Serum Advanced Glycation End Products and Their Soluble Receptor as New Biomarkers in Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Variables
2.3. Assessment of Specific Serum AGEs
- -
- Human pentosidine sandwich ELISA kit (Cusabio Biotech Co., Ltd. Wuhan, China, CSB-E09415h); sensitivity 7.81 pmol/mL; precision measured as coefficient of variation < 8% (intra-assay), <10% (inter-assay).
- -
- Human CML sandwich ELISA kit (Cusabio Biotech Co., Ltd., Wuhan, China CSB-E12798h); sensitivity 15.6 pg/mL; precision measured as co-efficient of variation < 8% (intra-assay), <10% (inter-assay).
- -
- Human CEL sandwich ELISA kit (Cusabio Biotech Co., Ltd., Wuhan, China CSB-EQ027210HU); sensitivity 0.078 nmol/mL; precision measured as coefficient of variation < 8% (intra-assay), <10% (inter-assay).
- -
- Human receptor for AGEs, (RAGE/AGER) sandwich ELISA kit (Cusabio Biotech Co., Wuhan, China Ltd., CSB-E09354h); sensitivity 19.5 pg/mL; precision measured as coefficient of variation < 8% (intra-assay), <10% (inter-assay).
2.4. Statistical Methods
3. Results
3.1. Pentosidine
3.1.1. Characteristics of SLE Patients According to Pentosidine Levels: Exploratory Analysis
3.1.2. Correlations between Pentosidine and SLE Characteristics: Multivariate Analysis
3.2. CML
3.2.1. Characteristics of SLE Patients According to CML Levels: Exploratory Analysis
3.2.2. Correlations between CML and SLE Characteristics: Multivariate Analysis
3.3. CEL
3.3.1. Characteristics of SLE Patients According to CEL Levels: Exploratory Analysis
3.3.2. Correlations between CEL and SLE Characteristics: Multivariate Analysis
3.4. Serum Receptor for Advanced Glycation End Products (sRAGE)
3.4.1. Characteristics of SLE Patients According to sRAGE Levels: Exploratory Analysis
3.4.2. Correlations between sRAGE Levels and SLE Characteristics: Multivariate Analysis
3.5. Ratios of Advanced Glycation End Products/Serum Soluble Receptor for Advanced Glycation End Products (AGEs/sRAGE)
3.5.1. Characteristics of SLE Patients According to Skin AGEs/sRAGE or Specific Serum AGEs/sRAGE
3.5.2. Correlations between Skin AGEs/sRAGE or Specific Serum AGEs/sRAGE and SLE Characteristics: Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, L.; Lu, M.P.; Wang, J.H.; Xu, M.; Yang, S.R. Immunological Pathogenesis and Treatment of Systemic Lupus Erythematosus. World J. Pediatr. 2020, 16, 19–31. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and Physiological Roles of Inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Gkogkolou, P.; Böhm, M. Advanced Glycation End Products: Keyplayers in Skin Aging? Dermato-Endocrinology 2012, 4, 259–270. [Google Scholar] [CrossRef]
- Baynes, J.W. Chemical Modification of Proteins by Lipids in Diabetes. Clin. Chem. Lab. Med. 2003, 41, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Del Turco, S.; Basta, G. An Update on Advanced Glycation Endproducts and Atherosclerosis. BioFactors 2012, 38, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Miyata, T.; Inagi, R.; Kurokawa, K. Implication of the Glycoxidation and Lipoxidation Reactions in the Pathogenesis of Dialysis-Related Amyloidosis (Review). Int. J. Mol. Med. 1998, 2, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, D.; Sun, L.; Lu, Y.; Zhang, Z. Advanced Glycation End Products and Neurodegenerative Diseases: Mechanisms and Perspective. J. Neurol. Sci. 2012, 317, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, S.R.; Baynes, J.W. Maillard Reaction Products in Tissue Proteins: New Products and New Perspectives. Amino Acids 2003, 25, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid. Med. Cell. Longev. 2020, 3818196. [Google Scholar] [CrossRef] [PubMed]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced Glycoxidation and Lipoxidation End Products (AGEs and ALEs): An Overview of Their Mechanisms of Formation. Free Radic. Res. 2013, 47, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Kurien, B.T.; Hensley, K.; Bachmann, M.; Scofield, R.H. Oxidatively Modified Autoantigens in Autoimmune Diseases. Free Radic. Biol. Med. 2006, 41, 549–556. [Google Scholar] [CrossRef]
- Pullerits, R.; Bokarewa, M.; Dahlberg, L.; Tarkowski, A. Decreased Levels of Soluble Receptor for Advanced Glycation End Products in Patients with Rheumatoid Arthritis Indicating Deficient Inflammatory Control. Arthritis Res. Ther. 2005, 7, R817–R824. [Google Scholar] [CrossRef]
- Chiappalupi, S.; Sorci, G.; Vukasinovic, A.; Salvadori, L.; Sagheddu, R.; Coletti, D.; Renga, G.; Romani, L.; Donato, R.; Riuzzi, F. Targeting RAGE Prevents Muscle Wasting and Prolongs Survival in Cancer Cachexia. J. Cachexia Sarcopenia Muscle 2020, 11, 929–946. [Google Scholar] [CrossRef] [PubMed]
- Sárkány, Z.; Ikonen, T.P.; Ferreira-da-Silva, F.; Saraiva, M.J.; Svergun, D.; Damas, A.M. Solution Structure of the Soluble Receptor for Advanced Glycation End Products (SRAGE). J. Biol. Chem. 2011, 286, 37525–37534. [Google Scholar] [CrossRef]
- Geroldi, D.; Falcone, C.; Emanuele, E. Soluble Receptor for Advanced Glycation End Products: From Disease Marker to Potential Therapeutic Target. Curr. Med. Chem. 2006, 13, 1971–1978. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Dhar, I.; Zhou, Q.; Elmoselhi, H.; Shoker, M.; Shoker, A. AGEs/SRAGE, a Novel Risk Factor in the Pathogenesis of End-Stage Renal Disease. Mol. Cell. Biochem. 2016, 423, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Dhar, I.; Caspar-Bell, G. Role of Advanced Glycation End Products and Its Receptors in the Pathogenesis of Cigarette Smoke-Induced Cardiovascular Disease. Int. J. Angiol. 2014, 24, 75–80. [Google Scholar] [CrossRef]
- Prasad, K. Is There Any Evidence That AGE/SRAGE Is a Universal Biomarker/Risk Marker for Diseases? Mol. Cell. Biochem. 2019, 451, 139–144. [Google Scholar] [CrossRef]
- Gelžinský, J.; Mayer, O.; Seidlerová, J.; Mateřánková, M.; Mareš, Š.; Kordíkova, V.; Trefil, L.; Cífková, R.; Filipovský, J. Serum Biomarkers, Skin Autofluorescence and Other Methods. Which Parameter Better Illustrates the Relationship between Advanced Glycation End Products and Arterial Stiffness in the General Population? Hypertens. Res. 2021, 44, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Nienhuis, H.L.; de Leeuw, K.; Bijzet, J.; Smit, A.; Schalkwijk, C.G.; Graaff, R.; Kallenberg, C.G.; Bijl, M. Skin Autofluorescence Is Increased in Systemic Lupus Erythematosus but Is Not Reflected by Elevated Plasma Levels of Advanced Glycation Endproducts. Rheumatology 2008, 47, 1554–1558. [Google Scholar] [CrossRef]
- Nisihara, R.; Skare, T.; Picceli, V.F.; Ambrosio, A.; Ferreira, C.; Baracho, F.; Messias-Reason, I. Serum Pentosidine Levels in Systemic Lupus Erythematosus. Pract. Lab. Med. 2021, 23, e00197. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chen, Y.M.; Lin, C.C.; Hsieh, C.W.; Wu, Y.C.; Hung, W.T.; Chen, H.H.; Lan, J.L. The Potential Role of Advanced Glycation End Products (AGEs) and Soluble Receptors for AGEs (SRAGE) in the Pathogenesis of Adult-Onset Still’s Disease. BMC Musculoskelet. Disord. 2015, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Przywara-Chowaniec, B.; Damasiewicz-Bodzek, A.; Blachut, D.; Nowalany-Kozielska, E.; Tyrpień-Golder, K. Advanced Glycation End-Products (Ages) and Their Soluble Receptor (Srage) in Women Suffering from Systemic Lupus Erythematosus (Sle). Cells 2021, 10, 3523. [Google Scholar] [CrossRef]
- Ene, C.D.; Georgescu, S.R.; Tampa, M.; Matei, C.; Mitran, C.I.; Mitran, M.I.; Penescu, M.N.; Nicolae, I. Cellular Response against Oxidative Stress, a Novel Insight into Lupus Nephritis Pathogenesis. J. Pers. Med. 2021, 11, 693. [Google Scholar] [CrossRef] [PubMed]
- Bobek, D.; Grčević, D.; Kovačić, N.; Lukić, K.K.; Jelušić, M. The Presence of High Mobility Group Box-1 and Soluble Receptor for Advanced Glycation End-Products in Juvenile Idiopathic Arthritis and Juvenile Systemic Lupus Erythematosus. Pediatr. Rheumatol. 2014, 12, 50. [Google Scholar] [CrossRef]
- Bayoumy, N. A Soluble Receptor for Advanced Glycation End Product Levels in Patients with Systemic Lupus Erythematosus. Turk. J. Rheumatol. 2013, 28, 101–108. [Google Scholar] [CrossRef]
- Ma, C.Y.; Ma, J.L.; Jiao, Y.L.; Li, J.F.; Wang, L.C.; Yang, Q.R.; You, L.; Cui, B.; Chen, Z.J.; Zhao, Y.R. The Plasma Level of Soluble Receptor for Advanced Glycation End Products Is Decreased in Patients with Systemic Lupus Erythematosus. Scand. J. Immunol. 2012, 75, 614–622. [Google Scholar] [CrossRef]
- Yu, S.L.; Wong, C.K.; Szeto, C.C.; Li, E.K.; Cai, Z.; Tam, L.S. Members of the Receptor for Advanced Glycation End Products Axis as Potential Therapeutic Targets in Patients with Lupus Nephritis. Lupus 2015, 24, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Park, K.H.; Park, S.; Kim, J.H.; Hong, S.Y.; Lee, S.K.; Choi, D.; Park, Y.B. Soluble Receptor for Advanced Glycation End Products Alleviates Nephritis in (NZB/NZW)F1 Mice. Arthritis Rheum. 2013, 65, 1902–1912. [Google Scholar] [CrossRef]
- Manganelli, V.; Truglia, S.; Capozzi, A.; Alessandri, C.; Riitano, G.; Spinelli, F.R.; Ceccarelli, F.; Mancuso, S.; Garofalo, T.; Longo, A.; et al. Alarmin HMGB1 and Soluble RAGE as New Tools to Evaluate the Risk Stratification in Patients with the Antiphospholipid Syndrome. Front. Immunol. 2019, 10, 460. [Google Scholar] [CrossRef]
- De Leeuw, K.; Freire, B.; Smit, A.J.; Bootsma, H.; Kallenberg, C.G.; Bijl, M. Traditional and Non-Traditional Risk Factors Contribute to the Development of Accelerated Atherosclerosis in Patients with Systemic Lupus Erythematosus. Lupus 2006, 15, 675–682. [Google Scholar] [CrossRef]
- Nienhuis, H.L.A.; de Leeuw, K.; Bijzet, J.; van Doormaal, J.J.; van Roon, A.M.; Smit, A.J.; Graaff, R.; Kallenberg, C.G.M.; Bijl, M. Small Artery Elasticity Is Decreased in Patients with Systemic Lupus Erythematosus without Increased Intima Media Thickness. Arthritis Res. Ther. 2010, 12, R181. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, Y.; Zheng, H.; Liu, B. Association between SRAGE and Arterial Stiffness in Women with Systemic Lupus Erythematosus. Endocr. Metab. Immune Disord. Drug Targets 2020, 21, 504–510. [Google Scholar] [CrossRef]
- Tydén, H.; Lood, C.; Gullstrand, B.; Jönsen, A.; Nived, O.; Sturfelt, G.; Truedsson, L.; Ivars, F.; Leanderson, T.; Bengtsson, A.A. Increased Serum Levels of S100A8/A9 and S100A12 Are Associated with Cardiovascular Disease in Patients with Inactive Systemic Lupus Erythematosus. Rheumatology 2013, 52, 2048–2055. [Google Scholar] [CrossRef]
- de Leeuw, K.; Graaff, R.; de Vries, R.; Dullaart, R.P.; Smit, A.J.; Kallenberg, C.G.; Bijl, M. Accumulation of Advanced Glycation Endproducts in Patients with Systemic Lupus Erythematosus. Rheumatology 2007, 46, 1551–1556. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American College of Rheumatology Revised Criteria for the Classification of Systemic Lupus Erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Orbai, A.M.; Alarcõn, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and Validation of the Systemic Lupus International Collaborating Clinics Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Meerwaldt, R.; Graaf, R.; Oomen, P.H.N.; Links, T.P.; Jager, J.J.; Alderson, N.L.; Thorpe, S.R.; Baynes, J.W.; Gans, R.O.B.; Smit, A.J. Simple Non-Invasive Assessment of Advanced Glycation Endproduct Accumulation. Diabetologia 2004, 47, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Katsuoka, F.; Kawakami, Y.; Arai, T.; Imuta, H.; Fujiwara, M.; Kanma, H.; Yamashita, K. Type II Alveolar Epithelial Cells in Lung Express Receptor for Advanced Glycation End Products (RAGE) Gene. Biochem. Biophys. Res. Commun. 1997, 238, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Englert, J.M.; Hanford, L.E.; Kaminski, N.; Tobolewski, J.M.; Tan, R.J.; Fattman, C.L.; Ramsgaard, L.; Richards, T.J.; Loutaev, I.; Nawroth, P.P.; et al. A Role for the Receptor for Advanced Glycation End Products in Idiopathic Pulmonary Fibrosis. Am. J. Pathol. 2008, 172, 583–591. [Google Scholar] [CrossRef]
- Oczypok, E.A.; Perkins, T.N.; Oury, T.D. All the “RAGE” in Lung Disease: The Receptor for Advanced Glycation Endproducts (RAGE) Is a Major Mediator of Pulmonary Inflammatory Responses. Paediatr. Respir. Rev. 2017, 23, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, H.; Tochino, Y.; Kyoh, S.; Ichimaru, Y.; Asai, K.; Hirata, K. Potential Roles of Pentosidine in Age-Related and Disease-Related Impairment of Pulmonary Functions in Patients with Asthma. J. Allergy Clin. Immunol. 2011, 127, 899–904. [Google Scholar] [CrossRef]
- Tamagaki, G.; Kanazawa, H.; Hirata, K. Association of Airway Pentosidine Levels with Bronchodilator Response Mediated by Salbutamol Administration in Asthmatic Patients. Pulm. Pharmacol. Ther. 2012, 25, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Damasiewicz-Bodzek, A.; Łabuz-Roszak, B.; Kumaszka, B.; Tyrpień-Golder, K. Carboxymethyllysine and Carboxyethyllysine in Multiple Sclerosis Patients. Arch. Med. Sci. 2020, 73, 69–74. [Google Scholar] [CrossRef]
- Pan, N.; Amigues, I.; Lyman, S.; Duculan, R.; Aziz, F.; Crow, M.K.; Kirou, K.A. A Surge in Anti-DsDNA Titer Predicts a Severe Lupus Flare within Six Months. Lupus 2014, 23, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Rojo, R.; Alén, J.C.; Prada, Á.; Valor, S.; Roy, G.; López-Hoyos, M.; Cervera, R.; Mateos, P.S.; Roger, A.J. Recommendations for the Use of Anti-DsDNA Autoantibodies in the Diagnosis and Follow-up of Systemic Lupus Erythematosus—A Proposal from an Expert Panel. Autoimmun. Rev. 2023, 22, 103479. [Google Scholar] [CrossRef]
- Ding, J.; Su, S.; You, T.; Xia, T.; Lin, X.; Chen, Z.; Zhang, L. Serum Interleukin-6 Level Is Correlated with the Disease Activity of Systemic Lupus Erythematosus: A Meta-Analysis. Clinics 2020, 75, e1801. [Google Scholar] [CrossRef]
- González, L.A.; Santamaría-Alza, Y.; Alarcón, G.S. Organ Damage in Systemic Lupus Erythematosus. Rev. Colomb. Reumatol. 2021, 28, 66–81. [Google Scholar] [CrossRef]
- Crosslin, K.L.; Wiginton, K.L. The Impact of Race and Ethnicity on Disease Severity in Systemic Lupus Erythematosus. Ethn. Dis. 2009, 19, 301–307. [Google Scholar]
- Ramírez Sepúlveda, J.I.; Bolin, K.; Mofors, J.; Leonard, D.; Svenungsson, E.; Jönsen, A.; Bengtsson, C.; Wahren-Herlenius, M.; Zickert, A.; Björk, A.; et al. Sex Differences in Clinical Presentation of Systemic Lupus Erythematosus. Biol. Sex Differ. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Corbin, D.; Christian, L.; Rapp, C.M.; Liu, L.; Rohan, C.A.; Travers, J.B. New Concepts on Abnormal UV Reactions in Systemic Lupus Erythematosus and a Screening Tool for Assessment of Photosensitivity. Skin Res. Technol. 2023, 29, e13247. [Google Scholar] [CrossRef]
- Athanassiou, P.; Athanassiou, L. Current Treatment Approach, Emerging Therapies and New Horizons in Systemic Lupus Erythematosus. Life 2023, 13, 1496–1516. [Google Scholar] [CrossRef]
- Petri, M. Use of Hydroxychloroquine to Prevent Thrombosis in Systemic Lupus Erythematosus and in Antiphospholipid Antibody-Positive Patients. Curr. Rheumatol. Rep. 2011, 13, 77–80. [Google Scholar] [CrossRef]
- Lan, L.; Han, F.; Lang, X.; Chen, J. Monocyte Chemotactic Protein-1, Fractalkine, and Receptor for Advanced Glycation End Products in Different Pathological Types of Lupus Nephritis and Their Value in Different Treatment Prognoses. PLoS ONE 2016, 11, e0159964. [Google Scholar] [CrossRef]
- Wild, G.E.; Waschke, K.A.; Bitton, A.; Thomson, A.B.R. The Mechanisms of Prednisone Inhibition of Inflammation in Crohn’s Disease Involve Changes in Intestinal Permeability, Mucosal TNFα Production and Nuclear Factor Kappa B Expression. Aliment. Pharmacol. Ther. 2003, 18, 309–317. [Google Scholar] [CrossRef]
- Al-Homsi, A.S.; Lai, Z.; Roy, T.S.; Al-Malki, M.M.; Kouttab, N.; Junghans, R.P. Post-Transplant Cyclophosphamide and Bortezomib Inhibit Dendritic Cell Maturation and Function and Alter Their IκB and NFκB. Transpl. Immunol. 2014, 30, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, Z.; Kolb, C.; Chadha, K.; Nir, A.; Nir, R.; George, R.; Johnson, J.; Yu, J.; Hojnacki, D. Fingolimod Anti-Inflammatory and Neuroprotective Effects Modulation of RAGE Axis in Multiple Sclerosis Patients. Neuropharmacology 2018, 130, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.; Van Ree, R.M.; Oterdoom, L.H.; De Vries, A.P.J.; Van Son, W.J.; De Jong, P.E.; Navis, G.J.; Zuurman, M.W.; Bierhaus, A.; Gans, R.O.B.; et al. Low Levels of SRAGE Are Associated with Increased Risk for Mortality in Renal Transplant Recipients. Transplantation 2007, 84, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, J.; Requena, J.R.; Rodríguez-Segade, S. Increased Concentrations of Serum Pentosidine in Rheumatoid Arthritis. Clin. Chem. 1998, 15, 675–682. [Google Scholar] [CrossRef]
- Okuyucu, M.; Kehribar, D.; Çelik, Z.B.; Özgen, M. An Investigation of the Relationship between Rheumatological Diseases and Soluble Receptor for Advanced Glycation End Products. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3450–3455. [Google Scholar] [PubMed]
Variables | All |
---|---|
N = 122 | |
Gender: Female | 114 (93.4%) |
Body mass index | 25.4 (4.74) |
Ethnicity | |
Caucasian | 81 (66.4%) |
Latin | 29 (23.8%) |
Other | 12 (9.84%) |
Age | 50.4 (14.9) |
Smoker | 32 (26.2%) |
cDisease duration (years) | |
0–5 | 50 (41.0%) |
6–10 | 16 (13.1%) |
11–20 | 33 (27.0%) |
>20 | 23 (18.9%) |
Serological Variables | |
ESR * | 11.0 [5.00; 20.0] |
cCRP * | |
[0.03, 0.12) | 45 (37.2%) |
[0.12, 0.28) | 36 (29.8%) |
[0.28, 3.92] | 40 (33.1%) |
cIL-6 * | |
[0.63, 1.88) | 36 (33.3%) |
[1.88, 3.33) | 36 (33.3%) |
[3.33, 144.10] | 36 (33.3%) |
ANA+ * | 112 (92.6%) |
Anti-dsDNA+ * | 4.00 [1.00; 13.0] |
Anti-Ro52+ * | 26 (21.8%) |
Anti-Ro60+ * | 45 (37.8%) |
CH50 * | 60.3 [51.8; 70.9] |
C3 * | 106 (22.3) |
C4 * | 19.8 (8.23) |
SLE Activity Indexes | |
cDAS28 | |
0—Remission | 78 (65.0%) |
1—Low activity | 15 (12.5%) |
2—Moderate activity | 21 (17.5%) |
3—High activity | 6 (5.00%) |
cSLEDAI | |
Remission/Mild | 71 (58.7%) |
Moderate | 39 (32.2%) |
Severe | 11 (9.09%) |
SDI | 0.00 [0.00; 1.00] |
cSDI_3 | |
0–2 | 110 (90.9%) |
3–4 | 8 (6.61%) |
5–6 | 3 (2.48%) |
PGA | 2.00 [1.00; 3.00] |
Patient-Reported Outcomes | |
HAQ | 0.38 [0.00; 0.88] |
Patient pain VAS | 2.00 [0.00; 6.00] |
FACIT | 17.5 [10.0; 27.0] |
PtGA | 2.75 [1.00; 5.00] |
Comorbidities and Cardiovascular Disease | |
Hypertension | 26 (21.3%) |
Dyslipidemia | 12 (9.84%) |
Cardiovascular disease | 5 (4.10%) |
Chronic renal disease | 3 (2.46%) |
Hyperuricemia | 2 (1.64%) |
Obesity | 22 (18.0%) |
CVRF > 0 | 47 (38.5%) |
CVE | 9 (7.38%) |
CVRF and CVE > 0 | 48 (39.3%) |
Treatments | |
GC | 30 (24.6%) |
Current dose of GC | 5.00 [2.50; 10.0] |
Antimalarials | 93 (76.2%) |
cDMARD | 19 (15.6%) |
bDMARD | 6 (4.92%) |
Azathioprine | 19 (15.6%) |
Mycophenolic acid | 20 (16.4%) |
Tacrolimus | 1 (0.82%) |
cTreatment | |
No IS | 66 (54.1%) |
IS | 56 (45.9%) |
Variables | First Tertile [0, 1180) | Second Tertile [1180, 1594) | Third Tertile [1594, 4334] | p-Value |
---|---|---|---|---|
N = 39 | N = 39 | N = 39 | ||
Classificatory Criteria and Other Clinical and Serological Data | ||||
Direct Coombs+ ever | 4 (16.7%) | 4 (21.1%) | 1 (4.17%) | 0.063 |
Pulmonary ever | 0 (0.00%) | 2 (5.13%) | 3 (7.69%) | <0.001 |
Disease Activity Indexes | ||||
SLE-DAS | 4.18 [1.78; 7.28] | 1.79 [1.20; 6.15] | 2.53 [0.82; 4.86] | 0.087 |
Serological Variables | ||||
Total bilirubin * | 0.32 [0.25; 0.48] | 0.32 [0.26; 0.38] | 0.35 [0.23; 0.41] | 0.097 |
Hematuria * | 0.00 [0.00; 0.00] | 0.00 [0.00; 0.00] | 0.00 [0.00; 0.00] | 0.027 |
UPCR | 84.6 [68.5; 133] | 82.3 [63.5; 108] | 74.7 [54.9; 90.7] | 0.093 |
Comorbidities and Cardiovascular Disease | ||||
Densitometric OP | 4 (10.3%) | 7 (17.9%) | 7 (17.9%) | 0.077 |
CVE_SDI | 0.091 | |||
0 | 37 (94.9%) | 34 (87.2%) | 37 (94.9%) | |
1 | 2 (5.13%) | 4 (10.3%) | 0 (0.00%) | |
2 | 0 (0.00%) | 1 (2.56%) | 2 (5.13%) | |
Treatments | ||||
Tacrolimus | 1 (2.56%) | 0 (0.00%) | 0 (0.00%) | 0.093 |
Other AGEs | ||||
Skin AGEs | 0.065 | |||
<1SD | 1 (2.56%) | 1 (2.56%) | 4 (10.3%) | |
1SD-Means | 4 (10.3%) | 3 (7.69%) | 6 (15.4%) | |
Means | 1 (2.56%) | 2 (5.13%) | 1 (2.56%) | |
Means–>1SD | 12 (30.8%) | 10 (25.6%) | 12 (30.8%) | |
>1SD | 21 (53.8%) | 23 (59.0%) | 16 (41.0%) |
Variables | First Tertile [57.6, 240) | Second Tertile [239.8, 383) | Third Tertile [382.9, 1555] | p-Value |
---|---|---|---|---|
N = 39 | N = 39 | N = 39 | ||
Demographic variables | ||||
Ethnicity 3 categories | 0.023 | |||
Caucasian | 30 (76.9%) | 29 (74.4%) | 20 (51.3%) | |
Latin | 6 (15.4%) | 7 (17.9%) | 14 (35.9%) | |
Others | 3 (7.69%) | 3 (7.69%) | 5 (12.8%) | |
Ethnicity 2 categories | 0.006 | |||
Caucasian | 30 (76.9%) | 29 (74.4%) | 20 (51.3%) | |
Others | 9 (23.1%) | 10 (25.6%) | 19 (48.7%) | |
Disease-related variables | ||||
Years of duration | 4.00 [1.00; 14.5] | 12.0 [4.00; 18.5] | 12.0 [4.00; 21.0] | 0.037 |
cYears of duration | 0.088 | |||
0–5 | 22 (56.4%) | 13 (33.3%) | 12 (30.8%) | |
6–10 | 5 (12.8%) | 6 (15.4%) | 5 (12.8%) | |
11–20 | 9 (23.1%) | 12 (30.8%) | 11 (28.2%) | |
>20 | 3 (7.69%) | 8 (20.5%) | 11 (28.2%) | |
Tertiles years of duration | 0.020 | |||
[0, 5) | 21 (53.8%) | 11 (28.2%) | 10 (25.6%) | |
[5, 16) | 12 (30.8%) | 14 (35.9%) | 14 (35.9%) | |
[16, 45] | 6 (15.4%) | 14 (35.9%) | 15 (38.5%) | |
Classificatory Criteria and Other Clinical and Serological Data | ||||
Renal disease ever | 0 (0.00%) | 1 (2.56%) | 7 (17.9%) | 0.019 |
Disease Activity Indexes | ||||
PGA | 1.00 [1.00; 2.00] | 2.00 [1.00; 3.00] | 2.00 [1.00; 3.00] | 0.094 |
Swollen joints | 0.00 [0.00; 0.00] | 0.00 [0.00; 0.00] | 0.00 [0.00; 0.00] | 0.093 |
Serological variables | ||||
IL-6 tertiles * | 0.050 | |||
[0.44, 1.88) | 15 (40.5%) | 12 (30.8%) | 11 (28.9%) | |
[1.88, 3.24) | 13 (35.1%) | 18 (46.2%) | 7 (18.4%) | |
[3.24, 39.38] | 9 (24.3%) | 9 (23.1%) | 20 (52.6%) | |
Comorbidities and Cardiovascular Disease | ||||
Densitometric OP | 5 (12.8%) | 4 (10.3%) | 9 (23.1%) | 0.034 |
Treatments | ||||
Dyslipidemia drugs | 4 (10.3%) | 1 (2.56%) | 9 (23.1%) | 0.004 |
Mycophenolic acid | 2 (5.13%) | 6 (15.4%) | 12 (30.8%) | 0.012 |
Glucocorticoids | 8 (20.5%) | 4 (10.3%) | 18 (46.2%) | <0.001 |
Other AGEs | ||||
CEL | 2.45 [2.09; 3.71] | 3.17 [2.47; 3.66] | 3.99 [2.48; 4.68] | 0.064 |
Variables | First Tertile [0.823, 2.79) | Second Tertile [2.793, 4.56) | Third Tertile [4.564, 31.68] | p-Value |
---|---|---|---|---|
N = 38 | N = 37 | N = 16 | ||
Demographic variables | ||||
Smoker | 3 (7.89%) | 8 (21.6%) | 8 (50.0%) | 0.087 |
Classificatory Criteria and Other Clinical Data | ||||
Constitutional ever | 3 (7.89%) | 4 (10.8%) | 1 (6.25%) | 0.046 |
Photosensitivity ever | 20 (52.6%) | 27 (73.0%) | 13 (81.2%) | 0.089 |
Manifestations | 0.006 | |||
3 | 2 (5.26%) | 0 (0.00%) | 0 (0.00%) | |
4 | 2 (5.26%) | 1 (2.70%) | 0 (0.00%) | |
5 | 7 (18.4%) | 3 (8.11%) | 0 (0.00%) | |
6 | 9 (23.7%) | 10 (27.0%) | 2 (12.5%) | |
7 | 8 (21.1%) | 8 (21.6%) | 5 (31.2%) | |
8 | 6 (15.8%) | 4 (10.8%) | 3 (18.8%) | |
9 | 3 (7.89%) | 6 (16.2%) | 2 (12.5%) | |
10 | 0 (0.00%) | 3 (8.11%) | 1 (6.25%) | |
11 | 1 (2.63%) | 1 (2.70%) | 3 (18.8%) | |
12 | 0 (0.00%) | 1 (2.70%) | 0 (0.00%) | |
Disease Activity Indexes | ||||
cSLE-DAS | 0.091 | |||
First tertile [0.82, 1.79) | 19 (52.8%) | 16 (47.1%) | 2 (12.5%) | |
Second tertile [1.79, 5.31) | 6 (16.7%) | 10 (29.4%) | 5 (31.2%) | |
Third tertile [5.31, 23.31] | 11 (30.6%) | 8 (23.5%) | 9 (56.2%) | |
Serological variables | ||||
Glucose * | 87.8 (12.4) | 82.4 (8.96) | 81.2 (7.69) | 0.049 |
CRP * | 0.12 [0.07; 0.28] | 0.17 [0.11; 0.30] | 0.16 [0.07; 0.54] | <0.001 |
ESR * | 8.00 [4.25; 20.0] | 10.5 [6.00; 15.0] | 13.5 [7.00; 21.5] | 0.054 |
Anti-dsDNA+ ever | 23 (60.5%) | 26 (70.3%) | 14 (87.5%) | 0.025 |
Anti-dsDNA+ * | 2.50 [1.00;10.8] | 5.00 [1.00; 13.0] | 15.5 [1.75; 40.2] | <0.001 |
Anti-dsDNA > RV * | 10 (26.3%) | 10 (27.8%) | 9 (56.2%) | 0.018 |
Anti-dsDNA tertiles * | 0.054 | |||
[0, 2) | 16 (42.1%) | 14 (38.9%) | 4 (25.0%) | |
[2, 11) | 12 (31.6%) | 12 (33.3%) | 3 (18.8%) | |
[11, 300] | 10 (26.3%) | 10 (27.8%) | 9 (56.2%) | |
Anti-dsDNA presence * | 10 (26.3%) | 10 (27.8%) | 9 (56.2%) | 0.018 |
Anti-Ro60+ ever | 7 (18.4%) | 19 (51.4%) | 6 (37.5%) | 0.097 |
Anti-Ro60 presence * | 7 (18.9%) | 17 (47.2%) | 6 (37.5%) | 0.086 |
Anti-Ro52+ ever | 4 (10.5%) | 12 (32.4%) | 5 (31.2%) | 0.060 |
C3 * | 111 (24.3) | 103 (19.2) | 98.8 (20.5) | 0.028 |
IL-6 * | 1.98 [1.43; 3.77] | 2.21 [1.81; 2.96] | 3.92 [2.99; 6.03] | 0.003 |
IL-6 > RV * | 4 (10.8%) | 2 (5.41%) | 4 (25.0%) | 0.002 |
IL-6 tertiles * | 0.019 | |||
[0.44, 1.88) | 16 (43.2%) | 13 (35.1%) | 1 (6.25%) | |
[1.88, 3.24) | 10 (27.0%) | 15 (40.5%) | 4 (25.0%) | |
[3.24, 39.38] | 11 (29.7%) | 9 (24.3%) | 11 (68.8%) | |
UPCR * | 82.2 [66.2; 119] | 84.1 [63.0; 103] | 71.3 [50.1; 121] | 0.013 |
Treatments | ||||
Mycophenolic acid | 4 (10.5%) | 8 (21.6%) | 5 (31.2%) | 0.007 |
NSAIDs | 3 (7.89%) | 4 (10.8%) | 2 (12.5%) | 0.038 |
Treatment | 0.030 | |||
Others | 6 (15.8%) | 3 (8.11%) | 0 (0.00%) | |
Antimalarials | 19 (50.0%) | 13 (35.1%) | 4 (25.0%) | |
IS | 13 (34.2%) | 21 (56.8%) | 12 (75.0%) | |
Treatment2 | 0.009 | |||
Non-IS | 25 (65.8%) | 16 (43.2%) | 4 (25.0%) | |
IS | 13 (34.2%) | 21 (56.8%) | 12 (75.0%) | |
Other AGEs | ||||
CML | 281 [216; 374] | 302 [248; 444] | 464 [272; 711] | 0.064 |
Variables | First Tertile [122, 384) | Second Tertile [384, 671) | Third Tertile [671, 2797] | p-Value |
---|---|---|---|---|
N = 40 | N = 40 | N = 39 | ||
Demographic variables | ||||
Gender: Female | 35 (87.5%) | 37 (92.5%) | 39 (100%) | 0.057 |
Classificatory Criteria and Other Clinical and Serological Data | ||||
Photosensitivity ever | 20 (50.0%) | 29 (72.5%) | 26 (66.7%) | 0.022 |
Disease Activity Indexes | ||||
DAS28 | 2.16 [1.49; 2.58] | 2.10 [1.43; 3.24] | 2.40 [1.57; 3.10] | 0.050 |
cDAS28 | 0.008 | |||
0—Reference | 31 (79.5%) | 25 (62.5%) | 21 (55.3%) | |
1—Low Activity | 2 (5.13%) | 4 (10.0%) | 8 (21.1%) | |
2—Moderate Activity | 4 (10.3%) | 9 (22.5%) | 7 (18.4%) | |
3—High Activity | 2 (5.13%) | 2 (5.00%) | 2 (5.26%) | |
Serological variables | ||||
ESR tertiles * | 0.047 | |||
[2, 7) | 13 (33.3%) | 17 (42.5%) | 12 (31.6%) | |
[7, 17) | 12 (30.8%) | 10 (25.0%) | 15 (39.5%) | |
[17, 81] | 14 (35.9%) | 13 (32.5%) | 11 (28.9%) | |
Leukocyturia * | 0.00 [0.00; 1.00] | 0.00 [0.00; 1.00] | 0.00 [0.00; 1.00] | 0.022 |
Patient-Reported Outcomes | ||||
Pain VAS | 1.50 [0.00;5.00] | 2.50 [0.00;6.12] | 4.00 [0.00;6.00] | 0.033 |
Comorbidities and Cardiovascular Disease | ||||
APS | 4 (10.0%) | 1 (2.50%) | 0 (0.00%) | 0.097 |
Pain VAS | 1.50 [0.00; 5.00] | 2.50 [0.00; 6.12] | 4.00 [0.00; 6.00] | 0.033 |
Treatments | ||||
bDMARDs | 0 (0.00%) | 2 (5.00%) | 4 (10.3%) | 0.002 |
Antimalarials | 37 (92.5%) | 27 (67.5%) | 26 (66.7%) | 0.009 |
Mycophenolic acid | 7 (17.5%) | 5 (12.5%) | 8 (20.5%) | 0.016 |
Azathioprine | 2 (5.00%) | 9 (22.5%) | 7 (17.9%) | 0.065 |
Glucocorticoids | 13 (32.5%) | 12 (30.0%) | 5 (12.8%) | 0.053 |
Treatment | 0.016 | |||
Others | 1 (2.50%) | 6 (15.0%) | 7 (17.9%) | |
Antimalarials | 24 (60.0%) | 14 (35.0%) | 13 (33.3%) | |
IS | 15 (37.5%) | 20 (50.0%) | 19 (48.7%) | |
Treatment2 | 0.008 | |||
Non-IS | 25 (62.5%) | 20 (50.0%) | 20 (51.3%) | |
IS | 15 (37.5%) | 20 (50.0%) | 19 (48.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión-Barberà, I.; Triginer, L.; Tío, L.; Pérez-García, C.; Ribes, A.; Abad, V.; Pros, A.; Monfort, J.; Salman-Monte, T.C. Serum Advanced Glycation End Products and Their Soluble Receptor as New Biomarkers in Systemic Lupus Erythematosus. Biomedicines 2024, 12, 610. https://doi.org/10.3390/biomedicines12030610
Carrión-Barberà I, Triginer L, Tío L, Pérez-García C, Ribes A, Abad V, Pros A, Monfort J, Salman-Monte TC. Serum Advanced Glycation End Products and Their Soluble Receptor as New Biomarkers in Systemic Lupus Erythematosus. Biomedicines. 2024; 12(3):610. https://doi.org/10.3390/biomedicines12030610
Chicago/Turabian StyleCarrión-Barberà, Irene, Laura Triginer, Laura Tío, Carolina Pérez-García, Anna Ribes, Victoria Abad, Ana Pros, Jordi Monfort, and Tarek Carlos Salman-Monte. 2024. "Serum Advanced Glycation End Products and Their Soluble Receptor as New Biomarkers in Systemic Lupus Erythematosus" Biomedicines 12, no. 3: 610. https://doi.org/10.3390/biomedicines12030610
APA StyleCarrión-Barberà, I., Triginer, L., Tío, L., Pérez-García, C., Ribes, A., Abad, V., Pros, A., Monfort, J., & Salman-Monte, T. C. (2024). Serum Advanced Glycation End Products and Their Soluble Receptor as New Biomarkers in Systemic Lupus Erythematosus. Biomedicines, 12(3), 610. https://doi.org/10.3390/biomedicines12030610