Effects of Once-Weekly Semaglutide on Cardiovascular Risk Factors and Metabolic Dysfunction-Associated Steatotic Liver Disease in Japanese Patients with Type 2 Diabetes: A Retrospective Longitudinal Study Based on Real-World Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Patients
3.2. Changes in Metabolic Parameters during Semaglutide Treatment
3.3. Changes in Metabolic Parameters in GLP-1 RA Naïve Patients or Patients Given Semaglutide Switched from Other GLP-1RAs
3.4. Changes in MASLD Indices during 12-Month Semaglutide Treatment
3.5. Correlations between the Baseline and the Changes in MASLD Indices
3.6. Correlations among the Changes in Metabolic Parameters
3.7. Changes in UACR Stages during 12-Month Semaglutide Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Nanditha, A.; Ma, R.C.; Ramachandran, A.; Snehalatha, C.; Chan, J.C.; Chia, K.S.; Shaw, J.E.; Zimmet, P.Z. Diabetes in Asia and the Pacific: Implications for the Global Epidemic. Diabetes Care 2016, 39, 472–485. [Google Scholar] [CrossRef]
- Ma, R.C.; Chan, J.C. Type 2 diabetes in East Asians: Similarities and differences with populations in Europe and the United States. Ann. N. Y. Acad. Sci. 2013, 1281, 64–91. [Google Scholar] [CrossRef] [PubMed]
- Woodward, M.; Zhang, X.; Barzi, F.; Pan, W.; Ueshima, H.; Rodgers, A.; MacMahon, S.; Asia Pacific Cohort Studies Collaboration. The effects of diabetes on the risks of major cardiovascular diseases and death in the Asia-Pacific region. Diabetes Care 2003, 26, 360–366. [Google Scholar] [PubMed]
- Kanaya, A.M.; Adler, N.; Moffet, H.H.; Liu, J.; Schillinger, D.; Adams, A.; Ahmed, A.T.; Karter, A.J. Heterogeneity of diabetes outcomes among asians and pacific islanders in the US: The diabetes study of northern california (DISTANCE). Diabetes Care 2011, 34, 930–937. [Google Scholar] [CrossRef]
- Ueki, K.; Sasako, T.; Okazaki, Y.; Kato, M.; Okahata, S.; Katsuyama, H.; Haraguchi, M.; Morita, A.; Ohashi, K.; Hara, K.; et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): An open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017, 5, 951–964. [Google Scholar] [CrossRef]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Iida, S.; Katsuyama, H. Metabolic-Dysfunction-Associated Steatotic Liver Disease-Its Pathophysiology, Association with Atherosclerosis and Cardiovascular Disease, and Treatments. Int. J. Mol. Sci. 2023, 24, 15473. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J. Hepatol. 2016, 65, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Chonchol, M.; Bertolini, L.; Rodella, S.; Zenari, L.; Lippi, G.; Franchini, M.; Zoppini, G.; Muggeo, M. Increased risk of CKD among type 2 diabetics with nonalcoholic fatty liver disease. J. Am. Soc. Nephrol. 2008, 19, 1564–1570. [Google Scholar] [CrossRef]
- Seino, Y.; Terauchi, Y.; Osonoi, T.; Yabe, D.; Abe, N.; Nishida, T.; Zacho, J.; Kaneko, S. Safety and efficacy of semaglutide once weekly vs. sitagliptin once daily, both as monotherapy in Japanese people with type 2 diabetes. Diabetes Obes. Metab. 2018, 20, 378–388. [Google Scholar] [CrossRef]
- Kaku, K.; Yamada, Y.; Watada, H.; Abiko, A.; Nishida, T.; Zacho, J.; Kiyosue, A. Safety and efficacy of once-weekly semaglutide vs. additional oral antidiabetic drugs in Japanese people with inadequately controlled type 2 diabetes: A randomized trial. Diabetes Obes. Metab. 2018, 20, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Katsuyama, H.; Hakoshima, M.; Umeyama, S.; Iida, S.; Adachi, H.; Yanai, H. Real-World Efficacy of Glucagon-like Peptide-1 (GLP-1) Receptor Agonist, Dulaglutide, on Metabolic Parameters in Japanese Patients with Type 2 Diabetes: A Retrospective Longitudinal Study. Biomedicines 2023, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J.V. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, M.; Usami, M.; Ikeda, M.; Nakai, Y.; Taniguchi, A.; Matsuura, T.; Suzuki, H.; Kurose, T.; Yamada, Y.; Seino, Y. Insulin secretion and insulin sensitivity at different stages of glucose tolerance: A cross-sectional study of Japanese type 2 diabetes. Metabolism 2004, 53, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Xin, Y.N.; Dong, Q.J.; Wang, Q.; Jiang, X.J.; Zhan, S.H.; Sun, Y.; Xuan, S.Y. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: An updated meta-analysis. Hepatology 2011, 53, 726–736. [Google Scholar] [CrossRef]
- Shah, A.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J.A. Use of the Fib4 index for non-invasive evaluation of fibrosis in nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef]
- Sumida, Y.; Yoneda, M.; Hyogo, H.; Itoh, Y.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Aoki, N.; Kanemasa, K. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012, 12, 2. [Google Scholar] [CrossRef]
- Yamada, H.; Yoshida, M.; Suzuki, D.; Funazaki, S.; Nagashima, S.; Masahiko, K.; Kiyoshi, O.; Hara, K. Effectiveness and Safety of Once-Weekly Semaglutide in Japanese Patients with Type 2 Diabetes in Treatment Intensification: A Retrospective Observational Single-Center Study. Diabetes Ther. 2022, 13, 1779–1788. [Google Scholar] [CrossRef]
- Webb, N.; Orme, M.; Witkowski, M.; Nakanishi, R.; Langer, J. A Network Meta-Analysis Comparing Semaglutide Once-Weekly with Other GLP-1 Receptor Agonists in Japanese Patients with Type 2 Diabetes. Diabetes Ther. 2018, 9, 973–986. [Google Scholar] [CrossRef]
- Kimura, T.; Katakura, Y.; Shimoda, M.; Kawasaki, F.; Yamabe, M.; Tatsumi, F.; Matsuki, M.; Iwamoto, Y.; Anno, T.; Fushimi, Y.; et al. Comparison of clinical efficacy and safety of weekly glucagon-like peptide-1 receptor agonists dulaglutide and semaglutide in Japanese patients with type 2 diabetes: Randomized, parallel-group, multicentre, open-label trial (COMING study). Diabetes Obes. Metab. 2023, 25, 3632–3647. [Google Scholar] [CrossRef]
- Iijima, T.; Shibuya, M.; Ito, Y.; Terauchi, Y. Effects of switching from liraglutide to semaglutide or dulaglutide in patients with type 2 diabetes: A randomized controlled trial. J. Diabetes Investig. 2023, 14, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Shirabe, S.; Yamazaki, K.; Oishi, M.; Arai, K.; Yagi, N.; Sato, M.; Takeuchi, M.; Kai, T.; Maegawa, H. Changes in prescription patterns and doses of oral antidiabetic drugs in Japanese patients with type 2 diabetes (JDDM70). J. Diabetes Investig. 2023, 14, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 32–42. [Google Scholar] [CrossRef]
- Sakurai, Y.; Kubota, N.; Yamauchi, T.; Kadowaki, T. Role of Insulin Resistance in MAFLD. Int. J. Mol. Sci. 2021, 22, 4156. [Google Scholar] [CrossRef]
- Yabut, J.M.; Drucker, D.J. Glucagon-like Peptide-1 Receptor-based Therapeutics for Metabolic Liver Disease. Endocr. Rev. 2023, 44, 14–32. [Google Scholar] [CrossRef]
- Angulo, P.; Bugianesi, E.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Barrera, F.; Haflidadottir, S.; Day, C.P.; George, J. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2013, 145, 782–789. [Google Scholar] [CrossRef]
- Wong, S.; Huynh, D.; Zhang, F.; Nguyen, N.Q. Use of aspartate aminotransferase to platelet ratio to reduce the need for FibroScan in the evaluation of liver fibrosis. World J. Hepatol. 2017, 9, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Bril, F.; McPhaul, M.J.; Caulfield, M.P.; Clark, V.C.; Soldevilla-Pico, C.; Firpi-Morell, R.J.; Lai., J.; Shiffman, D.; Rowland, C.M.; Cusi, K. Performance of Plasma Biomarkers and Diagnostic Panels for Nonalcoholic Steatohepatitis and Advanced Fibrosis in Patients with Type 2 Diabetes. Diabetes Care 2020, 43, 290–297. [Google Scholar] [CrossRef]
- Mózes, F.E.; Lee, J.A.; Selvaraj, E.A.; Jayaswal, A.N.A.; Trauner, M.; Boursier, J.; Fournier, C.; Staufer, K.; Stauber, R.E.; Bugianesi, E.; et al. Diagnostic accuracy of non-invasive tests for advanced fibrosis in patients with NAFLD: An individual patient data meta-analysis. Gut 2022, 71, 1006–1019. [Google Scholar] [CrossRef] [PubMed]
- Castellana, M.; Donghia, R.; Guerra, V.; Procino, F.; Lampignano, L.; Castellana, F.; Zupo, R.; Sardone, R.; De Pergola, G.; Romanelli, F.; et al. Performance of Fatty Liver Index in Identifying Non-Alcoholic Fatty Liver Disease in Population Studies. A Meta-Analysis. J. Clin. Med. 2021, 10, 1877. [Google Scholar] [CrossRef]
- Flint, A.; Andersen, G.; Hockings, P.; Johansson, L.; Morsing, A.; Sundby Palle, M.; Vogl, T.; Loomba, R.; Plum-Mörschel, L. Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 2021, 54, 1150–1161. [Google Scholar] [CrossRef]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.S.; Harrison, S.A.; NN9931-4296 Investigators. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef]
- Kahl, S.; Gancheva, S.; Straßburger, K.; Herder, C.; Machann, J.; Katsuyama, H.; Kabisch, S.; Henkel, E.; Kopf, S.; Lagerpusch, M.; et al. Empagliflozin Effectively Lowers Liver Fat Content in Well-Controlled Type 2 Diabetes: A Randomized, Double-Blind, Phase 4, Placebo-Controlled Trial. Diabetes Care 2020, 43, 298–305. [Google Scholar] [CrossRef]
- Torres, D.M.; Jones, F.J.; Shaw, J.C.; Williams, C.D.; Ward, J.A.; Harrison, S.A. Rosiglitazone versus rosiglitazone and metformin versus rosiglitazone and losartan in the treatment of nonalcoholic steatohepatitis in humans: A 12-month randomized, prospective, open-label trial. Hepatology 2011, 54, 1631–1639. [Google Scholar] [CrossRef]
- Bugianesi, E.; Gentilcore, E.; Manini, R.; Natale, S.; Vanni, E.; Villanova, N.; David, E.; Rizzetto, M.; Marchesini, G. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am. J. Gastroenterol. 2005, 100, 1082–1090. [Google Scholar] [CrossRef]
- Belfort, R.; Harrison, S.A.; Brown, K.; Darland, C.; Finch, J.; Hardies, J.; Balas, B.; Gastaldelli, A.; Tio, F.; Pulcini, J.; et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 2006, 355, 2297–2307. [Google Scholar] [CrossRef]
- Ayada, I.; van Kleef, L.A.; Zhang, H.; Liu, K.; Li, P.; Abozaid, Y.J.; Lavrijsen, M.; Janssen, H.L.A.; van der Laan, L.J.W.; Ghanbari, M.; et al. Dissecting the multifaceted impact of statin use on fatty liver disease: A multidimensional study. eBioMedicine 2023, 87, 104392. [Google Scholar] [CrossRef]
- Pelusi, S.; Petta, S.; Rosso, C.; Borroni, V.; Fracanzani, A.L.; Dongiovanni, P.; Craxi, A.; Bugianesi, E.; Fargion, S.; Valenti, L. Renin-Angiotensin System Inhibitors, Type 2 Diabetes and Fibrosis Progression: An Observational Study in Patients with Nonalcoholic Fatty Liver Disease. PLoS ONE 2016, 11, e0163069. [Google Scholar] [CrossRef]
- Alam, S.; Kabir, J.; Mustafa, G.; Gupta, U.; Hasan, S.K.; Alam, A.K. Effect of telmisartan on histological activity and fibrosis of non-alcoholic steatohepatitis: A 1-year randomized control trial. Saudi J. Gastroenterol. 2016, 22, 69–76. [Google Scholar] [CrossRef]
- Zhong, J.; Gong, W.; Lu, L.; Chen, J.; Lu, Z.; Li, H.; Liu, W.; Liu, Y.; Wang, M.; Hu, R.; et al. Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR-γ, AMPK/Akt/mTOR signaling and autophagy. Int. Immunopharmacol. 2017, 42, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Di Folco, U.; Vallecorsa, N.; Nardone, M.R.; Pantano, A.L.; Tubili, C. Effects of semaglutide on cardiovascular risk factors and eating behaviors in type 2 diabetes. Acta Diabetol. 2022, 59, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.M.; Giglio, R.V.; Allotta, A.; Bruno, A.; Di Bella, T.; Pantea Stoian, A.; Ciaccio, M.; Rizzo, M. Effect of Semaglutide on Subclinical Atherosclerosis and Cardiometabolic Compensation: A Real-World Study in Patients with Type 2 Diabetes. Biomedicines 2023, 11, 1362. [Google Scholar] [CrossRef]
- Mann, J.F.E.; Hansen, T.; Idorn, T.; Leiter, L.A.; Marso, S.P.; Rossing, P.; Seufert, J.; Tadayon, S.; Vilsbøll, T. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: A post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials. Lancet Diabetes Endocrinol. 2020, 8, 880–893. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Apperloo, E.; Davies, M.; Dicker, D.; Kandler, K.; Rosenstock, J.; Sørrig, R.; Lawson, J.; Zeuthen, N.; Cherney, D. Effects of Semaglutide on Albuminuria and Kidney Function in People with Overweight or Obesity with or without Type 2 Diabetes: Exploratory Analysis From the STEP 1, 2, and 3 Trials. Diabetes Care 2023, 46, 801–810. [Google Scholar] [CrossRef]
- Mino, M.; Kakazu, E.; Sano, A.; Katsuyama, H.; Hakoshima, M.; Yanai, H.; Aoki, Y.; Imamura, M.; Yamazoe, T.; Mori, T.; et al. Effects of sodium glucose cotransporter 2 inhibitors and pioglitazone on FIB-4 index in metabolic-associated fatty liver disease. Hepatol. Res. 2023, 53, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Bhosekar, V.; Busch, R.; Holst, I.; Ludvik, B.; Thielke, D.; Thrasher, J.; Woo, V.; Philis-Tsimikas, A. Semaglutide once weekly as add-on to SGLT-2 inhibitor therapy in type 2 diabetes (SUSTAIN 9): A randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 356–367. [Google Scholar] [CrossRef]
- Gu, Y.; Sun, L.; Zhang, W.; Kong, T.; Zhou, R.; He, Y.; Deng, C.; Yang, L.; Kong, J.; Chen, Y.; et al. Comparative efficacy of 5 sodium-glucose cotransporter protein-2 (SGLT-2) inhibitor and 4 glucagon-like peptide-1 (GLP-1) receptor agonist drugs in non-alcoholic fatty liver disease: A GRADE-assessed systematic review and network meta-analysis of randomized controlled trials. Front. Pharmacol. 2023, 14, 1102792. [Google Scholar] [CrossRef]
Age (year) | 55.8 ± 13.3 |
Gender (M/F) | 41/34 |
Body height (cm) | 164.3 ± 7.4 |
Body weight (kg) | 84.3 ± 16.2 |
BMI (kg/m2) | 31.4 ± 5.2 |
GLP-1RA naïve Switch from other GLP-1RAs Switch from DPP-4 inhibitors | 36 (48%) 39 (52%) 16 (21%) |
Medications at baseline | |
Insulin | 13 (17%) |
Metformin | 52 (69%) |
Sulfonylurea | 8 (11%) |
Glinides | 8 (11%) |
Thiazolidinedione | 18 (24%) |
Alpha-glucosidase inhibitors | 8 (11%) |
SGLT2 inhibitors | 68 (91%) |
Angiotensin II receptor blockers | 38 (51%) |
Calcium channel blockers | 35 (47%) |
Diuretics | 8 (11%) |
Beta blockers | 8 (11%) |
Statins | 44 (59%) |
Ezetimibe | 15 (20%) |
PCSK9 inhibitors | 1 (1%) |
Fibrates | 17 (23%) |
Antiplatelet drugs | 14 (19%) |
(a) The changes in metabolic parameters 3 months after the initiation of semaglutide treatment (n = 75). | ||||
n | Baseline | 3 Months | p | |
Body weight (kg) | 64 | 84.6 ± 15.5 | 83.2 ± 15.1 | 0.004 |
BMI (kg/m2) | 64 | 31.5 ± 5.2 | 30.9 ± 5.0 | <0.001 |
Systolic blood pressure (mmHg) | 65 | 133 ± 14 | 130 ± 14 | 0.077 |
Diastolic blood pressure (mmHg) | 65 | 79 ± 11 | 79 ± 12 | 0.943 |
Plasma glucose (mg/dL) | 73 | 173 ± 56 | 163 ± 49 | 0.219 |
HbA1c (%) | 73 | 8.2 ± 1.3 | 7.5 ± 1.1 | <0.001 |
Albumin (g/dL) | 68 | 4.10 ± 0.56 | 4.19 ± 0.44 | 0.091 |
AST (IU/L) | 75 | 37 ± 30 | 29 ± 20 | <0.001 |
ALT (IU/L) | 75 | 48 ± 37 | 39 ± 30 | <0.001 |
GGTP (IU/L) | 72 | 61 ± 61 | 51 ± 61 | <0.001 |
TC (mg/dL) | 69 | 178 ± 39 | 166 ± 31 | 0.002 |
HDL-C (mg/dL) | 71 | 46 ± 10 | 47 ± 11 | 0.921 |
LDL-C (mg/dL) | 62 | 95 ± 27 | 88 ± 24 | 0.029 |
TG (mg/dL) | 71 | 225 ± 149 | 204 ± 135 | 0.203 |
TG/HDL-C | 71 | 5.4 ± 4.2 | 5.1 ±5.0 | 0.249 |
Non-HDL-C (mg/dL) | 68 | 130 ± 38 | 120 ± 31 | <0.001 |
Creatinine (mg/dL) | 75 | 0.80 ± 0.32 | 0.84 ± 0.53 | 0.515 |
eGFR (mL/min/1.73 m2) | 75 | 79 ± 31 | 79 ± 29 | 0.680 |
Uric acid (mg/dL) | 66 | 5.8 ± 1.6 | 5.6 ± 1.7 | 0.136 |
Hemoglobin (g/dL) | 75 | 14.5 ± 1.7 | 14.5 ± 1.6 | 0.980 |
Platelet (×104/μL) | 75 | 24.1 ± 7.2 | 24.7 ± 8.0 | 0.093 |
UACR (mg/g Cre) | 38 | 163 ± 294 | 114 ± 221 | 0.099 |
(b) The changes in metabolic parameters 6 months after the initiation of semaglutide treatment (n = 54). | ||||
n | Baseline | 6 Months | p | |
Body weight (kg) | 50 | 84.3 ± 16.2 | 82.6 ± 15.8 | 0.012 |
BMI (kg/m2) | 50 | 31.4 ± 5.1 | 30.8 ± 5.3 | 0.010 |
Systolic blood pressure (mmHg) | 51 | 132 ± 13 | 133 ± 17 | 0.720 |
Diastolic blood pressure (mmHg) | 51 | 78 ± 10 | 79 ± 10 | 0.321 |
Plasma glucose (mg/dL) | 54 | 177 ± 58 | 162 ± 48 | 0.149 |
HbA1c (%) | 54 | 8.3 ± 1.4 | 7.4 ± 1.0 | <0.001 |
Albumin (g/dL) | 50 | 4.11 ± 0.52 | 4.17 ± 0.44 | 0.232 |
AST (IU/L) | 54 | 38 ± 29 | 31 ± 22 | 0.009 |
ALT (IU/L) | 54 | 50 ± 37 | 39 ± 28 | 0.007 |
GGTP (IU/L) | 52 | 60 ± 60 | 51 ± 63 | 0.002 |
TC (mg/dL) | 49 | 179 ± 42 | 168 ± 29 | 0.083 |
HDL-C (mg/dL) | 53 | 46 ± 10 | 47 ± 12 | 0.329 |
LDL-C (mg/dL) | 47 | 97 ± 30 | 89 ± 21 | 0.025 |
TG (mg/dL) | 53 | 227 ± 137 | 213 ± 190 | 0.061 |
TG/HDL-C | 53 | 5.5 ± 4.0 | 5.6 ± 6.9 | 0.065 |
Non-HDL-C (mg/dL) | 50 | 133 ± 43 | 120 ± 31 | 0.040 |
Creatinine (mg/dL) | 54 | 0.82 ± 0.35 | 0.81 ± 0.37 | 0.379 |
eGFR (mL/min/1.73 m2) | 54 | 79 ± 33 | 81 ± 34 | 0.186 |
Uric acid (mg/dL) | 48 | 5.9 ± 1.6 | 5.5 ± 1.9 | 0.036 |
Hemoglobin (g/dL) | 54 | 14.4± 1.6 | 14.5 ± 1.4 | 0.736 |
Platelet (×104/μL) | 54 | 23.5 ± 6.8 | 23.9 ± 6.7 | 0.213 |
UACR (mg/g Cre) | 36 | 164 ± 344 | 119 ± 221 | 0.950 |
(c) The changes in metabolic parameters 12 months after the initiation of semaglutide treatment (n = 40). | ||||
n | Baseline | 12 Months | p | |
Body weight (kg) | 32 | 86.2 ± 18.3 | 84.5 ± 19.2 | 0.001 |
BMI (kg/m2) | 32 | 32.6 ± 5.5 | 31.9 ± 5.8 | 0.001 |
Systolic blood pressure (mmHg) | 32 | 134 ± 15 | 134 ± 18 | 0.873 |
Diastolic blood pressure (mmHg) | 32 | 77 ± 10 | 76 ± 13 | 0.731 |
Plasma glucose (mg/dL) | 40 | 175 ± 55 | 166 ± 59 | 0.458 |
HbA1c (%) | 40 | 8.2 ± 1.4 | 7.4 ± 1.2 | <0.001 |
Albumin (g/dL) | 37 | 4.06 ± 0.51 | 4.15 ± 0.42 | 0.110 |
AST (IU/L) | 40 | 42 ± 32 | 32 ± 21 | 0.018 |
ALT (IU/L) | 40 | 54 ± 40 | 41 ± 30 | 0.002 |
GGTP (IU/L) | 38 | 67 ± 64 | 57 ± 55 | 0.071 |
TC (mg/dL) | 37 | 179 ± 33 | 171 ± 26 | 0.113 |
HDL-C (mg/dL) | 39 | 45 ± 10 | 48 ± 11 | 0.034 |
LDL-C (mg/dL) | 36 | 99 ± 31 | 96 ± 25 | 0.539 |
TG (mg/dL) | 39 | 6.1 ± 3.9 | 4.8 ± 3.5 | 0.034 |
TG/HDL-C | 40 | 242 ± 115 | 198 ± 110 | 0.024 |
Non-HDL-C (mg/dL) | 36 | 135 ± 31 | 124 ± 27 | 0.038 |
Creatinine (mg/dL) | 40 | 0.79 ± 0.31 | 0.79 ± 0.32 | 0.835 |
eGFR (mL/min/1.73 m2) | 40 | 81 ± 35 | 82 ± 36 | 0.803 |
Uric acid (mg/dL) | 36 | 5.9 ± 1.6 | 5.7 ± 1.5 | 0.139 |
Hemoglobin (g/dL) | 40 | 14.3± 1.8 | 14.2 ± 1.6 | 0.610 |
Platelet (×104/μL) | 40 | 24.0 ± 6.8 | 23.9 ± 7.2 | 0.814 |
UACR (mg/g Cre) | 28 | 201 ± 381 | 138 ± 289 | 0.221 |
GLP-1RA Naïve (n = 19) | Switch from Other GLP-1RAs (n = 21) | |||||||
---|---|---|---|---|---|---|---|---|
n | Baseline | 12 Months | p | n | Baseline | 12 Months | p | |
Body weight (kg) | 14 | 91.2 ± 23.2 | 89.2 ± 24.1 | 0.076 | 18 | 82.3 ± 11.8 | 80.9 ± 13.1 | 0.053 |
BMI (kg/m2) | 14 | 34.1 ± 6.4 | 33.3 ± 6.7 | 0.070 | 18 | 31.4 ± 4.3 | 30.9 ± 4.7 | 0.051 |
Systolic blood pressure (mmHg) | 14 | 135 ± 14 | 132 ± 23 | 0.701 | 18 | 132 ± 15 | 136 ± 12 | 0.311 |
Diastolic blood pressure (mmHg) | 14 | 80 ± 11 | 79 ± 18 | 0.867 | 18 | 75 ± 8 | 74 ± 8 | 0.673 |
Plasma glucose (mg/dL) | 19 | 191 ± 59 | 153 ± 38 | 0.004 | 21 | 161 ± 47 | 178 ± 70 | 0.333 |
HbA1c (%) | 19 | 8.4 ± 1.3 | 7.1 ± 0.9 | <0.001 | 21 | 8.2 ± 1.4 | 7.7 ± 1.4 | 0.032 |
Albumin (g/dL) | 19 | 4.16 ± 0.24 | 4.20 ± 0.48 | 0.482 | 18 | 3.95 ± 0.66 | 4.10 ± 0.53 | 0.157 |
AST (IU/L) | 19 | 50 ± 30 | 33 ± 19 | 0.006 | 21 | 34 ± 33 | 30 ± 24 | 0.868 |
ALT (IU/L) | 19 | 67 ± 44 | 43 ± 29 | 0.003 | 21 | 42 ± 31 | 38 ± 30 | 0.287 |
GGTP (IU/L) | 18 | 88 ± 73 | 62 ± 49 | 0.008 | 20 | 48 ± 47 | 52 ± 60 | 0.762 |
TC (mg/dL) | 18 | 192 ± 33 | 173 ± 28 | 0.021 | 19 | 166 ± 27 | 169 ± 24 | 0.614 |
HDL-C (mg/dL) | 19 | 47 ± 9 | 49 ± 10 | 0.356 | 20 | 42 ± 9 | 46 ± 12 | 0.038 |
LDL-C (mg/dL) | 16 | 106 ± 35 | 90 ± 25 | 0.067 | 20 | 93 ± 26 | 100 ± 25 | 0.218 |
TG (mg/dL) | 19 | 244 ± 10 | 209 ± 112 | 0.212 | 21 | 241 ± 123 | 188 ± 107 | 0.085 |
TG/HDL-C | 19 | 5.5 ± 3.2 | 4.5 ± 2.7 | 0.136 | 20 | 6.6 ± 4.6 | 5.1 ± 4.3 | 0.100 |
Non-HDL-C (mg/dL) | 18 | 145 ± 33 | 125 ± 28 | 0.019 | 20 | 126 ± 26 | 124 ± 27 | 0.793 |
Creatinine (mg/dL) | 19 | 0.76 ± 0.25 | 0.77 ± 0.26 | 0.716 | 21 | 0.82 ± 0.35 | 0.80 ± 0.37 | 0.266 |
eGFR (mL/min/1.73 m2) | 19 | 78 ± 22 | 76 ± 23 | 0.798 | 21 | 84 ± 44 | 86 ± 44 | 0.346 |
Uric acid (mg/dL) | 17 | 5.8 ± 1.4 | 5.3 ± 1.4 | 0.746 | 19 | 6.1 ± 1.7 | 6.0 ± 1.5 | 0.731 |
Hemoglobin (g/dL) | 19 | 14.6 ± 1.2 | 14.3 ± 0.8 | 0.393 | 21 | 14.0 ± 2.1 | 14.0 ± 2.1 | 0.961 |
Platelet (×104/μL) | 19 | 24.5 ± 6.7 | 25.3 ± 7.1 | 0.573 | 21 | 23.6 ± 6.9 | 22.6 ± 7.1 | 0.263 |
UACR (mg/g Cre) | 13 | 86 ± 104 | 53 ± 74 | 0.463 | 15 | 300 ± 491 | 212 ± 373 | 0.281 |
(a) The changes in the indices of MASLD in all patients (n = 40). | ||||||||
n | Baseline | 12 Months | p | |||||
HSI | 40 | 39.6 ± 14.7 | 38.6 ± 13.9 | 0.051 | ||||
APRI | 40 | 0.485 ± 0.421 | 0.374 ± 0.298 | 0.288 | ||||
FIB-4 index | 36 | 1.50 ± 1.12 | 1.37 ± 0.80 | 0.765 | ||||
(b) The changes in the indices of MASLD in patients who were GLP-1RA naïve or (n = 19) or given semaglutide after being switched from other GLP-1RAs (n = 21). | ||||||||
Group A GLP-1RA Naïve (n = 19) | Group B Switch from GLP-1RAs (n = 21) | |||||||
n | Baseline | 12 months | p | n | Baseline | 12 months | p | |
HSI | 19 | 38.8 ± 16.3 | 37.7 ± 15.7 | 0.145 | 21 | 40.4 ± 12.9 | 39.4 ± 12.0 | 0.205 |
APRI | 19 | 0.591 ± 0.476 | 0.360 ± 0.207 | 0.016 | 21 | 0.390 ± 0.227 | 0.387 ± 0.261 | 0.217 |
FIB-4 index | 19 | 1.63 ± 1.42 | 1.29 ± 0.85 | 0.117 | 17 | 1.36 ± 0.58 | 1.46 ± 0.73 | 0.103 |
(c) The changes in the indices of MASLD in patients with or without a high degree of liver damage at baseline (ALT ≥ 30 (n = 20) or <30 (n = 20)). | ||||||||
Baseline ALT ≥ 30 (n = 20) | Baseline ALT < 30 (n = 20) | |||||||
n | Baseline | 12 months | p | n | Baseline | 12 months | p | |
HSI | 20 | 40.6 ± 16.0 | 39.7 ± 13.7 | 0.314 | 20 | 38.7 ± 13.2 | 37.4 ± 12.0 | 0.108 |
APRI | 20 | 0.738 ± 0.461 | 0.477 ± 0.202 | 0.010 | 20 | 0.233 ± 0.122 | 0.272 ± 0.182 | 0.005 |
FIB-4 index | 19 | 1.77 ± 1.37 | 1.34 ± 0.77 | 0.033 | 17 | 1.20 ± 0.62 | 1.40 ± 0.84 | 0.009 |
(d) The changes in the indices of MASLD in patients divided by baseline LDL-C values (LDL-C ≥ 100 (n = 22) or <100 (n = 18)). | ||||||||
Baseline LDL-C ≥ 100 (n = 22) | Baseline LDL-C < 100 (n = 18) | |||||||
n | Baseline | 12 months | p | n | Baseline | 12 months | p | |
HSI | 22 | 41.2 ± 14.3 | 39.2 ± 13.2 | 0.010 | 18 | 37.7 ± 15.7 | 37.8 ± 15.5 | 0.913 |
APRI | 22 | 0.483 ± 0.395 | 0.384 ± 0.368 | 0.355 | 18 | 0.489 ± 0.473 | 0.362 ± 0.205 | 0.586 |
FIB-4 index | 21 | 1.28 ± 0.78 | 1.26 ± 0.88 | 0.794 | 15 | 1.81 ± 1.47 | 1.53 ± 0.71 | 0.820 |
(e) The changes in the indices of MASLD in patients who were treated with or without statins. | ||||||||
With Statins (n = 21) | Without Statins (n = 19) | |||||||
n | Baseline | 12 months | p | n | Baseline | 12 months | p | |
HSI | 21 | 36.9 ± 16.2 | 35.4 ± 14.9 | 0.030 | 19 | 42.7 ± 13.0 | 42.1 ± 12.5 | 0.520 |
APRI | 21 | 0.496 ± 0.447 | 0.409 ± 0.370 | 0.715 | 19 | 0.473 ± 0.414 | 0.336 ± 0.206 | 0.198 |
FIB-4 index | 18 | 1.72 ± 1.43 | 1.55 ± 0.93 | 0.879 | 18 | 1.29 ± 0.70 | 1.20 ± 0.66 | 0.744 |
(f) The changes in the indices of MASLD in patients who were treated with or without ARB. | ||||||||
With ARB (n = 23) | Without ARB (n = 17) | |||||||
n | Baseline | 12 months | p | n | Baseline | 12 months | p | |
HSI | 23 | 36.0 ± 14.0 | 34.5 ± 13.1 | 0.033 | 17 | 44.6 ± 14.9 | 44.2 ± 13.7 | 0.653 |
APRI | 23 | 0.470 ± 0.450 | 0.374 ± 0.355 | 0.831 | 17 | 0.506 ± 0.406 | 0.374 ± 0.221 | 0.227 |
FIB-4 index | 21 | 1.72 ± 1.40 | 1.54 ± 0.89 | 0.958 | 17 | 1.19 ± 0.50 | 1.13 ± 0.64 | 0.820 |
Δ BMI | Δ HbA1c | Δ TG | Δ HDL-C | Δ LDL-C | ΔTG/ HDL-C | Δ Non- HDL-C | Δ HSI | Δ APRI | |
---|---|---|---|---|---|---|---|---|---|
Δ BMI | 1 | ||||||||
Δ HbA1c | 0.146 | 1 | |||||||
Δ TG | 0.030 | 0.124 | 1 | ||||||
Δ HDL-C | −0.084 | −0.026 | −0.356 * | 1 | |||||
Δ LDL-C | 0.497 ** | 0.109 | 0.064 | 0.035 | 1 | ||||
ΔTG/HDL-C | −0.169 | 0.409 | 0.988 ** | −0.440 | 0.006 | 1 | |||
Δ Non- HDL-C | 0.245 | 0.284 | 0.467 ** | −0.139 | 0.834 ** | 0.472 | 1 | ||
Δ HSI | 0.536 ** | 0.024 | 0.114 | 0.211 | 0.236 | −0.254 | 0.154 | 1 | |
ΔAPRI | 0.229 | 0.494 ** | 0.145 | −0.097 | 0.160 | 0.412 | 0.327 | −0.061 | 1 |
Δ FIB-4 index | 0.018 | 0.511 ** | 0.196 | −0.215 | −0.016 | 0.534 * | 0.140 | −0.346 * | 0.874 ** |
UACR Stage at Baseline | n | UACR Stage at 12 Months | n |
---|---|---|---|
A1 | 13 | A1 A2 | 12 1 |
A2 | 10 | A1 A2 | 3 7 |
A3 | 5 | A2 A3 | 2 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsuyama, H.; Hakoshima, M.; Kaji, E.; Mino, M.; Kakazu, E.; Iida, S.; Adachi, H.; Kanto, T.; Yanai, H. Effects of Once-Weekly Semaglutide on Cardiovascular Risk Factors and Metabolic Dysfunction-Associated Steatotic Liver Disease in Japanese Patients with Type 2 Diabetes: A Retrospective Longitudinal Study Based on Real-World Data. Biomedicines 2024, 12, 1001. https://doi.org/10.3390/biomedicines12051001
Katsuyama H, Hakoshima M, Kaji E, Mino M, Kakazu E, Iida S, Adachi H, Kanto T, Yanai H. Effects of Once-Weekly Semaglutide on Cardiovascular Risk Factors and Metabolic Dysfunction-Associated Steatotic Liver Disease in Japanese Patients with Type 2 Diabetes: A Retrospective Longitudinal Study Based on Real-World Data. Biomedicines. 2024; 12(5):1001. https://doi.org/10.3390/biomedicines12051001
Chicago/Turabian StyleKatsuyama, Hisayuki, Mariko Hakoshima, Emika Kaji, Masaaki Mino, Eiji Kakazu, Sakura Iida, Hiroki Adachi, Tatsuya Kanto, and Hidekatsu Yanai. 2024. "Effects of Once-Weekly Semaglutide on Cardiovascular Risk Factors and Metabolic Dysfunction-Associated Steatotic Liver Disease in Japanese Patients with Type 2 Diabetes: A Retrospective Longitudinal Study Based on Real-World Data" Biomedicines 12, no. 5: 1001. https://doi.org/10.3390/biomedicines12051001
APA StyleKatsuyama, H., Hakoshima, M., Kaji, E., Mino, M., Kakazu, E., Iida, S., Adachi, H., Kanto, T., & Yanai, H. (2024). Effects of Once-Weekly Semaglutide on Cardiovascular Risk Factors and Metabolic Dysfunction-Associated Steatotic Liver Disease in Japanese Patients with Type 2 Diabetes: A Retrospective Longitudinal Study Based on Real-World Data. Biomedicines, 12(5), 1001. https://doi.org/10.3390/biomedicines12051001