The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Becher, P.M.; Lund, L.H.; Coats, A.J.; Savarese, G. An update on global epidemiology in heart failure. Eur. Heart J. 2022, 43, 3005–3007. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.D.; Stoia, M.A.; Anton, F.P.; Hognogi, D.M.; Ianos, R.D.; Hojda, S.E.S.; Gavrila, I.L.; Lutac, D.; Burian, I.I.; Simiti, L.A.V. The Lymphocyte Count and Neutrophil/lymphocyte Ratio are Independent Predictors for Adverse Cardiac Events in Ischemic Heart Failure but not with Non-ischemic Heart Failure. Rev. Chim. 2016, 76, 2091–2094. [Google Scholar]
- Goidescu, C.; Farcas, A.; Anton, F.; Vida-Simiti, L. The Pattern of Ventricular Remodeling Influences the Level of Oxidative Stress in Heart Failure Patients. Rev. Chim. 2017, 68, 1506–1511. [Google Scholar] [CrossRef]
- Harding, D.; Chong, M.H.A.; Lahoti, N.; Bigogno, C.M.; Prema, R.; Mohiddin, S.A.; Marelli-Berg, F. Dilated cardiomyopathy and chronic cardiac inflammation: Pathogenesis, diagnosis and therapy. J. Intern. Med. 2023, 293, 23–47. [Google Scholar] [CrossRef] [PubMed]
- Curran, F.M.; Bhalraam, U.; Mohan, M.; Singh, J.S.; Anker, S.D.; Dickstein, K.; Doney, A.S.; Filippatos, G.; George, J.; Metra, M.; et al. Neutrophil-to-lymphocyte ratio and outcomes in patients with new-onset or worsening heart failure with reduced and preserved ejection fraction. ESC Heart Fail. 2021, 8, 3168–3179. [Google Scholar] [CrossRef]
- Cristescu, L.; Tilea, I.; Iancu, D.-G.; Stoica, F.; Moldovan, D.-A.; Capriglione, V.; Varga, A. Insights into the Neutrophil-to-Lymphocyte Ratio and the Platelet-to-Lymphocyte Ratio as Predictors for the Length of Stay and Readmission in Chronic Heart Failure Patients. Diagnostics 2024, 14, 2102. [Google Scholar] [CrossRef]
- Cho, J.H.; Cho, H.J.; Lee, H.Y.; Ki, Y.J.; Jeon, E.S.; Hwang, K.K.; Chae, S.C.; Baek, S.H.; Kang, S.M.; Choi, D.J.; et al. Neutrophil-Lymphocyte Ratio in Patients with Acute Heart Failure Predicts In-Hospital and Long-Term Mortality. J. Clin. Med. 2020, 9, 557. [Google Scholar] [CrossRef]
- Crișan, C.A.; Milhem, Z.; Stretea, R.; Țața, I.-M.; Cherecheș, R.M.; Micluția, I.V. A Narrative Review on REM Sleep Deprivation: A Promising Non-Pharmaceutical Alternative for Treating Endogenous Depression. J. Pers. Med. 2023, 13, 306. [Google Scholar] [CrossRef]
- Mohan, M.; Deshmukh, H.; Baig, F.; Hawkey, S.; Rutherford, L.; Struthers, A.; Maria, A.; Lang, C. Abstract 15218: Neutrophil to Lymphocyte ratio Predicts All-cause Mortality in Patients with Chronic Heart Failure. Circulation 2014, 130 (Suppl. S2), A15218. [Google Scholar]
- Uthamalingam, S.; Patvardhan, E.A.; Subramanian, S.; Ahmed, W.; Martin, W.; Daley, M.; Capodilupo, R. Utility of the neutrophil to lymphocyte ratio in predicting long-term outcomes in acute decompensated heart failure. Am. J. Cardiol. 2011, 107, 433–438. [Google Scholar] [CrossRef]
- Ang, S.P.; Chia, J.E.; Jaiswal, V.; Hanif, M.; Iglesias, J. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Patients with Acute Decompensated Heart Failure: A Meta-Analysis. J. Clin. Med. 2024, 13, 1212. [Google Scholar] [CrossRef] [PubMed]
- Masarone, D.; Martucci, M.L.; Errigo, V.; Pacileo, G. The Use of β-Blockers in Heart Failure with Reduced Ejection Fraction. J. Cardiovasc. Dev. Dis. 2021, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Ajam, T.; Ajam, S.; Devaraj, S.; Mohammed, K.; Sawada, S.; Kamalesh, M. Effect of carvedilol vs metoprolol succinate on mortality in heart failure with reduced ejection fraction. Am. Heart J. 2018, 199, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Polat, N.; Yıldız, A.; Bilik, M.Z.; Aydın, M.; Acet, H.; Kaya, H.; Demir, M.; Işık, M.A.; Alan, S.; Toprak, N. The importance of hematologic indices in the risk stratification of patients with acute decompensated systolic heart failure. Türk Kardiyol. Derneği Arşivi 2015, 43, 157–165. [Google Scholar]
- Nakamura, K.; Murakami, M.; Miura, D.; Yunoki, K.; Enko, K.; Tanaka, M.; Saito, Y.; Nishii, N.; Miyoshi, T.; Yoshida, M.; et al. Beta-Blockers and Oxidative Stress in Patients with Heart Failure. Pharmaceuticals 2012, 4, 1088–1100. [Google Scholar] [CrossRef]
- Jin, S.; Kang, P.M. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants 2024, 13, 923. [Google Scholar] [CrossRef]
- Chin, B.S.P.; Langford, N.J.; Nuttall, S.L.; Gibbs, C.R.; Blann, A.D.; Lip, G.Y.H. Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure. Eur. J. Heart Fail. 2003, 5, 171–174. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Mostafa-Hedeab, G.; Kasozi, K.I.; Zirintunda, G.; Aslam, A.; Allahyani, M.; Welburn, S.C.; Batiha, G.E.S. Effects of β-Blockers on the Sympathetic and Cytokines Storms in COVID-19. Front. Immunol. 2021, 12, 749291. [Google Scholar] [CrossRef]
- Vakhshoori, M.; Nemati, S.; Sabouhi, S.; Yavari, B.; Shakarami, M.; Bondariyan, N.; Emami, S.A.; Shafie, D. Neutrophil to lymphocyte ratio (NLR) prognostic effects on heart failure; a systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 555. [Google Scholar] [CrossRef]
- Maslov, L.N.; Naryzhnaya, N.V.; Voronkov, N.S.; Kurbatov, B.K.; Derkachev, I.A.; Ryabov, V.V.; Vyshlov, E.V.; Kolpakov, V.V.; Tomilova, E.A.; Sapozhenkova, E.V.; et al. The role of β-adrenergic receptors in the regulation of cardiac tolerance to ischemia/reperfusion. Why do β-adrenergic receptor agonists and antagonists protect the heart? Fundam. Clin. Pharmacol. 2024, 38, 658–673. [Google Scholar] [CrossRef]
- García-Prieto, J.; Villena-Gutiérrez, R.; Gómez, M.; Bernardo, E.; Pun-García, A.; García-Lunar, I.; Crainiciuc, G.; Fernández-Jiménez, R.; Sreeramkumar, V.; Bourio-Martínez, R.; et al. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun. 2017, 8, 14780. [Google Scholar] [CrossRef] [PubMed]
- Zaatari, G.; Fintel, D.J.; Subacius, H.; Germano, J.J.; Shani, J.; Goldberger, J.J. Comparison of Metoprolol Versus Carvedilol After Acute Myocardial Infarction. Am. J. Cardiol. 2021, 147, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Di Credico, A.; Gaggi, G.; Iannetti, G.; Ghinassi, B.; Gallina, S.; Olshansky, B.; Di Baldassarre, A. Metoprolol disrupts inflammatory response of human cardiomyocytes via β-arrestin2 biased agonism and NF-κB signaling modulation. Biomed Pharmacother. 2023, 168, 115804. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, H.; Castanares-Zapatero, D.; Pierman, G.; Pothen, L.; De Greef, J.; Aboubakar Nana, F.; Rodriguez-Villalobos, H.; Belkhir, L.; Yombi, J.C. Validation of Neutrophil-to-Lymphocyte Ratio Cut-off Value Associated with High In-Hospital Mortality in COVID-19 Patients. Int. J. Gen. Med. 2021, 14, 5111–5117. [Google Scholar] [CrossRef] [PubMed]
- Debien, V.; Davidson, G.; Baltzinger, P.; Kurtz, J.E.; Séverac, F.; Imperiale, A.; Pessaux, P.; Addeo, P.; Bachellier, P.; Su, X.; et al. Involvement of Neutrophils in Metastatic Evolution of Pancreatic Neuroendocrine Tumors. Cancers 2021, 13, 2771. [Google Scholar] [CrossRef]
- von Haehling, S.; Schefold, J.C.; Jankowska, E.; Doehner, W.; Springer, J.; Strohschein, K.; Genth-Zotz, S.; Volk, H.D.; Poole-Wilson, P.; Anker, S.D. Leukocyte Redistribution: Effects of Beta Blockers in Patients with Chronic Heart Failure. PLoS ONE 2009, 4, e6411. [Google Scholar] [CrossRef]
- Zebrack, J.S.; Munger, M.; Macgregor, J.; Lombardi, W.L.; Stoddard, G.P.; Gilbert, E.M. Beta-receptor selectivity of carvedilol and metoprolol succinate in patients with heart failure (SELECT trial): A randomized dose-ranging trial. Pharmacotherapy 2009, 29, 883–890. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Magliulo, F.; Cattaneo, F.; Gargiulo, G.; Sannino, A.; Franzone, A.; Oliveti, M.; Perrino, C.; Trimarco, B.; Esposito, G. Novel Molecular Approaches in Heart Failure: Seven Trans-Membrane Receptors Signaling in the Heart and Circulating Blood Leukocytes. Front. Cardiovasc. Med. 2015, 2, 13. [Google Scholar] [CrossRef]
- Cao, D.Y.; Saito, S.; Veiras, L.C.; Okwan-Duodu, D.; Bernstein, E.A.; Giani, J.F.; Bernstein, K.E.; Khan, Z. Role of angiotensin-converting enzyme in myeloid cell immune responses. Cell. Mol. Biol. Lett. 2020, 25, 31. [Google Scholar] [CrossRef]
- Lin, G.; Dai, C.; Xu, K.; Wu, M. Predictive value of neutrophil to lymphocyte ratio and red cell distribution width on death for ST segment elevation myocardial infarction. Sci. Rep. 2021, 11, 11506. [Google Scholar] [CrossRef]
- Avci, B.Ş.; Avci, A.; Dönmez, Y.; Kaya, A.; Gülen, M.; Özer, A.İ.; Bulut, A.; Koç, M.; Nazik, H.; Satar, S. The Effectiveness of Neutrophil-Lymphocyte Ratio in Predicting in-Hospital Mortality in Non-ST-Elevation Myocardial Infarction. Emerg. Med. Int. 2020, 2020, 8718304. [Google Scholar] [CrossRef] [PubMed]
- Nibley, P.C.; Shenoy, S.K. β-adrenergic receptor signaling mediated by β-arrestins and its potential role in heart failure. Curr. Opin. Physiol. 2024, 37, 100723. [Google Scholar] [CrossRef] [PubMed]
- Vida, C.; Portilla, Y.; Murga, C. Adrenergic modulation of neutrophil and macrophage functions: Pathophysiological cues. Curr. Opin. Physiol. 2024, 41, 100780. [Google Scholar] [CrossRef]
- Kyriazis, I.D.; de Lucia, C. Adrenergic signaling in cardiovascular aging. Curr. Opin. Physiol. 2024, 37, 100722. [Google Scholar] [CrossRef]
- Angkananard, T.; Inthanoo, T.; Sricholwattana, S.; Rattanajaruskul, N.; Wongsoasu, A.; Roongsangmanoon, W. The Predictive role of Neutrophil-to-Lymphocyte Ratio (NLR) and Mean Platelet Volume-to-Lymphocyte Ratio (MPVLR) for Cardiovascular Events in Adult Patients with Acute Heart Failure. Mediators Inflamm. 2021, 2021, 6889733. [Google Scholar] [CrossRef]
Patients without BBs (88p) | Patients with BBs (242p) | p | |
---|---|---|---|
Age (years) | 68.41 ± 12.69 | 67.09 ± 15.53 | 0.669 |
Sex (men) | 64.8% | 35.2% | 0.004 |
Length of stay (days) | 7.45 ± 3.54 | 7.29 ± 3.43 | 0.458 |
Leukocytes (109/L) | 7.19 ± 2.20 | 7.84 ± 3.26 | 0.159 |
Lymphocytes (%) | 14.18 ± 9.44 | 18.32 ± 10.59 | 0.019 |
Lymphocytes (number) | 1.06 ± 0.83 | 1.09 ± 0.82 | 0.818 |
Neutrophils (%) | 54.77 ± 29.88 | 53.66 ± 31.01 | 0.493 |
Neutrophils (number) | 4.25 ± 3.18 | 4.20 ± 2.93 | 0.907 |
Monocyte (%) | 3.14 ± 4.52 | 4.41 ± 4.18 | 0.763 |
Eosinophils (%) | 1.18 ± 2.11 | 1.17 ± 1.55 | 0.963 |
Basophils (%) | 0.06 ± 0.11 | 0.14 ± 0.35 | 0.042 |
NLR (neutrophil–lymphocyte ratio) | 5.15 ± 8.68 | 3.64 ± 3.87 | 0.039 |
Ejection fraction (%) | 31.49 ± 19.22 | 36.7 ± 18.55 | 0.045 |
Ischemic heart disease | 30.6% | 69.4% | 0.005 |
Hypertensive heart disease | 54.6% | 45.4% | 0.037 |
Idiopathic dilated cardiomyopathy | 42.6% | 58.4% | 0.034 |
NT-proBNP pg/mL | 5879.03 ± 2804.58 | 3283.39 ± 1079.66 | 0.010 |
Characteristics (Mean ± SD) | Patients with Metoprolol (138p) | Patients with Carvedilol (60p) | p |
---|---|---|---|
Age (years) | 66.81 ± 15.34 | 64.82 ± 16.04 | 0.576 |
Sex (men) | 48.4% | 51.6% | 0.025 |
Length of stay (days) | 7.25 ± 4.21 | 8.04 ± 3.47 | 0.356 |
Leukocytes (109/L) | 7.64 ± 2.36 | 7.84 ± 2.30 | 0.052 |
Lymphocytes (%) | 12.75 ± 13.09 | 15.35 ± 10.41 | 0.015 |
Lymphocytes (109/L) | 1.28 ± 0.93 | 0.86 ± 0.70 | 0.039 |
Neutrophils (%) | 53.92 ± 28.92 | 37.56 ± 35.63 | 0.034 |
Neutrophils (109/L) | 4.55 ± 3.41 | 3.14 ± 3.03 | 0.015 |
Monocyte (%) | 3.53 ± 4.16 | 2.51 ± 3.67 | 0.038 |
Eosinophils (%) | 1.00 ± 1.75 | 1.21 ± 1.95 | 0.672 |
Basophils (%) | 0.07 ± 0.10 | 0.06 ± 0.12 | 0.877 |
History of myocardial ischemia | 76.4% | 23.6% | 0.004 |
Hypertensive heart disease | 34.6% | 65.4% | 0.003 |
Non-ischemic dilated cardiomyopathy | 45.2% | 54.8% | 0.035 |
NLR (neutrophil/lymphocyte ratio) | 4.26 ± 3.56 | 4.58 ± 4.17 | 0.043 |
NT-proBNP pg/mL | 1079.14 ± 283.48 | 4439.29 ± 2328.56 | 0.002 |
LDL-cholesterol (mg/dL) | 91.8 ± 42.6 | 102.8 ± 53.10 | 0.046 |
Characteristics (Mean ± SD) | Metoprolol <100 mg/Day (75p) | Metoprolol ≥100 mg/Day (63p) | p | Carvedilol <25 mg/Day (32p) | Carvedilol ≥25 mg/Day (28p) | p |
---|---|---|---|---|---|---|
Age (years) | 64.83 ± 13.24 | 65.21 ± 14.34 | 0.245 | 62.85 ± 15.14 | 65.23 ± 16.27 | 0.576 |
Length of stay (days) | 7.31 ± 3.82 | 7.55 ± 4.31 | 0.467 | 8.04 ± 3.47 | 7.85 ± 3.39 | 0.356 |
Leukocytes (109/L) | 6.50 ± 2.10 | 7.40 ± 2.62 | 0.655 | 7.98 ± 1.83 | 7.52 ± 0.30 | 0.470 |
Lymphocytes (%) | 14.65 ± 3.33 | 16.23 ± 5.15 | 0.027 | 13.24 ± 10.35 | 12.52 ± 14.52 | 0.043 |
Lymphocytes (109/L) | 1.25 ± 0.51 | 1.63 ± 1.07 | 0.043 | 0.92 ± 0.76 | 0.73 ± 0.59 | 0.115 |
Neutrophils (%) | 68.26 ± 12.96 | 24.66 ± 12.72 | 0.004 | 36.33 ± 35.81 | 40.19 ± 37.93 | 0.807 |
Neutrophils (109/L) | 3.99 ± 2.68 | 4.67 ± 2.23 | 0.023 | 2.29 ± 2.10 | 4.60 ± 3.94 | 0.005 |
Monocyte (%) | 3.53 ± 3.16 | 3.79 ± 2.73 | 0.052 | 1.48 ± 0.81 | 1.72 ± 0.51 | 0.051 |
Eosinophils (%) | 0.87 ± 0.67 | 0.98 ± 0.82 | 0.372 | 0.96 ± 0.82 | 1.75 ± 0.85 | 0.294 |
Basophils (%) | 0.6 ± 0.10 | 0.7 ± 0.15 | 0.056 | 0.16 ± 0.11 | 0.8 ± 0.69 | 0.725 |
NLR (neutrophil/lymphocyte ratio) | 4.85 ± 2.67 | 3.18 ± 2.53 | 0.029 | 2.46 ± 1.09 | 7.10 ± 4.41 | 0.014 |
NT-proBNP (pg/mL) | 1249.41 ± 320.17 | 674.88 ± 220.15 | 0.414 | 5094.81 ± 2786.43 | 2351.71 ± 1282.00 | 0.046 |
Patients with NIHF | Patients with IHF | p | |
---|---|---|---|
Age | 62.08 ± 12.58 | 63.02 ± 14.28 | NS |
Women | 64.6% | 63.9% | NS |
Men | 36.4% | 37.1% | NS |
Hemoglobin (g/dL) | 12.10 ± 3.47 | 13.25 ± 3.56 | NS |
Hematocrit (%) | 34.28 ± 13.41 | 32.12 ± 13.58 | NS |
Leukocytes (109/L) | 6.23 ± 1.98 × 109 | 7.36 ± 3.26 × 109 | <0.001 |
Neutrophils (109/L) | 51.5 ± 32.6 | 56.6 ± 24.8 | <0.005 |
Lymphocytes (109/L) | 14.2 ± 11% | 16.2 ± 9.2% | <0.05 |
NLR (neutrophil–lymphocyte ratio) | 0.89 (0.28–1.05) | 1.17 (1.12–1.43) | <0.02 |
CRP (mg/dL) (CRP: C reactive protein) | 0.14 ± 0.34 | 0.28 ± 0.58 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farcaş, A.D.; Stoia, M.A.; Mocan-Hognogi, D.L.; Goidescu, C.M.; Cocoi, A.F.; Anton, F.P. The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients. Biomedicines 2024, 12, 2907. https://doi.org/10.3390/biomedicines12122907
Farcaş AD, Stoia MA, Mocan-Hognogi DL, Goidescu CM, Cocoi AF, Anton FP. The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients. Biomedicines. 2024; 12(12):2907. https://doi.org/10.3390/biomedicines12122907
Chicago/Turabian StyleFarcaş, Anca Daniela, Mirela Anca Stoia, Diana Larisa Mocan-Hognogi, Cerasela Mihaela Goidescu, Alexandra Florina Cocoi, and Florin Petru Anton. 2024. "The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients" Biomedicines 12, no. 12: 2907. https://doi.org/10.3390/biomedicines12122907
APA StyleFarcaş, A. D., Stoia, M. A., Mocan-Hognogi, D. L., Goidescu, C. M., Cocoi, A. F., & Anton, F. P. (2024). The Effects of Beta-Blockers on Leukocytes and the Leukocyte Subpopulation in Heart Failure Patients. Biomedicines, 12(12), 2907. https://doi.org/10.3390/biomedicines12122907