S.; McGarry, J.D. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J. Clin. Investig. 1996, 97, 2728–2735. [Google Scholar] [CrossRef]
- Briscoe, C.P.; Tadayyon, M.; Andrews, J.L.; Benson, W.G.; Chambers, J.K.; Eilert, M.M.; Ellis, C.; Elshourbagy, N.A.; Goetz, A.S.; Minnick, D.T.; et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 2003, 278, 11303–11311. [Google Scholar] [CrossRef]
- Mancini, A.D.; Poitout, V. The fatty acid receptor FFA1/GPR40 a decade later: How much do we know? Trends Endocrinol. Metab. 2013, 24, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Azogu, I.; Liang, J.; Plamondon, H. Sex-specific differences in corticosterone secretion, behavioral phenotypes and expression of TrkB.T1 and TrkB.FL receptor isoforms: Impact of systemic TrkB inhibition and combinatory stress exposure in adolescence. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 10–23. [Google Scholar] [CrossRef]
- Castell-Auví, A.; Cedó, L.; Pallarès, V.; Blay, M.; Ardévol, A.; Pinent, M. The effects of a cafeteria diet on insulin production and clearance in rats. Br. J. Nutr. 2012, 108, 1155–1162. [Google Scholar] [CrossRef]
- Macedo, I.C.; Medeiros, L.F.; Oliveira, C.; Oliveira, C.M.; Rozisky, J.R.; Scarabelot, V.L.; Souza, A.; Silva, F.R.; Santos, V.S.; Cioato, S.G.; et al. Cafeteria diet-induced obesity plus chronic stress alter serum leptin levels. Peptides 2012, 38, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Viraragavan, A.; Willmer, T.; Patel, O.; Basson, A.; Johnson, R.; Pheiffer, C. Cafeteria diet induces global and Slc27a3-specific hypomethylation in male Wistar rats. Adipocyte 2021, 10, 108–118. [Google Scholar] [CrossRef]
- Giovana Maciel Reis, C.; Rocha-Gomes, A.; Escobar Teixeira, A.; Gomes de Oliveira, D.; Mainy Oliveira Santiago, C.; Alves da Silva, A.; Regina Riul, T.; de Jesus Oliveira, E. Short-term Cafeteria Diet Is Associated with Fat Mass Accumulation, Systemic and Amygdala Inflammation, and Anxiety-like Behavior in Adult Male Wistar Rats. Neuroscience 2023, 515, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Sishi, B.; Loos, B.; Ellis, B.; Smith, W.; duToit, E.F.; Engelbrecht, A.M. Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp. Physiol. 2011, 96, 179–193. [Google Scholar] [CrossRef]
- Imai, J. Regulation of compensatory β-cell proliferation by inter-organ networks from the liver to pancreatic β-cells. Endocr. J. 2018, 65, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Gatta, C.; Avallone, L.; Costagliola, A.; Scocco, P.; D’Angelo, L.; de Girolamo, P.; De Felice, E. Immunolocalization of Two Neurotrophins, NGF and BDNF, in the Pancreas of the South American Sea Lion Otaria flavescens and Bottlenose Dolphin Tursiops truncatus. Animals 2024, 14, 2336. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, A.; Caroleo, M.C.; Cione, E.; Castañera Gonzalez, R.; Huang, G.C.; Persaud, S.J. Fine tuning of insulin secretion by release of nerve growth factor from mouse and human islet β-cells. Mol. Cell Endocrinol. 2016, 436, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Houtz, J.; Borden, P.; Ceasrine, A.; Minichiello, L.; Kuruvilla, R. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion. Dev. Cell 2016, 39, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Samario-Román, J.; Larqué, C.; Pánico, P.; Ortiz-Huidobro, R.I.; Velasco, M.; Escalona, R.; Hiriart, M. NGF and Its Role in Immunoendocrine Communication during Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 1957. [Google Scholar] [CrossRef] [PubMed]
- Katuri, R.B.; Gaur, G.S.; Sahoo, J.P.; Bobby, Z.; Shanmugavel, K. Association of Circulating Brain-Derived Neurotrophic Factor with Cognition among Adult Obese Population. J. Obes. Metab. Syndr. 2021, 30, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Samario-Román, J.; Velasco, M.; Larqué, C.; Cárdenas-Vázquez, R.; Ortiz-Huidobro, R.I.; Hiriart, M. NGF effects promote the maturation of rat pancreatic beta cells by regulating GLUT2 levels and distribution, and glucokinase activity. PLoS ONE 2024, 19, e0303934. [Google Scholar] [CrossRef]
- Gasparin, F.R.S.; Carreño, F.O.; Mewes, J.M.; Gilglioni, E.H.; Pagadigorria, C.L.S.; Natali, M.R.M.; Utsunomiya, K.S.; Constantin, R.P.; Ouchida, A.T.; Curti, C.; et al. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2018, 1864, 2495–2509. [Google Scholar] [CrossRef]
- Morais-Mewes, J.; Rodrigues Silva Gasparin, F.; Yoshida, T.; Amâncio Daniel da Silva, M.; Raquel Marçal Natali, M.; Francisco Veiga Bizerra, P.; Sayuri Utsunomiya, K.; Hideo Gilglioni, E.; Shigueaki Mito, M.; Cristiane Mantovanelli, G.; et al. The Role of Mitochondria in Sex-Dependent Differences in Hepatic Steatosis and Oxidative Stress in Response to Cafeteria Diet-Induced Obesity in Mice. Nutrients 2019, 11, 1618. [Google Scholar] [CrossRef]
Macronutrients (% kcal) | Total % kcal | |||
---|---|---|---|---|
Products | Carbohydrates | Proteins | Fat | |
Chocolate bars | 44.74 | 4.39 | 51.32 | 100.45 |
Turkey sausages | 9.16 | 27.49 | 63.35 | 100.00 |
Gummies | 92.33 | 7.55 | 0.00 | 99.88 |
Chips | 49.73 | 6.21 | 44.15 | 100.09 |
Sweet wholemeal bread | 52.13 | 7.62 | 40.26 | 100.00 |
Sausages for roasting | 22.50 | 20.00 | 56.25 | 98.75 |
Cookies with sweet filling | 61.78 | 4.56 | 34.03 | 100.36 |
Sweet bread with vanilla | 44.63 | 4.92 | 50.43 | 99.98 |
Chocolate-filled cupcakes | 60.10 | 5.18 | 34.74 | 100.03 |
Sausages | 17.78 | 20.00 | 60.00 | 97.78 |
Vanilla marshmallows | 95.12 | 4.88 | 0.00 | 100.00 |
Sweet bread with raisins | 68.31 | 8.90 | 22.72 | 99.93 |
Pineapple marmalade-filled pastries | 66.93 | 4.85 | 28.14 | 99.92 |
Turkey ham | 36.00 | 56.00 | 9.00 | 101.00 |
Strawberry and chocolate marshmallows | 80.44 | 2.07 | 17.41 | 99.92 |
Salted chips | 39.41 | 3.99 | 56.56 | 99.96 |
White chocolate and strawberry jam-filled pastries | 57.97 | 3.65 | 38.38 | 100.00 |
Leg ham | 15.15 | 62.14 | 22.72 | 100.00 |
Jelly beans | 95.16 | 4.84 | 0.00 | 100.00 |
Vanilla cookies | 66.93 | 4.85 | 28.14 | 99.92 |
Sweet bread filled with chocolate | 59.59 | 4.74 | 35.72 | 100.05 |
Turkey breast ham | 27.56 | 40.34 | 31.76 | 99.66 |
Wafer-type cookies with chocolate filling | 52.94 | 3.17 | 43.93 | 100.04 |
Cheesy chips | 40.91 | 4.04 | 55.03 | 99.98 |
Chocolate cookies filled with white chocolate | 59.53 | 3.51 | 37.00 | 100.04 |
Turkey Sausages | 11.23 | 27.37 | 61.58 | 100.18 |
Strawberries and vanilla marshmallows | 95.12 | 4.88 | 0.00 | 100.00 |
Chocolate chip cookies | 57.09 | 4.53 | 38.46 | 100.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco-Gutierrez, J.A.; de Alvarez-Buylla, E.R.; Montero, S.; Rodríguez-Hernández, A.; Miranda, S.L.; Martínez-Santillan, K.; Álvarez-Valadez, M.d.R.; Lemus, M.; Flores-Silva, A.; Virgen-Ortiz, A. TrkB Receptor Antagonism Enhances Insulin Secretion and Increases Pancreatic Islet Size in Rats Fed a Cafeteria-Style Diet. Biomedicines 2025, 13, 126. https://doi.org/10.3390/biomedicines13010126
Velasco-Gutierrez JA, de Alvarez-Buylla ER, Montero S, Rodríguez-Hernández A, Miranda SL, Martínez-Santillan K, Álvarez-Valadez MdR, Lemus M, Flores-Silva A, Virgen-Ortiz A. TrkB Receptor Antagonism Enhances Insulin Secretion and Increases Pancreatic Islet Size in Rats Fed a Cafeteria-Style Diet. Biomedicines. 2025; 13(1):126. https://doi.org/10.3390/biomedicines13010126
Chicago/Turabian StyleVelasco-Gutierrez, Jorge Agustín, Elena Roces de Alvarez-Buylla, Sergio Montero, Alejandrina Rodríguez-Hernández, Saraí Limón Miranda, Karmina Martínez-Santillan, María del Rosario Álvarez-Valadez, Mónica Lemus, Alejandra Flores-Silva, and Adolfo Virgen-Ortiz. 2025. "TrkB Receptor Antagonism Enhances Insulin Secretion and Increases Pancreatic Islet Size in Rats Fed a Cafeteria-Style Diet" Biomedicines 13, no. 1: 126. https://doi.org/10.3390/biomedicines13010126
APA StyleVelasco-Gutierrez, J. A., de Alvarez-Buylla, E. R., Montero, S., Rodríguez-Hernández, A., Miranda, S. L., Martínez-Santillan, K., Álvarez-Valadez, M. d. R., Lemus, M., Flores-Silva, A., & Virgen-Ortiz, A. (2025). TrkB Receptor Antagonism Enhances Insulin Secretion and Increases Pancreatic Islet Size in Rats Fed a Cafeteria-Style Diet. Biomedicines, 13(1), 126. https://doi.org/10.3390/biomedicines13010126